B. Ajami, J. Bennett, C. Krieger, W. Tetzlaff, and F. Rossi, Local self-renewal can sustain CNS microglia maintenance and function throughout adult life, Nature Neuroscience, vol.125, issue.12, pp.1538-1543, 2007.
DOI : 10.1038/nn2014

M. Alexianu, M. Kozovska, and S. Appel, Immune reactivity in a mouse model of familial ALS correlates with disease progression, Neurology, vol.57, issue.7, pp.1282-1289, 2001.
DOI : 10.1212/WNL.57.7.1282

G. Almer, S. Vukosavic, N. Romero, and S. Przedborski, Inducible Nitric Oxide Synthase Up-Regulation in a Transgenic Mouse Model of Familial Amyotrophic Lateral Sclerosis, Journal of Neurochemistry, vol.291, issue.6, pp.2415-2425, 1999.
DOI : 10.1046/j.1471-4159.1999.0722415.x

G. Almer, C. Guegan, P. Teismann, A. Naini, G. Rosoklija et al., Increased expression of the pro-inflammatory enzyme cyclooxygenase-2 in amyotrophic lateral sclerosis, Annals of Neurology, vol.155, issue.2, pp.176-185, 2001.
DOI : 10.1002/1531-8249(20010201)49:2<176::AID-ANA37>3.0.CO;2-X

P. Andersson, V. Perry, and S. Gordon, The kinetics and morphological characteristics of the macrophage-microglial response to kainic acid-induced neuronal degeneration, Neuroscience, vol.42, issue.1, pp.201-214, 1991.
DOI : 10.1016/0306-4522(91)90159-L

W. Andrews, A. Chalabi, and J. Garson, Lack of evidence for HTLV tax-rex DNA in motor neurone disease, Journal of the Neurological Sciences, vol.153, issue.1, pp.86-90, 1997.
DOI : 10.1016/S0022-510X(97)00199-8

W. Andrews, P. Tuke, A. Chalabi, P. Gaudin, S. Ijaz et al., Detection of reverse transcriptase activity in the serum of patients with motor neurone disease, Journal of Medical Virology, vol.129, issue.4, pp.527-532, 2000.
DOI : 10.1002/1096-9071(200008)61:4<527::AID-JMV17>3.0.CO;2-A

D. Angelov, S. Waibel, O. Guntinas-lichius, M. Lenzen, W. Neiss et al., Therapeutic vaccine for acute and chronic motor neuron diseases: Implications for amyotrophic lateral sclerosis, Proceedings of the National Academy of Sciences, vol.100, issue.8, pp.4790-4795, 2003.
DOI : 10.1073/pnas.0530191100

S. Appel, J. Engelhardt, J. Henkel, L. Siklos, D. Beers et al., Hematopoietic stem cell transplantation in patients with sporadic amyotrophic lateral sclerosis, Neurology, vol.71, issue.17, pp.1326-1334, 2008.
DOI : 10.1212/01.wnl.0000327668.43541.22

S. Appel, R. Smith, J. Engelhardt, and E. Stefani, Evidence for autoimmunity in amyotrophic lateral sclerosis, Journal of the Neurological Sciences, vol.118, issue.2, pp.169-174, 1993.
DOI : 10.1016/0022-510X(93)90106-9

R. Banerjee, R. Mosley, A. Reynolds, A. Dhar, V. Jackson-lewis et al., Adaptive Immune Neuroprotection in G93A-SOD1 Amyotrophic Lateral Sclerosis Mice, PLoS ONE, vol.10, issue.7, p.18648532, 2008.
DOI : 10.1371/journal.pone.0002740.s002

L. Barbeito, M. Pehar, P. Cassina, M. Vargas, H. Peluffo et al., A role for astrocytes in motor neuron loss in amyotrophic lateral sclerosis, Brain Research Reviews, vol.47, issue.1-3, pp.263-274, 2004.
DOI : 10.1016/j.brainresrev.2004.05.003

S. Barber, R. Mead, and P. Shaw, Oxidative stress in ALS: A mechanism of neurodegeneration and a therapeutic target, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1762, issue.11-12, pp.1051-1067, 2006.
DOI : 10.1016/j.bbadis.2006.03.008

P. Baron, S. Bussini, V. Cardin, M. Corbo, G. Conti et al., Production of monocyte chemoattractant protein-1 in amyotrophic lateral sclerosis, Muscle & Nerve, vol.144, issue.4, pp.541-544, 2005.
DOI : 10.1002/mus.20376

K. Bedard and K. Krause, The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology, Physiological Reviews, vol.87, issue.1, pp.245-313, 2007.
DOI : 10.1152/physrev.00044.2005

D. Beers, J. Henkel, Q. Xiao, W. Zhao, J. Wang et al., Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis, Proceedings of the National Academy of Sciences, vol.103, issue.43, pp.16021-16026, 2006.
DOI : 10.1073/pnas.0607423103

D. Beers, J. Henkel, W. Zhao, J. Wang, and S. Appel, CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS, Proceedings of the National Academy of Sciences, vol.105, issue.40, pp.15558-15563, 2008.
DOI : 10.1073/pnas.0807419105

S. Begg, J. Radley, J. Pollard, O. Chisholm, E. Stanley et al., Delayed hematopoietic development in osteopetrotic (op/op) mice, Journal of Experimental Medicine, vol.177, issue.1, pp.237-242, 1993.
DOI : 10.1084/jem.177.1.237

E. Benner, R. Mosley, C. Destache, T. Lewis, V. Jackson-lewis et al., Therapeutic immunization protects dopaminergic neurons in a mouse model of Parkinson's disease, Proceedings of the National Academy of Sciences, vol.101, issue.25, pp.9435-9440, 2004.
DOI : 10.1073/pnas.0400569101

A. Bessis, C. Bechade, D. Bernard, and A. Roumier, Microglial control of neuronal death and synaptic properties, Glia, vol.115, issue.3, pp.233-238, 2007.
DOI : 10.1002/glia.20459

E. Bilic, I. Rudan, V. Kusec, N. Zurak, D. Delimar et al., Comparison of the growth hormone, IGF-1 and insulin in cerebrospinal fluid and serum between patients with motor neuron disease and healthy controls, European Journal of Neurology, vol.24, issue.12, pp.1340-1345, 2006.
DOI : 10.1016/S0166-2236(98)01261-2

S. Boillee, V. Velde, C. Cleveland, and D. , ALS: A Disease of Motor Neurons and Their Nonneuronal Neighbors, Neuron, vol.52, issue.1, pp.39-59, 2006.
DOI : 10.1016/j.neuron.2006.09.018

S. Boillee, K. Yamanaka, C. Lobsiger, N. Copeland, N. Jenkins et al., Onset and Progression in Inherited ALS Determined by Motor Neurons and Microglia, Science, vol.312, issue.5778, pp.1389-1392, 2006.
DOI : 10.1126/science.1123511

G. Borasio, W. Robberecht, P. Leigh, E. J. Guiloff, R. Jerusalem et al., A placebo-controlled trial of insulin-like growth factor-I in amyotrophic lateral sclerosis, Neurology, vol.51, issue.2, pp.583-586, 1998.
DOI : 10.1212/WNL.51.2.583

G. Braunstein and A. Reviczky, Serum insulin-like growth factor-I levels in amyotrophic lateral sclerosis., Journal of Neurology, Neurosurgery & Psychiatry, vol.50, issue.6, pp.792-794, 1987.
DOI : 10.1136/jnnp.50.6.792

T. Breidert, J. Callebert, M. Heneka, G. Landreth, J. Launay et al., Protective action of the peroxisome proliferator-activated receptor-?? agonist pioglitazone in a mouse model of Parkinson's disease, Journal of Neurochemistry, vol.178, issue.18, pp.615-624, 2002.
DOI : 10.1046/j.1471-4159.2002.00990.x

L. Bruijn, M. Becher, M. Lee, K. Anderson, N. Jenkins et al., ALS-Linked SOD1 Mutant G85R Mediates Damage to Astrocytes and Promotes Rapidly Progressive Disease with SOD1-Containing Inclusions, Neuron, vol.18, issue.2, pp.327-338, 1997.
DOI : 10.1016/S0896-6273(00)80272-X

O. Butovsky, M. Koronyo-hamaoui, G. Kunis, E. Ophir, G. Landa et al., Glatiramer acetate fights against Alzheimer's disease by inducing dendritic-like microglia expressing insulin-like growth factor 1, Proceedings of the National Academy of Sciences, vol.103, issue.31, pp.11784-11789, 2006.
DOI : 10.1073/pnas.0604681103

A. Cardona, E. Pioro, M. Sasse, V. Kostenko, S. Cardona et al., Control of microglial neurotoxicity by the fractalkine receptor, Nature Neuroscience, vol.24, issue.7, pp.917-924, 2006.
DOI : 10.1038/nn1715

M. Carri, Minocycline for patients with ALS, The Lancet Neurology, vol.7, issue.2, pp.118-119, 2008.
DOI : 10.1016/S1474-4422(08)70005-X

C. Cereda, C. Baiocchi, P. Bongioanni, E. Cova, S. Guareschi et al., TNF and sTNFR1/2 plasma levels in ALS patients, Journal of Neuroimmunology, vol.194, issue.1-2, pp.123-131, 2008.
DOI : 10.1016/j.jneuroim.2007.10.028

K. Chen, F. Northington, and L. Martin, Inducible nitric oxide synthase is present in motor neuron mitochondria and Schwann cells and contributes to disease mechanisms in ALS mice, Brain Structure and Function, vol.93, issue.2, 2009.
DOI : 10.1007/s00429-009-0226-4

C. Cheret, A. Gervais, A. Lelli, C. Colin, L. Amar et al., Neurotoxic Activation of Microglia Is Promoted by a Nox1-Dependent NADPH Oxidase, Journal of Neuroscience, vol.28, issue.46, pp.12039-12051, 2008.
DOI : 10.1523/JNEUROSCI.3568-08.2008

URL : https://hal.archives-ouvertes.fr/pasteur-00428978

I. Chiu, A. Chen, Y. Zheng, B. Kosaras, S. Tsiftsoglou et al., T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS, Proceedings of the National Academy of Sciences, vol.105, issue.46, pp.17913-17918, 2008.
DOI : 10.1073/pnas.0804610105

I. Chiu, H. Phatnani, M. Kuligowski, J. Tapia, M. Carrasco et al., Activation of innate and humoral immunity in the peripheral nervous system of ALS transgenic mice, Proceedings of the National Academy of Sciences, vol.106, issue.49, pp.20960-20965, 2009.
DOI : 10.1073/pnas.0911405106

C. Chow, J. Landers, S. Bergren, P. Sapp, A. Grant et al., Deleterious Variants of FIG4, a Phosphoinositide Phosphatase, in Patients with ALS, The American Journal of Human Genetics, vol.84, issue.1, pp.85-88, 2009.
DOI : 10.1016/j.ajhg.2008.12.010

A. Clement, M. Nguyen, E. Roberts, M. Garcia, S. Boillee et al., Wild-Type Nonneuronal Cells Extend Survival of SOD1 Mutant Motor Neurons in ALS Mice, Science, vol.302, issue.5642, pp.113-117, 2003.
DOI : 10.1126/science.1086071

P. Colville-nash, S. Qureshi, D. Willis, and D. Willoughby, Inhibition of inducible nitric oxide synthase by peroxisome proliferator-activated receptor agonists: correlation with induction of heme oxygenase 1, J Immunol, vol.161, pp.978-984, 1998.

C. Consilvio, A. Vincent, and E. Feldman, Neuroinflammation, COX-2, and ALS???a dual role?, Experimental Neurology, vol.187, issue.1, pp.1-10, 2004.
DOI : 10.1016/j.expneurol.2003.12.009

M. Corbo, C. Lunetta, P. Magni, E. Dozio, M. Ruscica et al., Free insulin-like growth factor (IGF)-1 and IGF-binding proteins-2 and -3 in serum and cerebrospinal fluid of amyotrophic lateral sclerosis patients, European Journal of Neurology, vol.128, issue.3, pp.398-404, 2009.
DOI : 10.1111/j.1468-1331.2009.02815.x

S. Corti, F. Locatelli, C. Donadoni, M. Guglieri, D. Papadimitriou et al., Wild-type bone marrow cells ameliorate the phenotype of SOD1-G93A ALS mice and contribute to CNS, heart and skeletal muscle tissues, Brain, vol.127, issue.11, pp.2518-2532, 2004.
DOI : 10.1093/brain/awh273

M. Cuadros and J. Navascues, The origin and differentiation of microglial cells during development, Progress in Neurobiology, vol.56, issue.2, pp.173-189, 1998.
DOI : 10.1016/S0301-0082(98)00035-5

M. Cudkowicz, J. Shefner, D. Schoenfeld, H. Zhang, K. Andreasson et al., Trial of celecoxib in amyotrophic lateral sclerosis, Annals of Neurology, vol.24, issue.1, pp.22-31, 2006.
DOI : 10.1002/ana.20903

N. Ambrosi, P. Finocchi, S. Apolloni, M. Cozzolino, A. Ferri et al., The Proinflammatory Action of Microglial P2 Receptors Is Enhanced in SOD1 Models for Amyotrophic Lateral Sclerosis, The Journal of Immunology, vol.183, issue.7, pp.4648-4656, 2009.
DOI : 10.4049/jimmunol.0901212

X. Dai, G. Ryan, A. Hapel, M. Dominguez, R. Russell et al., Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects, Blood, vol.99, issue.1, pp.111-120, 2002.
DOI : 10.1182/blood.V99.1.111

D. Davalos, J. Grutzendler, G. Yang, J. Kim, Y. Zuo et al., ATP mediates rapid microglial response to local brain injury in vivo, Nature Neuroscience, vol.19, issue.6, pp.752-758, 2005.
DOI : 10.1523/JNEUROSCI.2294-04.2004

T. Dehmer, M. Heneka, M. Sastre, J. Dichgans, and J. Schulz, Protection by pioglitazone in the MPTP model of Parkinson's disease correlates with I??B?? induction and block of NF??B and iNOS activation, Journal of Neurochemistry, vol.22, issue.2, pp.494-501, 2004.
DOI : 10.1046/j.1471-4159.2003.02210.x

H. Deng, Y. Shi, Y. Furukawa, H. Zhai, R. Fu et al., Conversion to the amyotrophic lateral sclerosis phenotype is associated with intermolecular linked insoluble aggregates of SOD1 in mitochondria, Proceedings of the National Academy of Sciences, vol.103, issue.18, pp.7142-7147, 2006.
DOI : 10.1073/pnas.0602046103

D. Giorgio, F. Carrasco, M. Siao, M. Maniatis, T. Eggan et al., Non???cell autonomous effect of glia on motor neurons in an embryonic stem cell???based ALS model, Nature Neuroscience, vol.252, issue.5, pp.608-614, 2007.
DOI : 10.1038/nn1876

G. Dobrowolny, C. Giacinti, L. Pelosi, C. Nicoletti, N. Winn et al., Muscle expression of a local Igf-1 isoform protects motor neurons in an ALS mouse model, The Journal of Cell Biology, vol.105, issue.2, pp.193-199, 2005.
DOI : 10.1016/S0896-6273(00)80086-0

J. Dodge, A. Haidet, W. Yang, M. Passini, M. Hester et al., Delivery of AAV-IGF-1 to the CNS Extends Survival in ALS Mice Through Modification of Aberrant Glial Cell Activity, Molecular Therapy, vol.16, issue.6, pp.1056-1064, 2008.
DOI : 10.1038/mt.2008.60

D. Drachman, K. Frank, M. Dykes-hoberg, P. Teismann, G. Almer et al., Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS, Annals of Neurology, vol.155, issue.6, pp.771-778, 2002.
DOI : 10.1002/ana.10374

L. Duplan, N. Bernard, W. Casseron, K. Dudley, E. Thouvenot et al., Collapsin Response Mediator Protein 4a (CRMP4a) Is Upregulated in Motoneurons of Mutant SOD1 Mice and Can Trigger Motoneuron Axonal Degeneration and Cell Death, Journal of Neuroscience, vol.30, issue.2, pp.785-796, 2010.
DOI : 10.1523/JNEUROSCI.5411-09.2010

J. Elliott, Cytokine upregulation in a murine model of familial amyotrophic lateral sclerosis, Molecular Brain Research, vol.95, issue.1-2, pp.172-178, 2001.
DOI : 10.1016/S0169-328X(01)00242-X

N. Ende, F. Weinstein, R. Chen, and M. Ende, Human umbilical cord blood effect on sod mice (amyotrophic lateral sclerosis), Life Sciences, vol.67, issue.1, pp.53-59, 2000.
DOI : 10.1016/S0024-3205(00)00602-0

J. Engelhardt, J. Tajti, and S. Appel, Lymphocytic Infiltrates in the Spinal Cord in Amyotrophic Lateral Sclerosis, Archives of Neurology, vol.50, issue.1, pp.30-36, 1993.
DOI : 10.1001/archneur.1993.00540010026013

S. Ezzi, M. Urushitani, and J. Julien, Wild-type superoxide dismutase acquires binding and toxic properties of ALS-linked mutant forms through oxidation, Journal of Neurochemistry, vol.56, issue.1, pp.170-178, 2007.
DOI : 10.1073/pnas.87.13.5006

F. Facchinetti, M. Sasaki, F. Cutting, P. Zhai, J. Macdonald et al., Lack of involvement of neuronal nitric oxide synthase in the pathogenesis of a transgenic mouse model of familial amyotrophic lateral sclerosis, Neuroscience, vol.90, issue.4, pp.1483-1492, 1999.
DOI : 10.1016/S0306-4522(98)00492-8

S. Fendrick, Q. Xue, and W. Streit, Formation of multinucleated giant cells and microglial degeneration in rats expressing a mutant Cu/Zn superoxide dismutase gene, Journal of Neuroinflammation, vol.4, issue.1, p.9, 2007.
DOI : 10.1186/1742-2094-4-9

A. Flugel, M. Bradl, G. Kreutzberg, and M. Graeber, Transformation of donor-derived bone marrow precursors into host microglia during autoimmune CNS inflammation and during the retrograde response to axotomy, Journal of Neuroscience Research, vol.10, issue.1, pp.74-82, 2001.
DOI : 10.1002/jnr.1198

D. Frenkel, R. Maron, D. Burt, and H. Weiner, Nasal vaccination with a proteosome-based adjuvant and glatiramer acetate clears ??-amyloid in a mouse model of Alzheimer disease, Journal of Clinical Investigation, vol.115, issue.9, pp.2423-2433, 2005.
DOI : 10.1172/JCI23241DS1

S. Garbuzova-davis, S. Saporta, and P. Sanberg, Implications of blood-brain barrier disruption in ALS, Amyotrophic Lateral Sclerosis, vol.11, issue.6, pp.375-376, 2008.
DOI : 10.1073/pnas.93.7.3155

S. Garbuzova-davis, A. Willing, T. Zigova, S. Saporta, E. Justen et al., Intravenous Administration of Human Umbilical Cord Blood Cells in a Mouse Model of Amyotrophic Lateral Sclerosis: Distribution, Migration, and Differentiation, Journal of Hematotherapy & Stem Cell Research, vol.12, issue.3, pp.255-270, 2003.
DOI : 10.1089/152581603322022990

M. Gitcho, R. Baloh, S. Chakraverty, K. Mayo, J. Norton et al., P3-287: TDP-43 A315T mutation in familial motor neuron disease, Alzheimer's & Dementia, vol.4, issue.4, pp.535-538, 2008.
DOI : 10.1016/j.jalz.2008.05.1855

Y. Gong, A. Parsadanian, A. Andreeva, W. Snider, and J. Elliott, Restricted expression of G86R Cu/Zn superoxide dismutase in astrocytes results in astrocytosis but does not cause motoneuron degeneration, J Neurosci, vol.20, pp.660-665, 2000.

P. Gordon, D. Moore, R. Miller, J. Florence, J. Verheijde et al., Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial, The Lancet Neurology, vol.6, issue.12, pp.1045-1053, 2007.
DOI : 10.1016/S1474-4422(07)70270-3

G. Gowing, F. Dequen, G. Soucy, and J. Julien, Absence of Tumor Necrosis Factor-?? Does Not Affect Motor Neuron Disease Caused by Superoxide Dismutase 1 Mutations, Journal of Neuroscience, vol.26, issue.44, pp.11397-11402, 2006.
DOI : 10.1523/JNEUROSCI.0602-06.2006

G. Gowing, M. Lalancette-hebert, J. Audet, F. Dequen, and J. Julien, Macrophage colony stimulating factor (M-CSF) exacerbates ALS disease in a mouse model through altered responses of microglia expressing mutant superoxide dismutase, Experimental Neurology, vol.220, issue.2, pp.267-275, 2009.
DOI : 10.1016/j.expneurol.2009.08.021

G. Gowing, T. Philips, B. Van-wijmeersch, J. Audet, M. Dewil et al., Ablation of Proliferating Microglia Does Not Affect Motor Neuron Degeneration in Amyotrophic Lateral Sclerosis Caused by Mutant Superoxide Dismutase, Journal of Neuroscience, vol.28, issue.41, pp.10234-10244, 2008.
DOI : 10.1523/JNEUROSCI.3494-08.2008

D. Graber, W. Hickey, and B. Harris, Progressive changes in microglia and macrophages in spinal cord and peripheral nerve in the transgenic rat model of amyotrophic lateral sclerosis, Journal of Neuroinflammation, vol.7, issue.1, 2010.
DOI : 10.1186/1742-2094-7-8

J. Griffin, R. George, and T. Ho, Macrophage Systems in Peripheral Nerves. A Review, Journal of Neuropathology and Experimental Neurology, vol.52, issue.6, pp.553-560, 1993.
DOI : 10.1097/00005072-199311000-00001

F. Gros-louis, P. Andersen, N. Dupre, M. Urushitani, P. Dion et al., Chromogranin B P413L variant as risk factor and modifier of disease onset for amyotrophic lateral sclerosis, Proceedings of the National Academy of Sciences, vol.106, issue.51, pp.21777-21782, 2009.
DOI : 10.1073/pnas.0902174106

M. Gurney, H. Pu, A. Chiu, D. Canto, M. Polchow et al., Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation, Science, vol.264, issue.5166, pp.1772-1775, 1994.
DOI : 10.1126/science.8209258

C. Haenggeli, J. Julien, R. Mosley, N. Perez, A. Dhar et al., Therapeutic immunization with a glatiramer acetate derivative does not alter survival in G93A and G37R SOD1 mouse models of familial ALS, Neurobiology of Disease, vol.26, issue.1, pp.146-152, 2007.
DOI : 10.1016/j.nbd.2006.12.013

E. Hall, J. Oostveen, and M. Gurney, Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS, Glia, vol.190, issue.3, pp.249-256, 1998.
DOI : 10.1002/(SICI)1098-1136(199807)23:3<249::AID-GLIA7>3.0.CO;2-#

U. Hanisch and H. Kettenmann, Microglia: active sensor and versatile effector cells in the normal and pathologic brain, Nature Neuroscience, vol.24, issue.11, pp.1387-1394, 2007.
DOI : 10.1038/nn1997

M. Harraz, J. Marden, W. Zhou, Y. Zhang, A. Williams et al., SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model, Journal of Clinical Investigation, vol.118, pp.659-670, 2008.
DOI : 10.1172/JCI34060DS1

J. Henkel, D. Beers, L. Siklos, and S. Appel, The chemokine MCP-1 and the dendritic and myeloid cells it attracts are increased in the mSOD1 mouse model of ALS, Molecular and Cellular Neuroscience, vol.31, issue.3, pp.427-437, 2006.
DOI : 10.1016/j.mcn.2005.10.016

J. Henkel, J. Engelhardt, L. Siklos, E. Simpson, S. Kim et al., Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue, Annals of Neurology, vol.27, issue.suppl 1, pp.221-235, 2004.
DOI : 10.1002/ana.10805

K. Hensley, J. Fedynyshyn, S. Ferrell, R. Floyd, B. Gordon et al., Message and protein-level elevation of tumor necrosis factor ?? (TNF??) and TNF??-modulating cytokines in spinal cords of the G93A-SOD1 mouse model for amyotrophic lateral sclerosis, Neurobiology of Disease, vol.14, issue.1, pp.74-80, 2003.
DOI : 10.1016/S0969-9961(03)00087-1

R. Hoek, S. Ruuls, C. Murphy, G. Wright, R. Goddard et al., Down-Regulation of the Macrophage Lineage Through Interaction with OX2 (CD200), Science, vol.290, issue.5497, pp.1768-1771, 2000.
DOI : 10.1126/science.290.5497.1768

S. Hosback, O. Hardiman, C. Nolan, M. Doyle, G. Gorman et al., Circulating insulin-like growth factors and related binding proteins are selectively altered in amyotrophic lateral sclerosis and multiple sclerosis, Growth Hormone & IGF Research, vol.17, issue.6, pp.472-479, 2007.
DOI : 10.1016/j.ghir.2007.06.002

D. Howland, J. Liu, Y. She, B. Goad, N. Maragakis et al., Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS), Proceedings of the National Academy of Sciences, vol.99, issue.3, pp.1604-1609, 2002.
DOI : 10.1073/pnas.032539299

H. Ilieva, M. Polymenidou, and D. Cleveland, Non???cell autonomous toxicity in neurodegenerative disorders: ALS and beyond, The Journal of Cell Biology, vol.22, issue.6, pp.761-772, 2009.
DOI : 10.1146/annurev.neuro.23.1.217

K. Inoue, The function of microglia through purinergic receptors: Neuropathic pain and cytokine release, Pharmacology & Therapeutics, vol.109, issue.1-2, pp.210-226, 2006.
DOI : 10.1016/j.pharmthera.2005.07.001

D. Jaarsma, E. Teuling, E. Haasdijk, D. Zeeuw, C. Hoogenraad et al., Neuron-Specific Expression of Mutant Superoxide Dismutase Is Sufficient to Induce Amyotrophic Lateral Sclerosis in Transgenic Mice, Journal of Neuroscience, vol.28, issue.9, pp.2075-2088, 2008.
DOI : 10.1523/JNEUROSCI.5258-07.2008

E. Kabashi, P. Valdmanis, P. Dion, and G. Rouleau, Oxidized/misfolded superoxide dismutase-1: the cause of all amyotrophic lateral sclerosis?, Annals of Neurology, vol.280, issue.6, pp.553-559, 2007.
DOI : 10.1002/ana.21319

E. Kabashi, P. Valdmanis, P. Dion, D. Spiegelman, B. Mcconkey et al., TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis, Nature Genetics, vol.69, issue.5, pp.572-574, 2008.
DOI : 10.1083/jcb.200702115

R. Kalla, Z. Liu, S. Xu, A. Koppius, Y. Imai et al., Microglia and the early phase of immune surveillance in the axotomized facial motor nucleus: Impaired microglial activation and lymphocyte recruitment but no effect on neuronal survival or axonal regeneration in macrophage???colony stimulating factor???deficient mice, The Journal of Comparative Neurology, vol.436, issue.2, pp.182-201, 2001.
DOI : 10.1002/cne.1060.abs

B. Kaspar, J. Llado, N. Sherkat, J. Rothstein, and F. Gage, Retrograde Viral Delivery of IGF-1 Prolongs Survival in a Mouse ALS Model, Science, vol.301, issue.5634, pp.839-842, 2003.
DOI : 10.1126/science.1086137

T. Kawamata, H. Akiyama, T. Yamada, and P. Mcgeer, Immunologic reactions in amyotrophic lateral sclerosis brain and spinal cord tissue, Am J Pathol, vol.140, pp.691-707, 1992.

M. Kiaei, K. Kipiani, J. Chen, N. Calingasan, and M. Beal, Peroxisome proliferator-activated receptor-gamma agonist extends survival in transgenic mouse model of amyotrophic lateral sclerosis, Experimental Neurology, vol.191, issue.2, pp.331-336, 2005.
DOI : 10.1016/j.expneurol.2004.10.007

M. Kiaei, S. Petri, K. Kipiani, G. Gardian, D. Choi et al., Thalidomide and Lenalidomide Extend Survival in a Transgenic Mouse Model of Amyotrophic Lateral Sclerosis, Journal of Neuroscience, vol.26, issue.9, pp.2467-2473, 2006.
DOI : 10.1523/JNEUROSCI.5253-05.2006

G. Kreutzberg, Microglia: a sensor for pathological events in the CNS, Trends in Neurosciences, vol.19, issue.8, pp.312-318, 1996.
DOI : 10.1016/0166-2236(96)10049-7

J. Kriz, M. Nguyen, and J. Julien, Minocycline Slows Disease Progression in a Mouse Model of Amyotrophic Lateral Sclerosis, Neurobiology of Disease, vol.10, issue.3, pp.268-278, 2002.
DOI : 10.1006/nbdi.2002.0487

J. Kuhle, R. Lindberg, A. Regeniter, M. Mehling, A. Steck et al., Increased levels of inflammatory chemokines in amyotrophic lateral sclerosis, European Journal of Neurology, vol.29, issue.Pt 3, pp.771-774, 2009.
DOI : 10.1111/j.1468-1331.2009.02560.x

T. Kwiatkowski, J. Bosco, D. Leclerc, A. Tamrazian, E. Vanderburg et al., Mutations in the FUS/TLS Gene on Chromosome 16 Cause Familial Amyotrophic Lateral Sclerosis, Science, vol.323, issue.5918, pp.1205-1208, 2009.
DOI : 10.1126/science.1166066

E. Lai, K. Felice, B. Festoff, M. Gawel, D. Gelinas et al., Effect of recombinant human insulin-like growth factor-I on progression of ALS: A placebo-controlled study, Neurology, vol.49, issue.6, pp.1621-1630, 1997.
DOI : 10.1212/WNL.49.6.1621

L. Lampson, P. Kushner, and R. Sobel, Major histocompatibility complex antigen expression in the affected tissues in amyotrophic lateral sclerosis, Annals of Neurology, vol.1, issue.3, pp.365-372, 1990.
DOI : 10.1002/ana.410280311

C. Laurie, A. Reynolds, O. Coskun, E. Bowman, H. Gendelman et al., CD4+ T cells from Copolymer-1 immunized mice protect dopaminergic neurons in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease, Journal of Neuroimmunology, vol.183, issue.1-2, pp.60-68, 2007.
DOI : 10.1016/j.jneuroim.2006.11.009

L. Lawson, V. Perry, and S. Gordon, Turnover of resident microglia in the normal adult mouse brain, Neuroscience, vol.48, issue.2, pp.405-415, 1992.
DOI : 10.1016/0306-4522(92)90500-2

P. Leigh, V. Meininger, G. Bensimon, M. Cudkowicz, and W. Robberecht, Minocycline for patients with ALS, The Lancet Neurology, vol.7, issue.2, pp.119-120, 2008.
DOI : 10.1016/S1474-4422(08)70006-1

S. Leong and E. Ling, Amoeboid and ramified microglia: Their interrelationship and response to brain injury, Glia, vol.136, issue.1, pp.39-47, 1992.
DOI : 10.1002/glia.440060106

A. Lepore, C. Haenggeli, M. Gasmi, K. Bishop, R. Bartus et al., Intraparenchymal spinal cord delivery of adeno-associated virus IGF-1 is protective in the SOD1G93A model of ALS, Brain Research, vol.1185, pp.256-265, 2007.
DOI : 10.1016/j.brainres.2007.09.034

A. Lepore, B. Rauck, C. Dejea, A. Pardo, M. Rao et al., Focal transplantation???based astrocyte replacement is neuroprotective in a model of motor neuron disease, Nature Neuroscience, vol.2, issue.11, pp.1294-1301, 2008.
DOI : 10.1038/nn.2210

C. Lewis, J. Solomon, F. Rossi, and C. Krieger, CR1, Glia, vol.297, issue.13, pp.1410-1419, 2009.
DOI : 10.1002/glia.20859

X. Liang, Q. Wang, J. Shi, L. Lokteva, R. Breyer et al., EP2 receptor accelerates disease progression and inflammation in a model of amyotrophic lateral sclerosis, Annals of Neurology, vol.48, issue.481, pp.304-314, 2008.
DOI : 10.1002/ana.21437

E. Ling, D. Penney, and C. Leblond, Use of carbon labeling to demonstrate the role of blood monocytes as precursors of the ?ameboid cells? present in the corpus callosum of postnatal rats, The Journal of Comparative Neurology, vol.5, issue.3, pp.631-657, 1980.
DOI : 10.1002/cne.901930304

M. Lino, C. Schneider, and P. Caroni, Accumulation of SOD1 mutants in postnatal motoneurons does not cause motoneuron pathology or motoneuron disease, J Neurosci, vol.22, pp.4825-4832, 2002.

Y. Liu, W. Hao, A. Dawson, S. Liu, and K. Fassbender, Expression of Amyotrophic Lateral Sclerosis-linked SOD1 Mutant Increases the Neurotoxic Potential of Microglia via TLR2, Journal of Biological Chemistry, vol.284, issue.6, pp.3691-3699, 2009.
DOI : 10.1074/jbc.M804446200

C. Lobsiger, S. Boillee, and D. Cleveland, Toxicity from different SOD1 mutants dysregulates the complement system and the neuronal regenerative response in ALS motor neurons, Proceedings of the National Academy of Sciences, vol.104, issue.18, pp.7319-7326, 2007.
DOI : 10.1073/pnas.0702230104

C. Lobsiger, S. Boillee, M. Mcalonis-downes, A. Khan, M. Feltri et al., Schwann cells expressing dismutase active mutant SOD1 unexpectedly slow disease progression in ALS mice, Proceedings of the National Academy of Sciences, vol.106, issue.11, pp.4465-4470, 2009.
DOI : 10.1073/pnas.0813339106

A. Ludolph, C. Bendotti, E. Blaugrund, A. Chio, L. Greensmith et al., Guidelines for preclinical animal research in ALS/MND: A consensus meeting, Amyotrophic Lateral Sclerosis, vol.347, issue.1-2, pp.38-45, 2010.
DOI : 10.1073/pnas.0530191100

C. Maihofner, S. Probst-cousin, M. Bergmann, W. Neuhuber, B. Neundorfer et al., Expression and localization of cyclooxygenase-1 and -2 in human sporadic amyotrophic lateral sclerosis, European Journal of Neuroscience, vol.57, issue.6, pp.1527-1534, 2003.
DOI : 10.1038/sj.onc.1201178

J. Marden, M. Harraz, A. Williams, K. Nelson, M. Luo et al., Redox modifier genes in amyotrophic lateral sclerosis in mice, Journal of Clinical Investigation, vol.117, issue.10, pp.2913-2919, 2007.
DOI : 10.1172/JCI31265DS1

J. Marin-teva, I. Dusart, C. C. Gervais, A. Van-rooijen, N. Mallat et al., Microglia Promote the Death of Developing Purkinje Cells, Neuron, vol.41, issue.4, pp.535-547, 2004.
DOI : 10.1016/S0896-6273(04)00069-8

URL : https://hal.archives-ouvertes.fr/hal-00077309

L. Martin, Z. Liu, K. Chen, A. Price, Y. Pan et al., Motor neuron degeneration in amyotrophic lateral sclerosis mutant superoxide dismutase-1 transgenic mice: Mechanisms of mitochondriopathy and cell death, The Journal of Comparative Neurology, vol.79, issue.1, pp.20-46, 2007.
DOI : 10.1002/cne.21160

S. Marty, I. Dusart, and M. Peschanski, Glial changes following an excitotoxic lesion in the CNS???I. Microglia/macrophages, Neuroscience, vol.45, issue.3, pp.529-539, 1991.
DOI : 10.1016/0306-4522(91)90268-S

P. Mcgeer, T. Kawamata, D. Walker, H. Akiyama, I. Tooyama et al., Microglia in degenerative neurological disease, Glia, vol.2, issue.1, pp.84-92, 1993.
DOI : 10.1002/glia.440070114

P. Mcgeer and E. Mcgeer, The inflammatory response system of brain: implications for therapy of Alzheimer and other neurodegenerative diseases, Brain Research Reviews, vol.21, issue.2, pp.195-218, 1995.
DOI : 10.1016/0165-0173(95)00011-9

P. Mcgeer and E. Mcgeer, Inflammatory processes in amyotrophic lateral sclerosis, Muscle & Nerve, vol.58, issue.4, pp.459-470, 2002.
DOI : 10.1002/mus.10191

S. Mckercher, B. Torbett, K. Anderson, G. Henkel, D. Vestal et al., Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities, EMBO J, vol.15, pp.5647-5658, 1996.

V. Meininger, V. Drory, P. Leigh, A. Ludolph, W. Robberecht et al., Glatiramer acetate has no impact on disease progression in ALS at 40 mg/day: A double- blind, randomized, multicentre, placebo-controlled trial, Amyotrophic Lateral Sclerosis, vol.6, issue.1, pp.378-383, 2009.
DOI : 10.1080/17482960701875896

M. Messi, H. Clark, D. Prevette, R. Oppenheim, and O. Delbono, The lack of effect of specific overexpression of IGF-1 in the central nervous system or skeletal muscle on pathophysiology in the G93A SOD-1 mouse model of ALS, Experimental Neurology, vol.207, issue.1, pp.52-63, 2007.
DOI : 10.1016/j.expneurol.2007.05.016

A. Mildner, H. Schmidt, M. Nitsche, D. Merkler, U. Hanisch et al., Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions, Nature Neuroscience, vol.72, issue.12, pp.1544-1553, 2007.
DOI : 10.1038/nn2015

T. Miller, S. Kim, K. Yamanaka, M. Hester, P. Umapathi et al., Gene transfer demonstrates that muscle is not a primary target for non-cell-autonomous toxicity in familial amyotrophic lateral sclerosis, Proceedings of the National Academy of Sciences, vol.103, issue.51, pp.19546-19551, 2006.
DOI : 10.1073/pnas.0609411103

M. Nagai, D. Re, T. Nagata, A. Chalazonitis, T. Jessell et al., Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons, Nature Neuroscience, vol.67, issue.5, pp.615-622, 2007.
DOI : 10.1016/S0092-8674(00)80323-2

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3799799

I. Nagano, H. Ilieva, M. Shiote, T. Murakami, M. Yokoyama et al., Therapeutic benefit of intrathecal injection of insulin-like growth factor-1 in a mouse model of Amyotrophic Lateral Sclerosis, Journal of the Neurological Sciences, vol.235, issue.1-2, pp.61-68, 2005.
DOI : 10.1016/j.jns.2005.04.011

I. Nagano, M. Shiote, T. Murakami, H. Kamada, Y. Hamakawa et al., Beneficial effects of intrathecal IGF-1 administration in patients with amyotrophic lateral sclerosis, Neurological Research, vol.5, issue.7, pp.768-772, 2005.
DOI : 10.1179/016164105X39860

T. Nagata, I. Nagano, M. Shiote, H. Narai, T. Murakami et al., Elevation of MCP-1 and MCP-1/VEGF ratio in cerebrospinal fluid of amyotrophic lateral sclerosis patients, Neurological Research, vol.153, issue.8, pp.772-776, 2007.
DOI : 10.1016/j.jneuroim.2003.08.042

S. Naor, Z. Keren, T. Bronshtein, E. Goren, M. Machluf et al., Development of ALS-like disease in SOD-1 mice deficient of B lymphocytes, Journal of Neurology, vol.28, issue.8, pp.1228-1235, 2009.
DOI : 10.1007/s00415-009-5097-3

B. Nefussy, I. Artamonov, V. Deutsch, E. Naparstek, A. Nagler et al., Recombinant human granulocyte-colony stimulating factor administration for treating amyotrophic lateral sclerosis: A pilot study, Amyotroph Lateral, vol.Scler, pp.1-7, 2009.

A. Neymotin, S. Petri, N. Calingasan, E. Wille, P. Schafer et al., Lenalidomide (Revlimid??) administration at symptom onset is neuroprotective in a mouse model of amyotrophic lateral sclerosis, Experimental Neurology, vol.220, issue.1, pp.191-197, 2009.
DOI : 10.1016/j.expneurol.2009.08.028

M. Nguyen, D. Aigle, T. Gowing, G. Julien, J. Rivest et al., Exacerbation of Motor Neuron Disease by Chronic Stimulation of Innate Immunity in a Mouse Model of Amyotrophic Lateral Sclerosis, Journal of Neuroscience, vol.24, issue.6, pp.1340-1349, 2004.
DOI : 10.1523/JNEUROSCI.4786-03.2004

M. Nguyen, J. Julien, and S. Rivest, Induction of proinflammatory molecules in mice with amyotrophic lateral sclerosis: No requirement for proapoptotic interleukin-1? in neurodegeneration, Annals of Neurology, vol.19, issue.5, pp.630-639, 2001.
DOI : 10.1002/ana.1256

A. Nimmerjahn, F. Kirchhoff, and F. Helmchen, Resting Microglial Cells Are Highly Dynamic Surveillants of Brain Parenchyma in Vivo, Science, vol.308, issue.5726, pp.1314-1318, 2005.
DOI : 10.1126/science.1110647

S. Ohnishi, H. Ito, Y. Suzuki, Y. Adachi, R. Wate et al., Intra-bone marrow-bone marrow transplantation slows disease progression and prolongs survival in G93A mutant SOD1 transgenic mice, an animal model mouse for amyotrophic lateral sclerosis, Brain Research, vol.1296, pp.216-224, 2009.
DOI : 10.1016/j.brainres.2009.08.012

M. Olsen, S. Roberds, B. Ellerbrock, T. Fleck, D. Mckinley et al., Disease mechanisms revealed by transcription profiling in SOD1-G93A transgenic mouse spinal cord, Annals of Neurology, vol.111, issue.6, pp.730-740, 2001.
DOI : 10.1002/ana.1252

A. Pardo, V. Wong, L. Benson, M. Dykes, K. Tanaka et al., Loss of the astrocyte glutamate transporter GLT1 modifies disease in SOD1G93A mice, Experimental Neurology, vol.201, issue.1, pp.120-130, 2006.
DOI : 10.1016/j.expneurol.2006.03.028

M. Pellecchia, R. Pivonello, M. Monsurro, F. Trojsi, K. Longo et al., The GH-IGF system in amyotrophic lateral sclerosis: correlations between pituitary GH secretion capacity, insulin-like growth factors and clinical features, European Journal of Neurology, vol.27, issue.Suppl. 1, 2009.
DOI : 10.1111/j.1468-1331.2009.02896.x

V. Perry, D. Hume, and S. Gordon, Immunohistochemical localization of macrophages and microglia in the adult and developing mouse brain, Neuroscience, vol.15, issue.2, pp.313-326, 1985.
DOI : 10.1016/0306-4522(85)90215-5

C. Pitzer, C. Kruger, C. Plaas, F. Kirsch, T. Dittgen et al., Granulocyte-colony stimulating factor improves outcome in a mouse model of amyotrophic lateral sclerosis, Brain, vol.131, issue.12, pp.3335-3347, 2008.
DOI : 10.1093/brain/awn243

M. Poloni, D. Facchetti, R. Mai, A. Micheli, L. Agnoletti et al., Circulating levels of tumour necrosis factor-?? and its soluble receptors are increased in the blood of patients with amyotrophic lateral sclerosis, Neuroscience Letters, vol.287, issue.3, pp.211-214, 2000.
DOI : 10.1016/S0304-3940(00)01177-0

P. Pompl, L. Ho, M. Bianchi, T. Mcmanus, W. Qin et al., A therapeutic role for cyclooxygenase-2 inhibitors in a transgenic mouse model of amyotrophic lateral sclerosis, The FASEB Journal, vol.17, pp.725-727, 2003.
DOI : 10.1096/fj.02-0876fje

A. Pramatarova, J. Laganiere, J. Roussel, K. Brisebois, and G. Rouleau, Neuron-specific expression of mutant superoxide dismutase 1 in transgenic mice does not lead to motor impairment, J Neurosci, vol.21, pp.3369-3374, 2001.

J. Priller, A. Flugel, T. Wehner, M. Boentert, C. Haas et al., Targeting genemodified hematopoietic cells to the central nervous system: use of green fluorescent protein uncovers microglial engraftment microglial proliferation in a genetic model of macrophage colony-stimulating factor deficiency in the mouse, Nature Medicine, vol.7, issue.12, pp.1356-1361, 2001.
DOI : 10.1038/nm1201-1356

R. Rakhit, P. Cunningham, A. Furtos-matei, S. Dahan, X. Qi et al., Oxidation-induced Misfolding and Aggregation of Superoxide Dismutase and Its Implications for Amyotrophic Lateral Sclerosis, Journal of Biological Chemistry, vol.277, issue.49, pp.47551-47556, 2002.
DOI : 10.1074/jbc.M207356200

C. Raoul, E. Buhler, C. Sadeghi, A. Jacquier, P. Aebischer et al., Chronic activation in presymptomatic amyotrophic lateral sclerosis (ALS) mice of a feedback loop involving Fas, Daxx, and FasL, Proceedings of the National Academy of Sciences, vol.103, issue.15, pp.6007-6012, 2006.
DOI : 10.1073/pnas.0508774103

URL : https://hal.archives-ouvertes.fr/hal-00088942

C. Raoul, A. Estevez, H. Nishimune, D. Cleveland, O. Henderson et al., Motoneuron Death Triggered by a Specific Pathway Downstream of Fas, Neuron, vol.35, issue.6, pp.1067-1083, 2002.
DOI : 10.1016/S0896-6273(02)00905-4

A. Reaume, J. Elliott, E. Hoffman, N. Kowall, R. Ferrante et al., Motor neurons in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury, Nature Genetics, vol.336, issue.1, pp.43-47, 1996.
DOI : 10.1038/ng0596-43

M. Rentzos, C. Nikolaou, A. Rombos, F. Boufidou, M. Zoga et al., RANTES levels are elevated in serum and cerebrospinal fluid in patients with amyotrophic lateral sclerosis, Amyotrophic Lateral Sclerosis, vol.2, issue.5, pp.283-287, 2007.
DOI : 10.1080/146608200300079536

M. Ricote, A. Li, T. Willson, C. Kelly, and C. Glass, The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation, Nature, vol.391, issue.6662, pp.79-82, 1998.
DOI : 10.1038/34178

M. Ripps, G. Huntley, P. Hof, J. Morrison, and J. Gordon, Transgenic mice expressing an altered murine superoxide dismutase gene provide an animal model of amyotrophic lateral sclerosis., Proceedings of the National Academy of Sciences, vol.92, issue.3, pp.689-693, 1995.
DOI : 10.1073/pnas.92.3.689

D. Rosen, T. Siddique, D. Patterson, D. Figlewicz, P. Sapp et al., Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis, Nature, vol.362, issue.6415, pp.59-62, 1993.
DOI : 10.1038/362059a0

D. Rosen, Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis, Nature, vol.362, issue.6415, p.362, 1993.
DOI : 10.1038/362059a0

M. Rosener, H. Hahn, M. Kranz, J. Heeney, and A. Rethwilm, Absence of serological evidence for foamy virus infection in patients with amyotrophic lateral sclerosis, Journal of Medical Virology, vol.4, issue.3, pp.222-226, 1996.
DOI : 10.1002/(SICI)1096-9071(199603)48:3<222::AID-JMV2>3.0.CO;2-A

J. Rothstein, M. Van-kammen, A. Levey, L. Martin, and R. Kuncl, Selective loss of glial glutamate transporter GLT-1 in amyotrophic lateral sclerosis, Annals of Neurology, vol.20, issue.1, pp.73-84, 1995.
DOI : 10.1002/ana.410380114

N. Rutherford, Y. Zhang, M. Baker, J. Gass, N. Finch et al., Novel Mutations in TARDBP (TDP-43) in Patients with Familial Amyotrophic Lateral Sclerosis, PLoS Genetics, vol.20, issue.9, p.18802454, 2008.
DOI : 10.1371/journal.pgen.1000193.s006

S. Sargsyan, D. Blackburn, S. Barber, P. Monk, and P. Shaw, Mutant SOD1 G93A microglia have an inflammatory phenotype and elevated production of MCP-1, NeuroReport, vol.20, issue.16, pp.1450-1455, 2009.
DOI : 10.1097/WNR.0b013e328331e8fa

A. Sarlette, K. Krampfl, C. Grothe, N. Neuhoff, R. Dengler et al., Nuclear Erythroid 2-Related Factor 2-Antioxidative Response Element Signaling Pathway in Motor Cortex and Spinal Cord in Amyotrophic Lateral Sclerosis, Journal of Neuropathology & Experimental Neurology, vol.67, issue.11, pp.1055-1062, 2008.
DOI : 10.1097/NEN.0b013e31818b4906

W. Schabitz, C. Kruger, C. Pitzer, D. Weber, R. Laage et al., A Neuroprotective Function for the Hematopoietic Protein Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF), Journal of Cerebral Blood Flow & Metabolism, vol.64, issue.1, pp.29-43, 2008.
DOI : 10.1038/sj.jcbfm.9600496

J. Schnabel, Neuroscience: Standard model, Nature, vol.453, issue.7205, pp.682-685, 2008.
DOI : 10.1126/science.1134108

A. Schneider, C. Kruger, T. Steigleder, D. Weber, C. Pitzer et al., The hematopoietic factor G-CSF is a neuronal ligand that counteracts programmed cell death and drives neurogenesis, Journal of Clinical Investigation, vol.115, issue.8, pp.2083-2098, 2005.
DOI : 10.1172/JCI23559DS1

B. Schutz, J. Reimann, L. Dumitrescu-ozimek, K. Kappes-horn, G. Landreth et al., The Oral Antidiabetic Pioglitazone Protects from Neurodegeneration and Amyotrophic Lateral Sclerosis-Like Symptoms in Superoxide Dismutase-G93A Transgenic Mice, Journal of Neuroscience, vol.25, issue.34, pp.7805-7812, 2005.
DOI : 10.1523/JNEUROSCI.2038-05.2005

S. Scott, J. Kranz, J. Cole, J. Lincecum, K. Thompson et al., Design, power, and interpretation of studies in the standard murine model of ALS, Amyotrophic Lateral Sclerosis, vol.93, issue.1, pp.4-15, 2008.
DOI : 10.1523/JNEUROSCI.5253-05.2006

A. Seksenyan, N. Ron-harel, D. Azoulay, L. Cahalon, M. Cardon et al., Thymic Involution in Amyotrophic Lateral Sclerosis, J Cell Mol Med, vol.PMID, 2009.

N. Shibata, R. Nagai, K. Uchida, S. Horiuchi, S. Yamada et al., Morphological evidence for lipid peroxidation and protein glycoxidation in spinal cords from sporadic amyotrophic lateral sclerosis patients, Brain Research, vol.917, issue.1, pp.97-104, 2001.
DOI : 10.1016/S0006-8993(01)02926-2

A. Simard and S. Rivest, Bone marrow stem cells have the ability to populate the entire central nervous system into fully differentiated parenchymal microglia, The FASEB Journal, vol.18, pp.998-1000, 2004.
DOI : 10.1096/fj.04-1517fje

E. Simpson, Y. Henry, J. Henkel, R. Smith, and S. Appel, Increased lipid peroxidation in sera of ALS patients: A potential biomarker of disease burden, Neurology, vol.62, issue.10, pp.1758-1765, 2004.
DOI : 10.1212/WNL.62.10.1758

R. Smith, Y. Henry, M. Mattson, and S. Appel, Presence of 4-hydroxynonenal in cerebrospinal fluid of patients with sporadic amyotrophic lateral sclerosis, Annals of Neurology, vol.16, issue.4, pp.696-699, 1998.
DOI : 10.1002/ana.410440419

J. Solomon, C. Lewis, B. Ajami, S. Corbel, F. Rossi et al., Origin and distribution of bone marrow-derived cells in the central nervous system in a mouse model of amyotrophic lateral sclerosis, Glia, vol.294, issue.7, pp.744-753, 2006.
DOI : 10.1002/glia.20331

M. Son, H. Fathallah-shaykh, and J. Elliott, Survival in a transgenic model of fals is independent of inos expression, Annals of Neurology, vol.72, issue.2, p.273, 2001.
DOI : 10.1002/ana.1104

E. Sorenson, A. Windbank, J. Mandrekar, W. Bamlet, S. Appel et al., Subcutaneous IGF-1 is not beneficial in 2-year ALS trial, Neurology, vol.71, issue.22, pp.1770-1775, 2008.
DOI : 10.1212/01.wnl.0000335970.78664.36

J. Sreedharan, I. Blair, V. Tripathi, X. Hu, C. Vance et al., TDP-43 Mutations in Familial and Sporadic Amyotrophic Lateral Sclerosis, Science, vol.319, issue.5870, pp.1668-1672, 2008.
DOI : 10.1126/science.1154584

E. Stommel, J. Cohen, C. Fadul, C. Cogbill, D. Graber et al., Efficacy of thalidomide for the treatment of amyotrophic lateral sclerosis: A phase II open label clinical trial, Amyotrophic Lateral Sclerosis, vol.53, issue.5-6, pp.393-404, 2009.
DOI : 10.1016/j.jneuroim.2007.10.028

W. Streit, Microglia as neuroprotective, immunocompetent cells of the CNS, Glia, vol.57, issue.2, pp.133-139, 2002.
DOI : 10.1002/glia.10154

N. Swanson, S. Fox, and F. Mastaglia, Search for persistent infection with poliovirus or other enteroviruses in amyotrophic lateral sclerosis-motor neurone disease, Neuromuscular Disorders, vol.5, issue.6, pp.457-465, 1995.
DOI : 10.1016/0960-8966(95)00002-5

I. Torres-aleman, V. Barrios, and J. Berciano, The peripheral insulin-like growth factor system in amyotrophic lateral sclerosis and in multiple sclerosis, Neurology, vol.50, issue.3, pp.772-776, 1998.
DOI : 10.1212/WNL.50.3.772

D. Troost, J. Van-den-oord, J. De-jong, and D. Swaab, Lymphocytic infiltration in the spinal cord of patients with amyotrophic lateral sclerosis, Clin Neuropathol, vol.8, pp.289-294, 1989.

D. Troost, J. Van-den-oord, and J. Vianney-de-jong, Immunohistochemical characterization of the inflammatory infiltrate in amyotrophic lateral sclerosis, Neuropathology and Applied Neurobiology, vol.51, issue.5, pp.401-410, 1990.
DOI : 10.1002/ana.410140103

B. Turner, S. Ackerley, K. Davies, T. K. Turner, M. Cagnin et al., Evidence of widespread cerebral microglial activation in amyotrophic lateral sclerosis: an [11C](R)-PK11195 positron emission tomography study, Neurobiology of Disease, vol.15, issue.3, pp.601-609, 2004.
DOI : 10.1016/j.nbd.2003.12.012

M. Urushitani, S. Ezzi, and J. Julien, Therapeutic effects of immunization with mutant superoxide dismutase in mice models of amyotrophic lateral sclerosis, Proceedings of the National Academy of Sciences, vol.104, issue.7, pp.2495-2500, 2007.
DOI : 10.1073/pnas.0606201104

M. Urushitani, A. Sik, T. Sakurai, N. Nukina, R. Takahashi et al., Chromogranin-mediated secretion of mutant superoxide dismutase proteins linked to amyotrophic lateral sclerosis, Nature Neuroscience, vol.274, issue.1, pp.108-118, 2006.
DOI : 10.1038/nn1603

L. Van-den-bosch and W. Robberecht, Crosstalk between astrocytes and motor neurons: What is the message?, Experimental Neurology, vol.211, issue.1, pp.1-6, 2008.
DOI : 10.1016/j.expneurol.2008.01.008

L. Van-den-bosch, P. Tilkin, G. Lemmens, and W. Robberecht, Minocycline delays disease onset and mortality in a transgenic model of ALS, Neuroreport, vol.13, issue.8, pp.1067-1070, 2002.
DOI : 10.1097/00001756-200206120-00018

L. Van-den-bosch, P. Van-damme, E. Bogaert, and W. Robberecht, The role of excitotoxicity in the pathogenesis of amyotrophic lateral sclerosis, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1762, issue.11-12, pp.1068-1082, 2006.
DOI : 10.1016/j.bbadis.2006.05.002

C. Vance, B. Rogelj, T. Hortobagyi, D. Vos, K. Nishimura et al., Mutations in FUS, an RNA Processing Protein, Cause Familial Amyotrophic Lateral Sclerosis Type 6, Science, vol.323, issue.5918, pp.1208-1211, 2009.
DOI : 10.1126/science.1165942

M. Vargas, D. Johnson, D. Sirkis, A. Messing, and J. Johnson, Nrf2 Activation in Astrocytes Protects against Neurodegeneration in Mouse Models of Familial Amyotrophic Lateral Sclerosis, Journal of Neuroscience, vol.28, issue.50, pp.13574-13581, 2008.
DOI : 10.1523/JNEUROSCI.4099-08.2008

M. Vargas, M. Pehar, P. Cassina, J. Beckman, and L. Barbeito, Increased glutathione biosynthesis by Nrf2 activation in astrocytes prevents p75NTR-dependent motor neuron apoptosis, Journal of Neurochemistry, vol.538, issue.3, pp.687-696, 2006.
DOI : 10.1111/j.1471-4159.2006.03742.x

M. Walker, R. Schlaberg, A. Hays, R. Bowser, and W. Lipkin, Absence of echovirus sequences in brain and spinal cord of amyotrophic lateral sclerosis patients, Annals of Neurology, vol.354, issue.2, pp.249-253, 2001.
DOI : 10.1002/1531-8249(20010201)49:2<249::AID-ANA46>3.0.CO;2-3

J. Wang, G. Xu, V. Gonzales, M. Coonfield, D. Fromholt et al., Fibrillar Inclusions and Motor Neuron Degeneration in Transgenic Mice Expressing Superoxide Dismutase 1 with a Disrupted Copper-Binding Site, Neurobiology of Disease, vol.10, issue.2, pp.128-138, 2002.
DOI : 10.1006/nbdi.2002.0498

L. Wang, H. Deng, G. Grisotti, H. Zhai, T. Siddique et al., Wild-type SOD1 overexpression accelerates disease onset of a G85R SOD1 mouse, Human Molecular Genetics, vol.18, issue.9, pp.1642-1651, 2009.
DOI : 10.1093/hmg/ddp085

L. Wang, K. Sharma, G. Grisotti, and R. Roos, The effect of mutant SOD1 dismutase activity on non-cell autonomous degeneration in familial amyotrophic lateral sclerosis, Neurobiology of Disease, vol.35, issue.2, pp.234-240, 2009.
DOI : 10.1016/j.nbd.2009.05.002

J. Wegiel, H. Wisniewski, J. Dziewiatkowski, M. Tarnawski, R. Kozielski et al., Reduced number and altered morphology of microglial cells in colony stimulating factor-1-deficient osteopetrotic op/op mice, Brain Research, vol.804, issue.1, pp.135-139, 1998.
DOI : 10.1016/S0006-8993(98)00618-0

I. Wegorzewska, S. Bell, N. Cairns, T. Miller, and R. Baloh, TDP-43 mutant transgenic mice develop features of ALS and frontotemporal lobar degeneration, Proceedings of the National Academy of Sciences, vol.106, issue.44, pp.18809-18814, 2009.
DOI : 10.1073/pnas.0908767106

P. Weydt, E. Yuen, B. Ransom, and T. Moller, Increased cytotoxic potential of microglia from ALS-transgenic mice, Glia, vol.417, issue.2, pp.179-182, 2004.
DOI : 10.1002/glia.20062

W. Wiktor-jedrzejczak, A. Ahmed, C. Szczylik, and R. Skelly, Hematological characterization of congenital osteopetrosis in op/op mouse. Possible mechanism for abnormal macrophage differentiation, Journal of Experimental Medicine, vol.156, issue.5, pp.1516-1527, 1982.
DOI : 10.1084/jem.156.5.1516

H. Wilms, J. Sievers, R. Dengler, J. Bufler, G. Deuschl et al., Intrathecal synthesis of monocyte chemoattractant protein-1 (MCP-1) in amyotrophic lateral sclerosis: further evidence for microglial activation in neurodegeneration, Journal of Neuroimmunology, vol.144, issue.1-2, pp.139-142, 2003.
DOI : 10.1016/j.jneuroim.2003.08.042

H. Wils, G. Kleinberger, J. Janssens, S. Pereson, G. Joris et al., TDP-43 transgenic mice develop spastic paralysis and neuronal inclusions characteristic of ALS and frontotemporal lobar degeneration, Proceedings of the National Academy of Sciences, vol.107, issue.8, pp.3858-3863, 2010.
DOI : 10.1073/pnas.0912417107

P. Wong, C. Pardo, D. Borchelt, M. Lee, N. Copeland et al., An adverse property of a familial ALS-linked SOD1 mutation causes motor neuron disease characterized by vacuolar degeneration of mitochondria, Neuron, vol.14, issue.6, pp.1105-1116, 1995.
DOI : 10.1016/0896-6273(95)90259-7

D. Wu, D. Re, M. Nagai, H. Ischiropoulos, and S. Przedborski, The inflammatory NADPH oxidase enzyme modulates motor neuron degeneration in amyotrophic lateral sclerosis mice, Proceedings of the National Academy of Sciences, vol.103, issue.32, pp.12132-12137, 2006.
DOI : 10.1073/pnas.0603670103

T. Wyss-coray and L. Mucke, Inflammation in Neurodegenerative Disease???A Double-Edged Sword, Neuron, vol.35, issue.3, pp.419-432, 2002.
DOI : 10.1016/S0896-6273(02)00794-8

Q. Xiao, W. Zhao, D. Beers, A. Yen, W. Xie et al., microglia are more neurotoxic relative to wild-type microglia, Journal of Neurochemistry, vol.99, issue.6, pp.2008-2019, 2007.
DOI : 10.1111/j.1471-4159.2007.04677.x

K. Yamanaka, S. Boillee, E. Roberts, M. Garcia, M. Mcalonis-downes et al., Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice, Proceedings of the National Academy of Sciences, vol.105, issue.21, pp.7594-7599, 2008.
DOI : 10.1073/pnas.0802556105

K. Yamanaka, S. Chun, S. Boillee, N. Fujimori-tonou, H. Yamashita et al., Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis, Nature Neuroscience, vol.96, issue.3, pp.251-253, 2008.
DOI : 10.1038/nn2047

K. Yasojima, W. Tourtellotte, E. Mcgeer, and P. Mcgeer, Marked increase in cyclooxygenase-2 in ALS spinal cord: Implications for therapy, Neurology, vol.57, issue.6, pp.952-956, 2001.
DOI : 10.1212/WNL.57.6.952

Y. Yiangou, P. Facer, P. Durrenberger, I. Chessell, A. Naylor et al., COX-2, CB2 and P2X7-immunoreactivities are increased in activated microglial cells/macrophages of multiple sclerosis and amyotrophic lateral sclerosis spinal cord, BMC Neurology, vol.3, issue.1, p.12, 2006.
DOI : 10.1016/S1471-4892(02)00004-8

T. Yoshihara, S. Ishigaki, M. Yamamoto, Y. Liang, J. Niwa et al., Differential expression of inflammation- and apoptosis-related genes in spinal cords of a mutant SOD1 transgenic mouse model of familial amyotrophic lateral sclerosis, Journal of Neurochemistry, vol.80, issue.1, pp.158-167, 2002.
DOI : 10.1046/j.0022-3042.2001.00683.x

J. Yrjanheikki, T. Tikka, R. Keinanen, G. Goldsteins, P. Chan et al., A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window, Proceedings of the National Academy of Sciences, vol.96, issue.23, pp.13496-13500, 1999.
DOI : 10.1073/pnas.96.23.13496

W. Zhao, D. Beers, J. Henkel, W. Zhang, M. Urushitani et al., Extracellular mutant SOD1 induces microglial-mediated motoneuron injury, Glia, vol.99, issue.2, pp.231-243, 2010.
DOI : 10.1002/glia.20919

W. Zhao, W. Xie, X. Q. Beers, D. Appel, and S. , Protective effects of an anti-inflammatory cytokine, interleukin-4, on motoneuron toxicity induced by activated microglia, Journal of Neurochemistry, vol.63, issue.4, pp.1176-1187, 2006.
DOI : 10.1016/0167-4889(94)00207-U

X. Zhao, Z. Ou, J. Grotta, N. Waxham, and J. Aronowski, Peroxisome-proliferator-activated receptor-gamma (PPARgamma) activation protects neurons from NMDA excitotoxicity, Brain Res, pp.1073-1074, 2006.

Z. Zhong, R. Deane, Z. Ali, M. Parisi, Y. Shapovalov et al., ALS-causing SOD1 mutants generate vascular changes prior to motor neuron degeneration, Nature Neuroscience, vol.66, issue.4, pp.420-422, 2008.
DOI : 10.1038/nn2073

Z. Zhong, H. Ilieva, L. Hallagan, R. Bell, I. Singh et al., Activated protein C therapy slows ALS-like disease in mice by transcriptionally inhibiting SOD1 in motor neurons and microglia cells, Journal of Clinical Investigation, vol.119, pp.3437-3449, 2009.
DOI : 10.1172/JCI38476DS1

H. Zhou, C. Huang, H. Chen, D. Wang, C. Landel et al., Transgenic Rat Model of Neurodegeneration Caused by Mutation in the TDP Gene, PLoS Genetics, vol.15, issue.3, p.20361056, 2010.
DOI : 10.1371/journal.pgen.1000887.s005

S. Zhu, I. Stavrovskaya, M. Drozda, B. Kim, V. Ona et al., Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice, Nature, vol.419, issue.6884, pp.74-78, 2002.
DOI : 10.1038/417074a