J. Aelterman, B. Goossens, A. Pizurica, and W. Philips, Removal of correlated rician noise in magnetic resonance imaging, 16th European Signal Processing Conference, 2008.

C. Aja-fernandez, C. F. Alberola-lopez, and . Westin, Noise and Signal Estimation in Magnitude MRI and Rician Distributed Images: A LMMSE Approach, IEEE Transactions on Image Processing, vol.17, issue.8, pp.1383-1398, 2008.
DOI : 10.1109/TIP.2008.925382

M. Aja-fernandez, M. Niethammer, M. E. Kubicki, C. F. Shenton, and . Westin, Restoration of DWI Data Using a Rician LMMSE Estimator, IEEE Transactions on Medical Imaging, vol.27, issue.10, pp.1389-1403, 2008.
DOI : 10.1109/TMI.2008.920609

S. Aja-fernández, A. Tristán-vega, and C. Alberola-lópez, Noise estimation in single- and multiple-coil magnetic resonance data based on statistical models, Magnetic Resonance Imaging, vol.27, issue.10, pp.1397-1409, 2009.
DOI : 10.1016/j.mri.2009.05.025

M. E. Alexander, R. Baumgartner, C. Windischberger, E. Moser, and R. L. Somorjai, Wavelet domain de-noising of time-courses in MR image sequences, Magnetic Resonance Imaging, vol.18, issue.9, pp.1129-1134, 2000.
DOI : 10.1016/S0730-725X(00)00197-1

C. A. Cocosco, V. Kollokian, R. K. Kwan, G. B. Pike, and A. C. Evans, Brainweb: Online interface to a 3D MRI simulated brain database, NeuroImage, p.425, 1997.

D. L. Collins, A. P. Zijdenbos, V. Kollokian, J. G. Sled, N. J. Kabani et al., Design and construction of a realistic digital brain phantom, IEEE Transactions on Medical Imaging, vol.17, issue.3, pp.463-468, 1998.
DOI : 10.1109/42.712135

C. D. Constantinides, E. Atalar, and E. Mcveigh, Signal-to-noise measurements in magnitude images from nmr phased arrays, Proceedings of the 19th Annual International Conference of the IEEE, pp.456-459, 1997.

P. Coupé, P. Hellier, S. Prima, C. Kervrann, and C. Barillot, 3D Wavelet Subbands Mixing for Image Denoising, International Journal of Biomedical Imaging, vol.6, issue.3, pp.1-11, 2008.
DOI : 10.1109/42.712135

P. Coupé, P. Yger, S. Prima, P. Hellier, C. Kervrann et al., An Optimized Blockwise Nonlocal Means Denoising Filter for 3-D Magnetic Resonance Images, IEEE Transactions on Medical Imaging, vol.27, issue.4, pp.425-441, 2008.
DOI : 10.1109/TMI.2007.906087

O. Dietrich, J. G. Raya, S. B. Reeder, M. Ingrisch, M. F. Reiser et al., Influence of multichannel combination, parallel imaging and other reconstruction techniques on MRI noise characteristics, Magnetic Resonance Imaging, vol.26, issue.6, pp.754-762, 2008.
DOI : 10.1016/j.mri.2008.02.001

O. Dietrich, J. G. Raya, S. B. Reeder, M. F. Reiser, and S. O. Schoenberg, Measurement of signal-to-noise ratios in MR images: Influence of multichannel coils, parallel imaging, and reconstruction filters, Journal of Magnetic Resonance Imaging, vol.34, issue.2, pp.375-385, 2007.
DOI : 10.1002/jmri.20969

O. Dietrich, J. G. Raya, and M. F. Reiser, Magnetic resonance noise measurements and signal-quantization effects at very low noise levels, Magnetic Resonance in Medicine, vol.54, issue.6, pp.1477-1487, 2008.
DOI : 10.1002/mrm.21784

D. L. Donoho, De-noising by soft-thresholding, IEEE Transactions on Information Theory, vol.41, issue.3, pp.613-627, 1995.
DOI : 10.1109/18.382009

D. L. Donoho and I. M. Johnstone, Ideal spatial adaptation by wavelet shrinkage, Biometrika, vol.81, issue.3, pp.425-455, 1994.
DOI : 10.1093/biomet/81.3.425

W. A. Edelstein, P. A. Bottomley, and L. M. Pfeifer, A signal-to-noise calibration procedure for NMR imaging systems, Medical Physics, vol.11, issue.2, pp.180-185, 1984.
DOI : 10.1118/1.595484

E. L. Gedamu, D. L. Collins, and D. L. Arnold, Automated quality control of brain MR images, Journal of Magnetic Resonance Imaging, vol.2, issue.Pt 1, pp.308-319, 2008.
DOI : 10.1002/jmri.21434

G. Gerig, R. Kikinis, O. Kübler, and F. A. Jolesz, Nonlinear anisotropic filtering of MRI data, IEEE Transactions on Medical Imaging, vol.11, issue.2, pp.221-232, 1992.
DOI : 10.1109/42.141646

H. Gudbjartsson and S. Patz, The rician distribution of noisy mri data, Magnetic Resonance in Medicine, vol.3, issue.6, pp.910-914, 1995.
DOI : 10.1002/mrm.1910340618

R. M. Henkelman, Measurement of signal intensities in the presence of noise in MR images, Medical Physics, vol.12, issue.2, pp.232-233, 1985.
DOI : 10.1118/1.595711

C. G. Koay and P. J. Basser, Analytically exact correction scheme for signal extraction from noisy magnitude MR signals, Journal of Magnetic Resonance, vol.179, issue.2, pp.317-322, 2006.
DOI : 10.1016/j.jmr.2006.01.016

K. Krissian and S. Aja-fernández, Noise-driven anisotropic diffusion filtering of mri IEEE transactions on image processing : a publication of the IEEE Signal Processing Society, pp.2265-2274, 2009.

R. K. Kwan, A. C. Evans, and G. B. Pike, MRI simulation-based evaluation of image-processing and classification methods, IEEE Transactions on Medical Imaging, vol.18, issue.11, pp.1085-1097, 1999.
DOI : 10.1109/42.816072

B. Landman, P. Bazin, and J. Prince, Diffusion Tensor Estimation by Maximizing Rician Likelihood. Computer Vision, IEEE 11th International Conference on, pp.1-8, 2007.
DOI : 10.1109/iccv.2007.4409140

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3488430

J. B. Macqueen, Some methods for classification and analysis of multivariate observations, Proc. of the fifth Berkeley Symposium on Mathematical Statistics and Probability, pp.281-297, 1967.

S. Mallat, A theory for multiresolution signal decomposition: the wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.11, issue.7, pp.674-693, 1989.
DOI : 10.1109/34.192463

Y. Meyer, Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures, 2001.
DOI : 10.1090/ulect/022

B. W. Murphy, P. L. Carson, J. H. Ellis, Y. T. Zhang, R. J. Hyde et al., Signal-to-noise measures for magnetic resonance imagers, Magnetic Resonance Imaging, vol.11, issue.3, pp.425-428, 1993.
DOI : 10.1016/0730-725X(93)90076-P

R. Nowak, Wavelet-based Rician noise removal for magnetic resonance imaging, IEEE Transactions on Image Processing, vol.8, issue.10, pp.1408-1419, 1999.
DOI : 10.1109/83.791966

A. Pizurica, W. Philips, I. Lemahieu, and M. Acheroy, A versatile wavelet domain noise filtration technique for medical imaging, IEEE Transactions on Medical Imaging, vol.22, issue.3, pp.323-331, 2003.
DOI : 10.1109/TMI.2003.809588

S. O. Rice, Mathematical Analysis of Random Noise, Bell System Technical Journal, vol.23, issue.3, pp.282-332, 1944.
DOI : 10.1002/j.1538-7305.1944.tb00874.x

G. K. Rohde, A. S. Barnett, P. J. Basser, and C. Pierpaoli, Estimating intensity variance due to noise in registered images: Applications to diffusion tensor MRI, NeuroImage, vol.26, issue.3, pp.673-684, 2005.
DOI : 10.1016/j.neuroimage.2005.02.023

A. Samsonov and C. R. Johnson, Noise-adaptive nonlinear diffusion filtering of MR images with spatially varying noise levels, Magnetic Resonance in Medicine, vol.139, issue.4, pp.798-806, 2004.
DOI : 10.1002/mrm.20207

I. W. Selesnick, R. G. Baraniuk, and N. C. Kingsbury, The dual-tree complex wavelet transform, IEEE Signal Processing Magazine, vol.22, issue.6, pp.123-151, 2005.
DOI : 10.1109/MSP.2005.1550194

L. Sendur, V. Maxim, B. Whitcher, and E. Bullmore, Multiple hypothesis mapping of functional MRI data in orthogonal and complex wavelet domains, IEEE Transactions on Signal Processing, vol.53, issue.9, pp.3413-3426, 2005.
DOI : 10.1109/TSP.2005.853098

J. Sijbers, A. J. Den-dekker, J. Van-audekerke, M. Verhoye, and D. Van-dyck, Estimation of the Noise in Magnitude MR Images, Magnetic Resonance Imaging, vol.16, issue.1, pp.87-90, 1998.
DOI : 10.1016/S0730-725X(97)00199-9

J. Sijbers, D. Poot, A. J. Dekker, and W. Pintjens, Automatic estimation of the noise variance from the histogram of a magnetic resonance image, Physics in Medicine and Biology, vol.52, issue.5, pp.1335-1348, 2007.
DOI : 10.1088/0031-9155/52/5/009

G. M. Van-kempen, L. J. Van, and . Vliet, <title>Influence of background estimation on the superresolution properties of nonlinear image restoration algorithms</title>, Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing VI, pp.179-189, 1999.
DOI : 10.1117/12.347565

N. Wiest-daesslé, S. Prima, P. Coupé, S. P. Morrissey, and C. Barillot, Rician Noise Removal by Non-Local Means Filtering for Low Signal-to-Noise Ratio MRI: Applications to DT-MRI, 11th International Conference on Medical Image Computing and Computer-Assisted Intervention, 2008.
DOI : 10.1007/978-3-540-85990-1_21

J. C. Wood and K. M. Johnson, Wavelet packet denoising of magnetic resonance images: Importance of Rician noise at low SNR, Magnetic Resonance in Medicine, vol.3, issue.3, pp.631-635, 1999.
DOI : 10.1002/(SICI)1522-2594(199903)41:3<631::AID-MRM29>3.0.CO;2-Q