M. D. Nguyen, Cycling at the interface between neurodevelopment and neurodegeneration, Cell Death and Differentiation, vol.9, issue.12, pp.1294-1306, 2002.
DOI : 10.1038/sj.cdd.4401108

M. Leist and M. Jäättelä, Four deaths and a funeral: from caspases to alternative mechanisms, Nature Reviews Molecular Cell Biology, vol.926, issue.8, p.589, 2001.
DOI : 10.1038/35085008

E. B. Becker and A. Bonni, Beyond proliferation???cell cycle control of neuronal survival and differentiation in the developing mammalian brain, Seminars in Cell & Developmental Biology, vol.16, issue.3, pp.439-448, 2005.
DOI : 10.1016/j.semcdb.2005.02.006

A. C. Rego and C. R. Oliveira, Mitochondrial dysfunction and reactive oxygen species in excitotoxicity and apoptosis, Neurochemical Research, vol.28, issue.10, pp.1563-1574, 2003.
DOI : 10.1023/A:1025682611389

J. A. Klein and S. L. Ackerman, Oxidative stress, cell cycle, and neurodegeneration, Journal of Clinical Investigation, vol.111, issue.6, pp.785-793, 2003.
DOI : 10.1172/JCI200318182

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC153779

R. Lockshin and Z. Zakeri, Caspase-independent cell death?, Oncogene, vol.23, issue.16, pp.2766-2773, 2004.
DOI : 10.1038/sj.onc.1207514

M. Jää-ttelä and J. Tschopp, Caspase-independent cell death in T lymphocytes, Nature Immunology, vol.4, issue.5, pp.416-423, 2003.
DOI : 10.1038/ni0503-416

M. O. Hengartner, The biochemistry of apoptosis, Nature, vol.407, issue.6805, pp.770-776, 2000.
DOI : 10.1038/35037710

S. A. Susin, Molecular characterization of mitochondrial apoptosis inducing factor, Nature, vol.397, pp.441-446, 1999.

N. Joza, Essential role of the mitochondrial apoptosisinducing factor in programmed cell death, Nature, vol.410, issue.6828, pp.549-554, 2001.
DOI : 10.1038/35069004

C. Cande, AIF and cyclophilin A cooperate in apoptosis-associated chromatinolysis, Oncogene, vol.23, issue.8, pp.1514-1521, 2004.
DOI : 10.1038/sj.onc.1207279

X. Wang, Mechanisms of AIF-Mediated Apoptotic DNA Degradation in Caenorhabditis elegans, Science, vol.298, issue.5598, pp.1587-1592, 2002.
DOI : 10.1126/science.1076194

M. Chautan, Interdigital cell death can occur through a necrotic and caspase-independent pathway, Current Biology, vol.9, issue.17, pp.967-970, 1999.
DOI : 10.1016/S0960-9822(99)80425-4

B. T. Chua, Direct Cleavage by the Calcium-activated Protease Calpain Can Lead to Inactivation of Caspases, Journal of Biological Chemistry, vol.275, issue.7, pp.5131-5135, 2000.
DOI : 10.1074/jbc.275.7.5131

A. Strasser, Apoptosis Signaling, Annual Review of Biochemistry, vol.69, issue.1, pp.217-245, 2000.
DOI : 10.1146/annurev.biochem.69.1.217

M. Leist, Intracellular Adenosine Triphosphate (ATP) Concentration: A Switch in the Decision Between Apoptosis and Necrosis, The Journal of Experimental Medicine, vol.146, issue.8, pp.1481-1486, 1997.
DOI : 10.1016/0014-5793(95)01431-4

M. Leist, Inhibition of Mitochondrial ATP Generation by Nitric Oxide Switches Apoptosis to Necrosis, Experimental Cell Research, vol.249, issue.2, pp.396-403, 1999.
DOI : 10.1006/excr.1999.4514

M. Pollack and C. Leeuwenburgh, Apoptosis and Aging: Role of the Mitochondria, The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, vol.56, issue.11, pp.475-482, 2001.
DOI : 10.1093/gerona/56.11.B475

M. Zhao, Accumulation of caspase cleaved amyloid precursor protein represents an early neurodegenerative event in aging and in Alzheimer's disease, Neurobiology of Disease, vol.14, issue.3, pp.391-403, 2003.
DOI : 10.1016/j.nbd.2003.07.006

J. Lok and L. Martin, Rapid Subcellular Redistribution of Bax Precedes Caspase-3 and Endonuclease Activation during Excitotoxic Neuronal Apoptosis in Rat Brain, Journal of Neurotrauma, vol.19, issue.7, pp.815-828, 2002.
DOI : 10.1089/08977150260190410

H. Wootz, Caspase-12 cleavage and increased oxidative stress during motoneuron degeneration in transgenic mouse model of ALS, Biochemical and Biophysical Research Communications, vol.322, issue.1, pp.281-286, 2004.
DOI : 10.1016/j.bbrc.2004.07.118

M. H. Polymeropoulos, Autosomal dominant parkinson's disease and ??-synuclein, Annals of Neurology, vol.44, issue.S1, pp.63-64, 1998.
DOI : 10.1002/ana.410440710

M. Yamada, Overexpression of alpha-synuclein in rat substantia nigra results in loss of dopaminergic neurons, phosphorylation of alpha-synuclein and activation of caspase-9: resemblance to pathogenetic changes in Parkinson's disease, Journal of Neurochemistry, vol.91, issue.2, pp.451-461, 2004.
DOI : 10.1111/j.1471-4159.2004.02728.x

J. H. Su, Fas and Fas Ligand are associated with neuritic degeneration in the AD brain and participate in ??-amyloid-induced neuronal death, Neurobiology of Disease, vol.12, issue.3, pp.182-193, 2003.
DOI : 10.1016/S0969-9961(02)00019-0

Y. Zhang, through p53 and Bax in cultured primary human neurons, The Journal of Cell Biology, vol.20, issue.3, pp.519-529, 2002.
DOI : 10.1074/jbc.274.29.20650

Y. Ohyagi, Intracellular Ab42 activates p53 promoter: a pathway to neurodegeneration in Alzheimer's disease, FASEB J, vol.19, pp.255-257, 2005.

A. Liou, BimEL up-regulation potentiates AIF translocation and cell death in response to MPTP, The FASEB Journal, vol.19, pp.1350-1352, 2005.
DOI : 10.1096/fj.04-3258fje

C. Stadelmann, Activation of Caspase-3 in Single Neurons and Autophagic Granules of Granulovacuolar Degeneration in Alzheimer's Disease, The American Journal of Pathology, vol.155, issue.5, pp.1459-1466, 1999.
DOI : 10.1016/S0002-9440(10)65460-0

C. Lafay-chebassier, mTOR/p70S6k signalling alteration by Abeta exposure as well as in APP-PS1 transgenic models and in patients with Alzheimer's disease, Journal of Neurochemistry, vol.25, issue.1, pp.215-225, 2005.
DOI : 10.1128/MCB.20.14.5285-5299.2000

A. Giovanni, E2F1 Mediates Death of B-amyloid-treated Cortical Neurons in a Manner Independent of p53 and Dependent on Bax and Caspase 3, Journal of Biological Chemistry, vol.275, issue.16, pp.11553-11560, 2000.
DOI : 10.1074/jbc.275.16.11553

V. A. Movsesyan, mGluR5 activation reduces b-amyloidinduced cell death in primary neuronal cultures and attenuates translocation of cytochrome c and apoptosis-inducing factor, 2004.

T. Fukuda, Novel non-apoptotic morphological changes in neurons of the mouse hippocampus following transient hypoxic-ischemia, Neuroscience Research, vol.33, issue.1, pp.49-55, 1999.
DOI : 10.1016/S0168-0102(98)00111-4

T. F. Oo, Neuronal death in substantia nigra of weaver mouse occurs late in development and is not apoptotic, J. Neurosci, vol.16, pp.6134-6145, 1996.

J. M. Mccord and I. Fridovich, Superoxide dismutase. An enzymatic function for erythrocuprein (hemocuprein), J. Biol. Chem, vol.244, pp.6049-6055, 1969.

R. Radi, Detection of catalase in rat heart mitochondria, J. Biol. Chem, vol.266, pp.22028-22034, 1991.

M. D. Brand, Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins, Free Radical Biology and Medicine, vol.37, issue.6, pp.755-767, 2004.
DOI : 10.1016/j.freeradbiomed.2004.05.034

T. S. Chang, Peroxiredoxin III, a Mitochondrion-specific Peroxidase, Regulates Apoptotic Signaling by Mitochondria, Journal of Biological Chemistry, vol.279, issue.40, pp.41975-41984, 2004.
DOI : 10.1074/jbc.M407707200

M. Arundine and M. Tymianski, Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity, Cell Calcium, vol.34, issue.4-5, pp.325-337, 2003.
DOI : 10.1016/S0143-4160(03)00141-6

M. Lafon-cazal, NMDA-dependent superoxide production and neurotoxicity, Nature, vol.364, issue.6437, pp.535-537, 1993.
DOI : 10.1038/364535a0

I. Margaill, Short Therapeutic Window for MK-801 in Transient Focal Cerebral Ischemia in Normotensive Rats, Journal of Cerebral Blood Flow & Metabolism, vol.41, pp.107-113, 1996.
DOI : 10.1097/00004647-199601000-00013

D. S. Park, Cell cycle regulators in neuronal death evoked by excitotoxic stress: implications for neurodegeneration and its treatment, Neurobiology of Aging, vol.21, issue.6, pp.771-781, 2000.
DOI : 10.1016/S0197-4580(00)00220-7

V. C. Stewart and S. J. Heales, Nitric oxide-induced mitochondrial dysfunction: implications for neurodegeneration, Free Radical Biology and Medicine, vol.34, issue.3, pp.287-303, 2003.
DOI : 10.1016/S0891-5849(02)01327-8

O. Vergun, Exploration of the role of reactive oxygen species in glutamate neurotoxicity in rat hippocampal neurones in culture, The Journal of Physiology, vol.1241, issue.1, pp.147-163, 2001.
DOI : 10.1111/j.1469-7793.2001.0147j.x

K. Komjati, Poly(ADP-ribose) polymerase inhibition protect neurons and the white matter and regulates the translocation of apoptosis-inducing factor in stroke, International Journal of Molecular Medicine, vol.13, pp.373-382, 2004.
DOI : 10.3892/ijmm.13.3.373

H. Wang, Apoptosis-Inducing Factor Substitutes for Caspase Executioners in NMDA-Triggered Excitotoxic Neuronal Death, Journal of Neuroscience, vol.24, issue.48, pp.10963-10973, 2004.
DOI : 10.1523/JNEUROSCI.3461-04.2004

D. Arnoult, Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/Bak-mediated permeabilization, The EMBO Journal, vol.22, issue.17, pp.4385-4399, 2003.
DOI : 10.1093/emboj/cdg423

E. C. Cheung, Apoptosis-Inducing Factor Is a Key Factor in Neuronal Cell Death Propagated by BAX-Dependent and BAX-Independent Mechanisms, Journal of Neuroscience, vol.25, issue.6, pp.1324-1334, 2005.
DOI : 10.1523/JNEUROSCI.4261-04.2005

C. Young, Excitotoxic Versus Apoptotic Mechanisms of Neuronal Cell Death in Perinatal Hypoxia / Ischemia, Current Molecular Medicine, vol.4, issue.2, pp.77-85, 2004.
DOI : 10.2174/1566524043479158

J. Coyle and P. Puttfarcken, Oxidative stress, glutamate, and neurodegenerative disorders, Science, vol.262, issue.5134, pp.689-695, 1993.
DOI : 10.1126/science.7901908

I. I. Kruman, ALS-Linked Cu/Zn???SOD Mutation Increases Vulnerability of Motor Neurons to Excitotoxicity by a Mechanism Involving Increased Oxidative Stress and Perturbed Calcium Homeostasis, Experimental Neurology, vol.160, issue.1, pp.28-39, 1999.
DOI : 10.1006/exnr.1999.7190

D. Canto and M. C. , Comparison of pathological alterations in ALS and a murine transgenic model: pathogenetic implications, Clin. Neurosci, vol.3, pp.332-337, 1995.

P. F. Good, Protein Nitration in Parkinson??s Disease, Journal of Neuropathology and Experimental Neurology, vol.57, issue.4, pp.338-342, 1998.
DOI : 10.1097/00005072-199804000-00006

H. Wang, Apoptosis Inducing Factor and PARP-Mediated Injury in the MPTP Mouse Model of Parkinson's Disease, Annals of the New York Academy of Sciences, vol.410, issue.1, 2003.
DOI : 10.1111/j.1749-6632.2003.tb07471.x

J. A. Klein, The harlequin mouse mutation downregulates apoptosis-inducing factor, Nature, vol.58, issue.6905, pp.367-374, 2002.
DOI : 10.1038/39601

C. J. Sherr, Mammalian G1 cyclins, Cell, vol.73, issue.6, pp.1059-1065, 1993.
DOI : 10.1016/0092-8674(93)90636-5

C. Guegan, c-Jun and cyclin D1 proteins as mediators of neuronal death after a focal ischaemic insult, NeuroReport, vol.8, issue.4, pp.1003-1007, 1997.
DOI : 10.1097/00001756-199703030-00037

J. Katchanov, Mild cerebral ischemia induces loss of cyclin-dependent kinase inhibitors and activation of cell cycle machinery before delayed neuronal cell death, J. Neurosci, vol.21, pp.5045-5053, 2001.

S. Timsit, Increased cyclin D1 in vulnerable neurons in the hippocampus after ischaemia and epilepsy: a modulator of in???vivo programmed cell death?, European Journal of Neuroscience, vol.88, issue.1, pp.263-278, 1999.
DOI : 10.1046/j.1460-9568.1999.00434.x

URL : https://hal.archives-ouvertes.fr/inserm-00486281

C. Y. Kuan, Hypoxia?ischemia induced DNA synthesis without cell proliferation in dying neurons in adult rodent brain, 2004.

M. D. Nguyen, Cell cycle regulators in the neuronal death pathway of amyotrophic lateral sclerosis caused by mutant superoxide dismutase 1, J. Neurosci, vol.23, pp.2131-2140, 2003.

D. S. Park, Multiple pathways of neuronal death induced by DNA damaging agents, NGF deprivation and oxidative stress, 1998.

S. Iwata, Gene expression profiling in the midbrain of striatal 6-hydroxydopamine-injected mice, Synapse, vol.80, issue.4, pp.279-286, 2004.
DOI : 10.1002/syn.10307

A. Shirvan, Induction of mitosis-related genes during dopamine-triggered apoptosis in sympathetic neurons, J. Neural Transm, pp.67-78, 1997.
DOI : 10.1007/978-3-7091-6842-4_8

F. Soldner, MPP+ Inhibits Proliferation of PC12 Cells by a p21WAF1/Cip1-Dependent Pathway and Induces Cell Death in Cells Lacking p21WAF1/Cip1, Experimental Cell Research, vol.250, issue.1, pp.75-85, 1999.
DOI : 10.1006/excr.1999.4504

A. Copani, Mitotic signaling by b-amyloid causes neuronal death, FASEB J, vol.13, pp.2225-2234, 1999.

Y. Yang, Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer's disease, J. Neurosci, vol.23, pp.2557-2563, 2003.

T. Arendt, Neuronal expression of cycline dependent kinase inhibitors of the INK4 family in Alzheimer's disease, Journal of Neural Transmission, vol.105, issue.8-9, pp.949-960, 1998.
DOI : 10.1007/s007020050104

C. Bergeron, Copper/zinc superoxide dismutase expression in the human central nervous system. Correlation with selective neuronal vulnerability, Am. J. Pathol, vol.148, pp.273-279, 1996.

B. Langley and R. R. Ratan, Oxidative stress-induced death in the nervous system: Cell cycle dependent or independent?, Journal of Neuroscience Research, vol.1000, issue.5, pp.621-629, 2004.
DOI : 10.1002/jnr.20210

I. I. Kruman, Cell Cycle Activation Linked to Neuronal Cell Death Initiated by DNA Damage, Neuron, vol.41, issue.4, pp.549-561, 2004.
DOI : 10.1016/S0896-6273(04)00017-0

T. Nouspikel and P. C. Hanawalt, Terminally Differentiated Human Neurons Repair Transcribed Genes but Display Attenuated Global DNA Repair and Modulation of Repair Gene Expression, Molecular and Cellular Biology, vol.20, issue.5, pp.1562-1570, 2000.
DOI : 10.1128/MCB.20.5.1562-1570.2000

C. J. Norbury and B. Zhivotovsky, DNA damage-induced apoptosis, Oncogene, vol.23, issue.16, pp.2797-2808, 2004.
DOI : 10.1038/sj.onc.1207532

S. Sperandio, Paraptosis: mediation by MAP kinases and inhibition by AIP-1/Alix, Cell Death and Differentiation, vol.11, issue.10, pp.1066-1075, 2004.
DOI : 10.1038/sj.cdd.4401465

S. Chi, Oncogenic Ras triggers cell suicide through the activation of a caspase-independent cell death program in human cancer cells, Oncogene, vol.18, issue.13, pp.2281-2290, 1999.
DOI : 10.1038/sj.onc.1202538