D. J. Glass, Skeletal muscle hypertrophy and atrophy signaling pathways. The international journal of biochemistry & cell biology 37, 1974.
DOI : 10.1016/j.biocel.2005.04.018

S. Wullschleger, R. Loewith, and M. N. Hall, TOR Signaling in Growth and Metabolism, Cell, vol.124, issue.3, pp.471-484, 2006.
DOI : 10.1016/j.cell.2006.01.016

D. D. Sarbassov, S. M. Ali, D. H. Kim, D. A. Guertin, R. R. Latek et al., Rictor, a Novel Binding Partner of mTOR, Defines a Rapamycin-Insensitive and Raptor-Independent Pathway that Regulates the Cytoskeleton, Current Biology, vol.14, issue.14, pp.1296-1302, 2004.
DOI : 10.1016/j.cub.2004.06.054

S. C. Bodine, T. N. Stitt, M. Gonzalez, W. O. Kline, G. L. Stover et al., Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo, Nature Cell Biology, vol.3, issue.11, pp.1014-1019, 2001.
DOI : 10.1038/ncb1101-1014

G. Pallafacchina, E. Calabria, A. L. Serrano, J. M. Kalhovde, and S. Schiaffino, A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification, Proceedings of the National Academy of Sciences of the United States of America 99, pp.9213-9218, 2002.
DOI : 10.1073/pnas.142166599

V. Aguilar, S. Alliouachene, A. Sotiropoulos, A. Sobering, Y. Athea et al., S6 Kinase Deletion Suppresses Muscle Growth Adaptations to Nutrient Availability by Activating AMP Kinase, Cell Metabolism, vol.5, issue.6, pp.476-487, 2007.
DOI : 10.1016/j.cmet.2007.05.006

M. Ohanna, A. K. Sobering, T. Lapointe, L. Lorenzo, C. Praud et al., Atrophy of S6K1???/??? skeletal muscle cells reveals distinct mTOR effectors for cell cycle and size control, Nature Cell Biology, vol.279, issue.3, pp.286-294, 2005.
DOI : 10.1093/emboj/17.22.6649

D. M. Gwinn, D. B. Shackelford, D. F. Egan, M. M. Mihaylova, A. Mery et al., AMPK Phosphorylation of Raptor Mediates a Metabolic Checkpoint, Molecular Cell, vol.30, issue.2, pp.214-226, 2008.
DOI : 10.1016/j.molcel.2008.03.003

K. Inoki, T. Zhu, and K. L. Guan, TSC2 Mediates Cellular Energy Response to Control Cell Growth and Survival, Cell, vol.115, issue.5, pp.577-590, 2003.
DOI : 10.1016/S0092-8674(03)00929-2

D. G. Hardie, AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy, Nature Reviews Molecular Cell Biology, vol.367, issue.10, pp.774-785, 2007.
DOI : 10.1038/nrm2249

S. E. Gordon, J. A. Lake, C. M. Westerkamp, and D. M. Thomson, Does AMP-activated protein kinase negatively mediate aged fast-twitch skeletal muscle mass? Exercise and sport sciences reviews 36, pp.179-186, 2008.
DOI : 10.1097/jes.0b013e3181877e13

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2659413

D. M. Thomson, G. , and S. E. , Diminished overload-induced hypertrophy in aged fast-twitch skeletal muscle is associated with AMPK hyperphosphorylation, Journal of Applied Physiology, vol.98, issue.2, pp.557-564, 2005.
DOI : 10.1152/japplphysiol.00811.2004

R. Mounier, L. Lantier, J. Leclerc, A. Sotiropoulos, M. Pende et al., Important role for AMPK??1 in limiting skeletal muscle cell hypertrophy, The FASEB Journal, vol.23, issue.7, pp.2264-2273, 2009.
DOI : 10.1096/fj.08-119057

URL : https://hal.archives-ouvertes.fr/inserm-00363209

N. Kimura, C. Tokunaga, S. Dalal, C. Richardson, K. Yoshino et al., A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway, Genes to Cells, vol.82, issue.1, pp.65-79, 2003.
DOI : 10.1101/gad.835000

U. Krause, L. Bertrand, H. , and L. , Control of p70 ribosomal protein S6 kinase and acetyl-CoA carboxylase by AMP-activated protein kinase and protein phosphatases in isolated hepatocytes, European Journal of Biochemistry, vol.294, issue.15, pp.3751-3759, 2002.
DOI : 10.1046/j.1432-1033.2002.03074.x

S. Horman, G. Browne, U. Krause, J. Patel, D. Vertommen et al., Activation of AMP-Activated Protein Kinase Leads to the Phosphorylation of Elongation Factor 2 and an Inhibition of Protein Synthesis, Current Biology, vol.12, issue.16, pp.1419-1423, 2002.
DOI : 10.1016/S0960-9822(02)01077-1

S. W. Cheng, L. G. Fryer, D. Carling, and P. R. Shepherd, Thr2446 Is a Novel Mammalian Target of Rapamycin (mTOR) Phosphorylation Site Regulated by Nutrient Status, Journal of Biological Chemistry, vol.279, issue.16, pp.15719-15722, 2004.
DOI : 10.1074/jbc.C300534200

D. M. Thomson, C. A. Fick, G. , and S. E. , AMPK activation attenuates S6K1, 4E-BP1, and eEF2 signaling responses to high-frequency electrically stimulated skeletal muscle contractions, Journal of Applied Physiology, vol.104, issue.3, pp.625-632, 2008.
DOI : 10.1152/japplphysiol.00915.2007

H. C. Dreyer, S. Fujita, J. G. Cadenas, D. L. Chinkes, E. Volpi et al., Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle, The Journal of Physiology, vol.546, issue.2, pp.613-624, 2006.
DOI : 10.1113/jphysiol.2006.113175

S. B. Jorgensen, B. Viollet, F. Andreelli, C. Frosig, J. B. Birk et al., Knockout of the ??2 but Not ??1 5'-AMP-activated Protein Kinase Isoform Abolishes 5-Aminoimidazole-4-carboxamide-1-??-4-ribofuranosidebut Not Contraction-induced Glucose Uptake in Skeletal Muscle, Journal of Biological Chemistry, vol.279, issue.2, pp.1070-1079, 2004.
DOI : 10.1074/jbc.M306205200

B. Viollet, F. Andreelli, S. B. Jorgensen, C. Perrin, A. Geloen et al., The AMP-activated protein kinase ??2 catalytic subunit controls whole-body insulin sensitivity, Journal of Clinical Investigation, vol.111, issue.1, pp.91-98, 2003.
DOI : 10.1172/JCI16567

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC151837

P. Miniou, D. Tiziano, T. Frugier, N. Roblot, L. Meur et al., Gene targeting restricted to mouse striated muscle lineage Nucleic acids research 27 (1995) 5- aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells, Eur J Biochem, vol.27, issue.229, pp.558-565, 1999.
DOI : 10.1093/nar/27.19.e27

URL : http://doi.org/10.1093/nar/27.19.e27

G. Zhou, R. Myers, Y. Li, Y. Chen, X. Shen et al., Role of AMP-activated protein kinase in mechanism of metformin action, Journal of Clinical Investigation, vol.108, issue.8, pp.1167-1174, 2001.
DOI : 10.1172/JCI13505

B. Cool, B. Zinker, W. Chiou, L. Kifle, N. Cao et al., Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome, Cell Metabolism, vol.3, issue.6, pp.403-416, 2006.
DOI : 10.1016/j.cmet.2006.05.005

D. G. Hardie, AMPK and Raptor: Matching Cell Growth to Energy Supply, Molecular Cell, vol.30, issue.3, pp.263-265, 2008.
DOI : 10.1016/j.molcel.2008.04.012

R. J. Shaw, N. Bardeesy, B. D. Manning, L. Lopez, M. Kosmatka et al., The LKB1 tumor suppressor negatively regulates mTOR signaling, Cancer Cell, vol.6, issue.1, pp.91-99, 2004.
DOI : 10.1016/j.ccr.2004.06.007

R. S. Lee-young, S. R. Griffee, S. E. Lynes, D. P. Bracy, J. E. Ayala et al., Skeletal Muscle AMP-activated Protein Kinase Is Essential for the Metabolic Response to Exercise in Vivo, Journal of Biological Chemistry, vol.284, issue.36, pp.23925-23934, 2009.
DOI : 10.1074/jbc.M109.021048

H. Zong, J. M. Ren, L. H. Young, M. Pypaert, J. Mu et al., AMP kinase is required for mitochondrial biogenesis in skeletal muscle in response to chronic energy deprivation, Proceedings of the National Academy of Sciences of the United States of America 99, pp.15983-15987, 2002.
DOI : 10.1073/pnas.252625599

S. L. Mcgee, K. J. Mustard, D. G. Hardie, and K. Baar, Normal hypertrophy accompanied by phosphoryation and activation of AMP-activated protein kinase ??1 following overload in LKB1 knockout mice, The Journal of Physiology, vol.99, issue.6, pp.1731-1741, 2008.
DOI : 10.1113/jphysiol.2007.143685

A. Y. Chan, V. W. Dolinsky, C. L. Soltys, B. Viollet, S. Baksh et al., Resveratrol Inhibits Cardiac Hypertrophy via AMP-activated Protein Kinase and Akt, Journal of Biological Chemistry, vol.283, issue.35, pp.24194-24201, 2008.
DOI : 10.1074/jbc.M802869200

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3259789

A. Y. Chan, C. L. Soltys, M. E. Young, C. G. Proud, and J. R. Dyck, Activation of AMP-activated Protein Kinase Inhibits Protein Synthesis Associated with Hypertrophy in the Cardiac Myocyte, Journal of Biological Chemistry, vol.279, issue.31, pp.32771-32779, 2004.
DOI : 10.1074/jbc.M403528200

E. Zarrinpashneh, K. Carjaval, C. Beauloye, A. Ginion, P. Mateo et al., Role of the ??2-isoform of AMP-activated protein kinase in the metabolic response of the heart to no-flow ischemia, AJP: Heart and Circulatory Physiology, vol.291, issue.6, pp.2875-2883, 2006.
DOI : 10.1152/ajpheart.01032.2005

P. Zhang, X. Hu, X. Xu, J. Fassett, G. Zhu et al., AMP Activated Protein Kinase-??2 Deficiency Exacerbates Pressure-Overload-Induced Left Ventricular Hypertrophy and Dysfunction in Mice, Hypertension, vol.52, issue.5, pp.918-924, 2008.
DOI : 10.1161/HYPERTENSIONAHA.108.114702

G. J. Nystrom, L. , and C. H. , Sepsis and AMPK Activation by AICAR Differentially Regulate FoxO-1, -3 and -4 mRNA in Striated Muscle, International journal of clinical and experimental medicine, vol.1, pp.50-63, 2008.

K. Nakashima, Y. , and Y. , AMPK Activation Stimulates Myofibrillar Protein Degradation and Expression of Atrophy-Related Ubiquitin Ligases by Increasing FOXO Transcription Factors in C2C12 Myotubes, Bioscience, Biotechnology, and Biochemistry, vol.17, issue.4, pp.1650-1656, 2007.
DOI : 10.1271/bbb.60274

L. S. Harrington, G. M. Findlay, A. Gray, T. Tolkacheva, S. Wigfield et al., The TSC1-2 tumor suppressor controls insulin???PI3K signaling via regulation of IRS proteins, The Journal of Cell Biology, vol.65, issue.2, pp.213-223, 2004.
DOI : 10.1038/ncb999

C. F. Bentzinger, K. Romanino, D. Cloetta, S. Lin, J. B. Mascarenhas et al., Skeletal Muscle-Specific Ablation of raptor, but Not of rictor, Causes Metabolic Changes and Results in Muscle Dystrophy, Cell Metabolism, vol.8, issue.5, pp.411-424, 2008.
DOI : 10.1016/j.cmet.2008.10.002