F. Polleux, Genetic Mechanisms Specifying Cortical Connectivity, Neuron, vol.46, issue.3, pp.395-400, 2005.
DOI : 10.1016/j.neuron.2005.04.017

Y. Ben-ari, GABAA, NMDA and AMPA receptors: a developmentally regulated 'm??nage ?? trois', Trends in Neurosciences, vol.20, issue.11, pp.523-529, 1997.
DOI : 10.1016/S0166-2236(97)01147-8

W. J. Moody and M. M. Bosma, Ion Channel Development, Spontaneous Activity, and Activity-Dependent Development in Nerve and Muscle Cells, Physiological Reviews, vol.85, issue.3, pp.883-941, 2005.
DOI : 10.1152/physrev.00017.2004

N. C. Spitzer, Orchestrating neuronal differentiation: patterns of Ca2+ spikes specify transmitter choice, Trends in Neurosciences, vol.27, issue.7, pp.415-421, 2004.
DOI : 10.1016/j.tins.2004.05.003

R. Khazipov, Early motor activity drives spindle bursts in the developing somatosensory cortex, Nature, vol.15, issue.7018, pp.758-761, 2004.
DOI : 10.1007/s00424-002-0831-z

URL : https://hal.archives-ouvertes.fr/inserm-00484640

E. Dupont, Rapid developmental switch in the mechanisms driving early cortical columnar networks 439, pp.79-83, 2006.

C. Dreyfus-brisac and J. C. Larroche, ??lectroenc??phalogrammes discontinus du nouveau-n?? pr??matur?? et ?? terme. Corr??lations ??lectro-anatomo-cliniques, Revue d&'apos;Electroenc??phalographie et de Neurophysiologie Clinique, vol.1, issue.1, pp.95-99, 1971.
DOI : 10.1016/S0370-4475(71)80022-9

M. D. Lamblin, ??lectroenc??phalographie du nouveau-n?? pr??matur?? et ?? terme. Aspects maturatifs et glossaire, Neurophysiologie Clinique/Clinical Neurophysiology, vol.29, issue.2, pp.123-219, 1999.
DOI : 10.1016/S0987-7053(99)80051-3

J. E. Stockard-pope, Atlas of Neonatal Electroencelography Early development of neuronal activity in the primate hippocampus in utero, J. Neurosci, vol.21, pp.9770-9781, 1992.

C. M. Anderson, The EEG of the early premature, Electroencephalography and Clinical Neurophysiology, vol.60, issue.2, pp.95-105, 1985.
DOI : 10.1016/0013-4694(85)90015-X

M. S. Scher and G. L. Holmes, Electroencephalography of the newborn: normal features DC-EEG discloses prominent, very slow activity patterns during sleep in preterm infants, In Clinical Neurophysiology of Infancy, Childhood and Adolescence Clin. Neurophysiol, vol.113, pp.46-69, 2002.

R. J. Ellingson, Electroencephalograms of normal, full-term newborns immediately after birth with observations on arousal and visual evoked responses, Electroencephalography and Clinical Neurophysiology, vol.10, issue.1, pp.31-50, 1958.
DOI : 10.1016/0013-4694(58)90101-9

C. Dreyfus-brisac, The electroencephalogram of the premature infant, World Neurol, vol.3, pp.5-15, 1962.

A. H. Parmelee, A periodic cerebral rhythm in newborn infants, Experimental Neurology, vol.25, issue.4, pp.575-584, 1969.
DOI : 10.1016/0014-4886(69)90100-9

R. Nolte, Bioelectric Brain Maturation in Small-for-Dates Infants, Developmental Medicine & Child Neurology, vol.93, issue.1, pp.83-93, 1969.
DOI : 10.1111/j.1469-8749.1969.tb01398.x

K. Watanabe and K. Iwase, Spindle-like Fast Rhythms in the EEGs of Low-birthweight Infants, Developmental Medicine & Child Neurology, vol.4, issue.3, pp.373-381, 1972.
DOI : 10.1111/j.1469-8749.1972.tb02603.x

L. Goldie, The Development of Innate Sleep Rhythms in Short Gestation Infants, Developmental Medicine & Child Neurology, vol.152, issue.1, pp.40-50, 1971.
DOI : 10.1111/j.1469-8749.1971.tb03030.x

R. Engel, G. L. Holmes, and C. T. Lombroso, Abnormal electroencephalograms in the neonatal period 26 Prognostic value of background patterns in the neonatal EEG, J. Clin. Neurophysiol, vol.10, pp.323-352, 1975.

X. Leinekugel, Correlated Bursts of Activity in the Neonatal Hippocampus in Vivo, Science, vol.296, issue.5575, pp.2049-2052, 2002.
DOI : 10.1126/science.1071111

B. Clancy, Translating developmental time across mammalian species, Neuroscience, vol.105, issue.1, pp.7-17, 2001.
DOI : 10.1016/S0306-4522(01)00171-3

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.493.2669

M. J. Donovan, The origin of spontaneous activity in developing networks of the vertebrate nervous system, Current Opinion in Neurobiology, vol.9, issue.1, pp.94-104, 1999.
DOI : 10.1016/S0959-4388(99)80012-9

M. S. Blumberg and D. E. Lucas, Dual mechanisms of twitching during sleep in neonatal rats., Behavioral Neuroscience, vol.108, issue.6, pp.1196-1202, 1994.
DOI : 10.1037/0735-7044.108.6.1196

P. Petersson, Spontaneous muscle twitches during sleep guide spinal self-organization, Nature, vol.424, issue.6944, pp.72-75, 2003.
DOI : 10.1038/nature01719

H. F. Prechtl, State of the art of a new functional assessment of the young nervous system. An early predictor of cerebral palsy, Early Human Development, vol.50, issue.1, pp.1-11, 1997.
DOI : 10.1016/S0378-3782(97)00088-1

J. I. De-vries, The emergence of fetal behaviour. I. Qualitative aspects, Early Human Development, vol.7, issue.4, pp.301-322, 1982.
DOI : 10.1016/0378-3782(82)90033-0

G. Cioni and H. F. Prechtl, Preterm and early postterm motor behaviour in low-risk premature infants, Early Human Development, vol.23, issue.3, pp.159-191, 1990.
DOI : 10.1016/0378-3782(90)90012-8

V. Hamburger and E. S. Hafez, Fetal behavior In The Mammalian Fetus Relationship of correlated spontaneous activity to functional ocular dominance columns in the developing visual cortex, Comparative Biology and Methodology Neuron, vol.35, pp.69-81, 1975.

C. Chiu and M. Weliky, Spontaneous activity in developing ferret visual cortex in vivo, J. Neurosci, vol.21, pp.8906-8914, 2001.

H. Adelsberger, Cortical calcium waves in resting newborn mice, Nature Neuroscience, vol.354, issue.8, pp.988-990, 2005.
DOI : 10.1016/S0896-6273(03)00065-5

R. Yuste, Neuronal domains in developing neocortex, Science, vol.257, issue.5070, pp.665-669, 1992.
DOI : 10.1126/science.1496379

R. Yuste, Neuronal domains in developing neocortex: Mechanisms of coactivation, Neuron, vol.14, issue.1, pp.7-17, 1995.
DOI : 10.1016/0896-6273(95)90236-8

K. Kandler and L. C. Katz, Coordination of neuronal activity in developing visual cortex by gap junction-mediated biochemical communication, J. Neurosci, vol.18, pp.1419-1427, 1998.

K. Kandler and L. C. Katz, Neuronal coupling and uncoupling in the developing nervous system, Current Opinion in Neurobiology, vol.5, issue.1, pp.98-105, 1995.
DOI : 10.1016/0959-4388(95)80093-X

A. Peinado, Immature neocortical neurons exist as extensive syncitial networks linked by dendrodendritic electrical connections, 2001.

A. O. Peinado, Traveling slow waves of neural activity: a novel form of network activity in developing neocortex Large-scale oscillatory calcium waves in the immature cortex, J. Neurosci. Nat. Neurosci, vol.20, issue.3, pp.452-459, 2000.

W. Kilb and H. J. Luhmann, Carbachol-induced Network Oscillations in the Intact Cerebral Cortex of the Newborn Rat, Cerebral Cortex, vol.13, issue.4, pp.409-421, 2003.
DOI : 10.1093/cercor/13.4.409

H. J. Luhmann, Cellular physiology of the neonatal rat cerebral cortex: Intrinsic membrane properties, sodium and calcium currents, Journal of Neuroscience Research, vol.16, issue.4, pp.574-584, 2000.
DOI : 10.1002/1097-4547(20001115)62:4<574::AID-JNR12>3.0.CO;2-0

R. J. Montoro and R. Yuste, Gap junctions in developing neocortex: a review, Brain Research Reviews, vol.47, issue.1-3, pp.216-226, 2004.
DOI : 10.1016/j.brainresrev.2004.06.009

D. E. Feldman and M. Brecht, Map Plasticity in Somatosensory Cortex, Science, vol.310, issue.5749, pp.810-815, 2005.
DOI : 10.1126/science.1115807

R. D. Fields, Temporal integration of intracellular Ca2+ signaling networks in regulating gene expression by action potentials, Cell Calcium, vol.37, issue.5, pp.433-442, 2005.
DOI : 10.1016/j.ceca.2005.01.011

S. E. Webb, Calcium transients and neural induction in vertebrates, Cell Calcium, vol.37, issue.5, pp.375-385, 2005.
DOI : 10.1016/j.ceca.2005.01.005

X. Leinekugel, Ca2+ Oscillations Mediated by the Synergistic Excitatory Actions of GABAA and NMDA Receptors in the Neonatal Hippocampus, Neuron, vol.18, issue.2, pp.243-255, 1997.
DOI : 10.1016/S0896-6273(00)80265-2

URL : https://hal.archives-ouvertes.fr/inserm-00522468

H. Arumugam, NMDA receptors regulate developmental gap junction uncoupling via CREB signaling, Nature Neuroscience, vol.276, issue.12, pp.1720-1726, 2005.
DOI : 10.1038/nn1588

K. Kandler and E. Thiels, Flipping the switch from electrical to chemical communication, Nature Neuroscience, vol.89, issue.12, pp.1633-1634, 2005.
DOI : 10.1038/nn1205-1633