M. Kaneko, Tumor Necrosis Factor-?? Mediates One Component of Competitive, Experience-Dependent Plasticity in Developing Visual Cortex, Neuron, vol.58, issue.5, pp.673-680, 2008.
DOI : 10.1016/j.neuron.2008.04.023

C. A. Goddard, Regulation of CNS synapses by neuronal MHC class I, Proceedings of the National Academy of Sciences, vol.104, issue.16, pp.6828-6833, 2007.
DOI : 10.1073/pnas.0702023104

K. Bittman, Cell coupling and uncoupling in the ventricular zone of developing neocortex, J. Neurosci, vol.17, pp.7037-7044, 1997.

J. R. Henley, Calcium Mediates Bidirectional Growth Cone Turning Induced by Myelin-Associated Glycoprotein, Neuron, vol.44, issue.6, pp.909-916, 2004.
DOI : 10.1016/j.neuron.2004.11.030

URL : http://doi.org/10.1016/j.neuron.2004.11.030

N. C. Spitzer, Orchestrating neuronal differentiation: patterns of Ca2+ spikes specify transmitter choice, Trends in Neurosciences, vol.27, issue.7, pp.415-421, 2004.
DOI : 10.1016/j.tins.2004.05.003

G. Barbin, Involvement of GABAA receptors in the outgrowth of cultured hippocampal neurons, Neuroscience Letters, vol.152, issue.1-2, pp.150-154, 1993.
DOI : 10.1016/0304-3940(93)90505-F

X. Gu and N. C. Spitzer, Breaking the Code: Regulation of Neuronal Differentiation by Spontaneous Calcium Transients, Developmental Neuroscience, vol.19, issue.1, pp.33-41, 1997.
DOI : 10.1159/000111183

R. O. Wong and A. Ghosh, Activity-dependent regulation of dendritic growth and patterning, Nature Reviews Neuroscience, vol.48, issue.10, pp.803-812, 2002.
DOI : 10.1038/nrn941

Y. Ben-ari, Excitatory actions of gaba during development: the nature of the nurture, Nature Reviews Neuroscience, vol.3, issue.9, pp.728-739, 2002.
DOI : 10.1038/nrn920

URL : https://hal.archives-ouvertes.fr/inserm-00484852

R. Tyzio, The establishment of GABAergic and glutamatergic synapses on CA1 pyramidal neurons is sequential and correlates with the development of the apical dendrite, 1999.
URL : https://hal.archives-ouvertes.fr/inserm-00487269

R. Khazipov, Early development of neuronal activity in the primate hippocampus in utero, J. Neurosci, vol.21, pp.9770-9781, 2001.
URL : https://hal.archives-ouvertes.fr/inserm-00484885

Y. Ben-ari, GABA: A Pioneer Transmitter That Excites Immature Neurons and Generates Primitive Oscillations, Physiological Reviews, vol.87, issue.4, pp.1215-1284, 2007.
DOI : 10.1152/physrev.00017.2006

URL : https://hal.archives-ouvertes.fr/inserm-00483857

R. Tyzio, Postnatal changes in somatic ??-aminobutyric acid signalling in the rat hippocampus, European Journal of Neuroscience, vol.444, issue.10, pp.2515-2528, 2008.
DOI : 10.1111/j.1460-9568.2008.06234.x

URL : https://hal.archives-ouvertes.fr/inserm-00483514

H. Fiumelli, Modulation of GABAergic Transmission by Activity via Postsynaptic Ca2+-Dependent Regulation of KCC2 Function, Neuron, vol.48, issue.5, pp.773-786, 2005.
DOI : 10.1016/j.neuron.2005.10.025

X. Leinekugel, Ca2+ Oscillations Mediated by the Synergistic Excitatory Actions of GABAA and NMDA Receptors in the Neonatal Hippocampus, Neuron, vol.18, issue.2, pp.243-255, 1997.
DOI : 10.1016/S0896-6273(00)80265-2

URL : https://hal.archives-ouvertes.fr/inserm-00522468

Y. Ben-ari, GABAA, NMDA and AMPA receptors: a developmentally regulated 'm??nage ?? trois', Trends in Neurosciences, vol.20, issue.11, pp.523-529, 1997.
DOI : 10.1016/S0166-2236(97)01147-8

A. Represa and Y. Ben-ari, Trophic actions of GABA on neuronal development, Trends in Neurosciences, vol.28, issue.6, pp.278-283, 2005.
DOI : 10.1016/j.tins.2005.03.010

URL : https://hal.archives-ouvertes.fr/inserm-00484557

R. Tyzio, Maternal Oxytocin Triggers a Transient Inhibitory Switch in GABA Signaling in the Fetal Brain During Delivery, Science, vol.314, issue.5806, pp.1788-1792, 2006.
DOI : 10.1126/science.1133212

URL : https://hal.archives-ouvertes.fr/inserm-00483930

I. Chudotvorova, Early expression of KCC2 in rat hippocampal cultures augments expression of functional GABA synapses, The Journal of Physiology, vol.90, issue.3, pp.671-679, 2005.
DOI : 10.1113/jphysiol.2005.089821

URL : https://hal.archives-ouvertes.fr/inserm-00484389

D. D. Wang and A. R. Kriegstein, GABA Regulates Excitatory Synapse Formation in the Neocortex via NMDA Receptor Activation, Journal of Neuroscience, vol.28, issue.21, pp.5547-5558, 2008.
DOI : 10.1523/JNEUROSCI.5599-07.2008

L. Cancedda, Excitatory GABA Action Is Essential for Morphological Maturation of Cortical Neurons In Vivo, Journal of Neuroscience, vol.27, issue.19, pp.5224-5235, 2007.
DOI : 10.1523/JNEUROSCI.5169-06.2007

X. Liu and C. Chen, Different Roles for AMPA and NMDA Receptors in Transmission at the Immature Retinogeniculate Synapse, Journal of Neurophysiology, vol.99, issue.2, pp.629-643, 2008.
DOI : 10.1152/jn.01171.2007

E. W. Tringham, Maturation of rat cerebellar Purkinje cells reveals an atypical Ca 2+ channel current that is inhibited by omega-agatoxin IVA and the dihydropyridine, 2007.

U. Rutishauser, Polysialic acid in the plasticity of the developing and adult vertebrate nervous system, Nature Reviews Neuroscience, vol.11, issue.1, pp.26-35, 2008.
DOI : 10.1038/nrn2285

F. Brocard, Emergence of Intrinsic Bursting in Trigeminal Sensory Neurons Parallels the Acquisition of Mastication in Weanling Rats, Journal of Neurophysiology, vol.96, issue.5, pp.2410-2424, 2006.
DOI : 10.1152/jn.00352.2006

M. Shao, Maturation of firing pattern in chick vestibular nucleus neurons, Neuroscience, vol.141, issue.2, pp.711-726, 2006.
DOI : 10.1016/j.neuroscience.2006.03.061

P. D. Cote, Physiological maturation of photoreceptors depends on the voltage-gated sodium channel NaV1, 2005.

G. S. Geleoc, Developmental Acquisition of Voltage-Dependent Conductances and Sensory Signaling in Hair Cells of the Embryonic Mouse Inner Ear, Journal of Neuroscience, vol.24, issue.49, pp.11148-11159, 2004.
DOI : 10.1523/JNEUROSCI.2662-04.2004

G. J. Murphy and L. S. Du, Postnatal development of spike generation in rat medial vestibular nucleus neurons, J. Neurophysiol, vol.85, pp.1899-1906, 2001.

F. L. Kidd and J. T. Isaac, Developmental and activitydependent regulation of kainate receptors at thalamocortical synapses, Nature, vol.400, pp.569-573, 1999.

Y. Ben-ari, Changes in voltage dependence of NMDA currents during development, Neuroscience Letters, vol.94, issue.1-2, pp.88-92, 1988.
DOI : 10.1016/0304-3940(88)90275-3

H. Monyer, Developmental and regional expression in the rat brain and functional properties of four NMDA receptors, Neuron, vol.12, issue.3, pp.529-540, 1994.
DOI : 10.1016/0896-6273(94)90210-0

N. C. Spitzer and L. N. Borodinsky, Implications of activity-dependent neurotransmitter-receptor matching, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.1, issue.4, pp.1393-1399, 2008.
DOI : 10.1016/S0092-8674(02)00823-1

L. N. Borodinsky and N. C. Spitzer, Activity-dependent neurotransmitter-receptor matching at the neuromuscular junction, Proceedings of the National Academy of Sciences, vol.104, issue.1, pp.335-340, 2007.
DOI : 10.1073/pnas.0607450104

M. L. Baccei and M. Fitzgerald, Development of GABAergic and Glycinergic Transmission in the Neonatal Rat Dorsal Horn, Journal of Neuroscience, vol.24, issue.20, 2004.
DOI : 10.1523/JNEUROSCI.5211-03.2004

G. B. Awatramani, Staggered Development of GABAergic and Glycinergic Transmission in the MNTB, Journal of Neurophysiology, vol.93, issue.2, p.819, 2005.
DOI : 10.1152/jn.00798.2004

C. M. Root, Embryonically Expressed GABA and Glutamate Drive Electrical Activity Regulating Neurotransmitter Specification, Journal of Neuroscience, vol.28, issue.18, pp.4777-4784, 2008.
DOI : 10.1523/JNEUROSCI.4873-07.2008

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3318922

C. Brun and I. , Spontaneous synaptic activity is required for the formation of functional GABAergic synapses in the developing rat hippocampus, The Journal of Physiology, vol.5, issue.1, pp.129-139, 2004.
DOI : 10.1113/jphysiol.2004.065060

URL : https://hal.archives-ouvertes.fr/inserm-00484656

V. Crepel, A Parturition-Associated Nonsynaptic Coherent Activity Pattern in the Developing Hippocampus, Neuron, vol.54, issue.1, pp.105-120, 2007.
DOI : 10.1016/j.neuron.2007.03.007

URL : https://hal.archives-ouvertes.fr/inserm-00483533

S. I. Firth, Retinal waves: mechanisms and function in visual system development, Cell Calcium, vol.37, issue.5, pp.425-432, 2005.
DOI : 10.1016/j.ceca.2005.01.010

R. Yuste, Neuronal domains in developing neocortex, Science, vol.257, issue.5070, pp.665-669, 1992.
DOI : 10.1126/science.1496379

M. Milh, Rapid Cortical Oscillations and Early Motor Activity in Premature Human Neonate, Cerebral Cortex, vol.17, issue.7, pp.1582-1594, 2007.
DOI : 10.1093/cercor/bhl069

URL : https://hal.archives-ouvertes.fr/inserm-00483869

R. O. Wong, RETINAL WAVES AND VISUAL SYSTEM DEVELOPMENT, Annual Review of Neuroscience, vol.22, issue.1, pp.29-47, 1999.
DOI : 10.1146/annurev.neuro.22.1.29

D. A. Butts, A burst-based 'Hebbian' learning rule at retinogeniculate synapses links retinal waves to activity-dependent refinement Postnatal development of membrane excitability in taste cells of the mouse vallate papilla, PLoS Biol. J. Neurosci, vol.5, issue.22, pp.493-504, 2002.

N. Chevassus-au-louis, Neuronal migration disorders: Heterotopic neocortical neurons in CA1 provide a bridge between the hippocampus and the neocortex, Proceedings of the National Academy of Sciences, vol.95, issue.17, pp.10263-10268, 1998.
DOI : 10.1073/pnas.95.17.10263

URL : https://hal.archives-ouvertes.fr/inserm-00522445

N. Chevassus-au-louis and A. Represa, The right neuron at the wrong place: biology of heterotopic neurons in cortical neuronal migration disorders, with special reference to associated pathologies, Cellular and Molecular Life Sciences (CMLS), vol.55, issue.10, pp.1206-1215, 1999.
DOI : 10.1007/s000180050367

M. Paredes, Embryonic and early postnatal abnormalities contributing to the development of hippocampal malformations in a rodent model of dysplasia, The Journal of Comparative Neurology, vol.17, issue.1, pp.133-148, 2006.
DOI : 10.1002/cne.20871

F. J. Garcia-ladona, Ectopic granule cell layer in mouse cerebellum after methyl-azoxy-methanol (MAM) treatment, Experimental Brain Research, vol.86, issue.1, pp.90-96, 1991.
DOI : 10.1007/BF00231043

Y. Fan, Multivariate examination of brain abnormality using both structural and functional MRI, NeuroImage, vol.36, issue.4, p.1189, 2007.
DOI : 10.1016/j.neuroimage.2007.04.009

J. A. Harvey, Effects of prenatal exposure to cocaine on the developing brain: Anatomical, chemical, physiological and behavioral consequences, Neurotoxicity Research, vol.19, issue.762.9, pp.117-143, 2001.
DOI : 10.1007/BF03033234

C. T. Lee, A mechanism for the inhibition of neural progenitor cell proliferation by cocaine Reversal of neuronal migration in a mouse model of fetal alcohol syndrome by controlling second-messenger signalings, PLoS Med. J. Neurosci, vol.5, issue.26, pp.742-756, 2006.

J. B. Manent, Fetal Exposure to GABA-Acting Antiepileptic Drugs Generates Hippocampal and Cortical Dysplasias, Epilepsia, vol.305, issue.8, pp.684-693, 2007.
DOI : 10.1111/j.1528-1157.1999.tb00913.x

URL : https://hal.archives-ouvertes.fr/inserm-00384325

P. Genton, Valproic Acid in Epilepsy, Drug Safety, vol.22, issue.1, pp.1-21, 2006.
DOI : 10.2165/00002018-200629010-00001

C. Bernard, Altering cannabinoid signaling during development disrupts neuronal activity, Proceedings of the National Academy of Sciences, vol.102, issue.26, pp.9388-9393, 2005.
DOI : 10.1073/pnas.0409641102

URL : https://hal.archives-ouvertes.fr/inserm-00484366

I. M. Germano, Neuronal Migration Disorders Increase Susceptibility to Hyperthermia-Induced Seizures in Developing Rats, Epilepsia, vol.23, issue.9, pp.902-910, 1996.
DOI : 10.1016/0165-3806(85)90168-3

K. M. Jacobs, Hyperexcitability in a Model of Cortical Maldevelopment, Cerebral Cortex, vol.6, issue.3, pp.514-523, 1996.
DOI : 10.1093/cercor/6.3.514

N. Chevassus-au-louis, Decreased seizure threshold and more rapid rate of kindling in rats with cortical malformation induced by prenatal treatment with methylazoxymethanol., Brain Research, vol.812, issue.1-2, pp.252-255, 1998.
DOI : 10.1016/S0006-8993(98)00932-9

URL : https://hal.archives-ouvertes.fr/inserm-00487297

R. Cagiano, Neurofunctional effects in rats prenatally exposed to fluoxetine, Eur. Rev. Med. Pharmacol. Sci, vol.12, pp.137-148, 2008.

Y. Ben-ari, Limbic seizure and brain damage produced by kainic acid: Mechanisms and relevance to human temporal lobe epilepsy, Neuroscience, vol.14, issue.2, pp.375-403, 1985.
DOI : 10.1016/0306-4522(85)90299-4

L. Velisek and S. L. Moshe, Effects of brief seizures during development, Prog. Brain Res, vol.135, pp.355-364, 2002.
DOI : 10.1016/S0079-6123(02)35032-5

N. F. Santos, Multiple Pilocarpine-Induced Status Epilepticus in Developing Rats: A Long-Term Behavioral and Electrophysiological Study, Epilepsia, vol.17, issue.s6, pp.57-63, 2000.
DOI : 10.1016/0959-4388(93)90138-O

F. E. Dudek and T. P. Sutula, Epileptogenesis in the dentate gyrus: a critical perspective, Prog. Brain Res, vol.163, pp.755-773, 2007.
DOI : 10.1016/S0079-6123(07)63041-6

Y. Ben-ari and R. Cossart, Kainate, a double agent that generates seizures: two decades of progress, Trends in Neurosciences, vol.23, issue.11, pp.580-587, 2000.
DOI : 10.1016/S0166-2236(00)01659-3

URL : https://hal.archives-ouvertes.fr/inserm-00485223

W. A. Hauser, Epidemiology of epilepsy in children, Cleveland Clinic Journal of Medicine, vol.56, issue.Supplement, pp.419-429, 1995.
DOI : 10.3949/ccjm.56.s1.185

L. D. Cowan, The epidemiology of the epilepsies in children, Mental Retardation and Developmental Disabilities Research Reviews, vol.4, issue.3, pp.171-181, 2002.
DOI : 10.1002/mrdd.10035

L. Nitecka, Maturation of kainic acid seizure-brain damage syndrome in the rat. II. Histopathological sequelae, Neuroscience, vol.13, issue.4, pp.1073-1094, 1984.
DOI : 10.1016/0306-4522(84)90289-6

B. J. Cornejo, A single episode of neonatal seizures permanently alters glutamatergic synapses, Annals of Neurology, vol.993, issue.1, pp.411-426, 2007.
DOI : 10.1002/ana.21071

N. Villeneuve, Neonatal seizures induced persistent changes in intrinsic properties of CA1 rat hippocampal cells, Annals of Neurology, vol.78, issue.6, pp.729-738, 2000.
DOI : 10.1002/1531-8249(200006)47:6<729::AID-ANA5>3.0.CO;2-C

URL : https://hal.archives-ouvertes.fr/inserm-00485225

A. V. Silva, Neocortical and Hippocampal Changes after Multiple Pilocarpine-induced Status Epilepticus in Rats, Epilepsia, vol.88, issue.6, pp.636-642, 2005.
DOI : 10.1016/S0920-1211(96)00049-6

K. Z. Haas, Resistance of immature hippocampus to morphologic and physiologic alterations following status epilepticus or kindling, Hippocampus, vol.64, issue.6, pp.615-625, 2001.
DOI : 10.1002/hipo.1076

M. Lynch, Long-term consequences of early postnatal seizures on hippocampal learning and plasticity, European Journal of Neuroscience, vol.386, issue.7, pp.2252-2264, 2000.
DOI : 10.1046/j.1460-9568.1999.00768.x

Y. Ben-ari and G. L. Holmes, Effects of seizures on developmental processes in the immature brain, The Lancet Neurology, vol.5, issue.12, pp.1055-1063, 2006.
DOI : 10.1016/S1474-4422(06)70626-3

URL : https://hal.archives-ouvertes.fr/inserm-00483898

C. M. Dube, Fever, febrile seizures and epilepsy, Trends in Neurosciences, vol.30, issue.10, pp.490-496, 2007.
DOI : 10.1016/j.tins.2007.07.006

R. Guerrini, Abnormal development of the human cerebral cortex: genetics, functional consequences and treatment options, Trends in Neurosciences, vol.31, issue.3, pp.154-162, 2008.
DOI : 10.1016/j.tins.2007.12.004

A. J. Barkovich, A developmental and genetic classification for malformations of cortical development, Neurology, vol.65, issue.12, pp.1873-1887, 2005.
DOI : 10.1212/01.wnl.0000183747.05269.2d

V. Des-portes, A Novel CNS Gene Required for Neuronal Migration and Involved in X-Linked Subcortical Laminar Heterotopia and Lissencephaly Syndrome, Cell, vol.92, issue.1, pp.51-61, 1998.
DOI : 10.1016/S0092-8674(00)80898-3

J. Chelly, Genetics and pathophysiology of mental retardation, European Journal of Human Genetics, vol.13, issue.6, pp.701-713, 2006.
DOI : 10.1016/j.neuron.2005.01.038

J. L. Gaiarsa, Plasticity of GABAergic synapses in the neonatal rat hippocampus, Journal of Cellular and Molecular Medicine, vol.24, issue.1, pp.31-37, 2004.
DOI : 10.1046/j.1460-9568.2002.02259.x

URL : https://hal.archives-ouvertes.fr/inserm-00484654

C. C. Lien, Visual stimuli???induced LTD of GABAergic synapses mediated by presynaptic NMDA receptors, Nature Neuroscience, vol.12, issue.3, pp.372-380, 2006.
DOI : 10.1038/nn1649

F. Zalfa, A new function for the fragile X mental retardation protein in regulation of PSD-95 mRNA stability, Nature Neuroscience, vol.165, issue.5, pp.578-587, 2007.
DOI : 10.1016/j.schres.2005.07.003

G. Dolen, Correction of Fragile X Syndrome in Mice, Neuron, vol.56, issue.6, pp.955-962, 2007.
DOI : 10.1016/j.neuron.2007.12.001

T. A. Weissman, Calcium Waves Propagate through Radial Glial Cells and Modulate Proliferation in the Developing Neocortex, Neuron, vol.43, issue.5, pp.647-661, 2004.
DOI : 10.1016/j.neuron.2004.08.015

A. C. Flint, Endogenous activation of metabotropic glutamate receptors in neocortical development causes neuronal calcium oscillations, Proceedings of the National Academy of Sciences, vol.96, issue.21, pp.12144-12149, 1999.
DOI : 10.1073/pnas.96.21.12144

C. Bagni and W. T. Greenough, From mRNP trafficking to spine dysmorphogenesis: the roots of fragile X syndrome, Nature Reviews Neuroscience, vol.384, issue.5, pp.376-387, 2005.
DOI : 10.1093/hmg/8.13.2557

D. Centonze, Abnormal Striatal GABA Transmission in the Mouse Model for the Fragile X Syndrome, Biological Psychiatry, vol.63, issue.10, pp.963-973, 2008.
DOI : 10.1016/j.biopsych.2007.09.008

M. Chahrour, MeCP2, a Key Contributor to Neurological Disease, Activates and Represses Transcription, Science, vol.320, issue.5880, p.1224, 2008.
DOI : 10.1126/science.1153252

T. Saito and N. Nakatsuji, Efficient Gene Transfer into the Embryonic Mouse Brain Using in Vivo Electroporation, Developmental Biology, vol.240, issue.1, pp.237-246, 2001.
DOI : 10.1006/dbio.2001.0439

J. Bai, RNAi reveals doublecortin is required for radial migration in rat neocortex, Nature Neuroscience, vol.6, issue.12, pp.1277-1283, 2003.
DOI : 10.1038/nn1153

R. J. Leventer, LIS1: from cortical malformation to essential protein of cellular dynamics, Trends in Neurosciences, vol.24, issue.9, pp.489-492, 2001.
DOI : 10.1016/S0166-2236(00)01887-7

T. A. Deuel, Genetic Interactions between Doublecortin and Doublecortin-like Kinase in Neuronal Migration and Axon Outgrowth, Neuron, vol.49, issue.1, pp.41-53, 2006.
DOI : 10.1016/j.neuron.2005.10.038

F. Francis, Doublecortin Is a Developmentally Regulated, Microtubule-Associated Protein Expressed in Migrating and Differentiating Neurons, Neuron, vol.23, issue.2, pp.247-256, 1999.
DOI : 10.1016/S0896-6273(00)80777-1

J. C. Corbo, Doublecortin is required in mice for lamination of the hippocampus but not the neocortex, J. Neurosci, vol.22, pp.7548-7557, 2002.

M. Nosten-bertrand, Epilepsy in Dcx Knockout Mice Associated with Discrete Lamination Defects and Enhanced Excitability in the Hippocampus, e2473 114 Galaburda, A.M. (2005) Dyslexia?a molecular disorder of neuronal migration: the 2004 Norman Geschwind Memorial Lecture, pp.151-165, 2008.
DOI : 10.1371/journal.pone.0002473.s006

URL : https://hal.archives-ouvertes.fr/inserm-00378410

A. M. Galaburda, From genes to behavior in developmental dyslexia, Nature Neuroscience, vol.871, issue.10, pp.1213-1217, 2006.
DOI : 10.1038/nn1772

URL : https://hal.archives-ouvertes.fr/hal-00260019

A. M. Galaburda, Neuroanatomic basis of developmental dyslexia, Neurol. Clin, vol.11, pp.161-173, 1993.

T. J. Burbridge, Postnatal analysis of the effect of embryonic knockdown and overexpression of candidate dyslexia susceptibility gene homolog Dcdc2 in the rat, Neuroscience, vol.152, issue.3, pp.723-733, 2008.
DOI : 10.1016/j.neuroscience.2008.01.020

S. Paracchini, The chromosome 6p22 haplotype associated with dyslexia reduces the expression of KIAA0319, a novel gene involved in neuronal migration, Human Molecular Genetics, vol.15, issue.10, pp.1659-1666, 2006.
DOI : 10.1093/hmg/ddl089

S. W. Threlkeld, Developmental disruptions and behavioral impairments in rats following in utero RNAi of Dyx1c1, Brain Research Bulletin, vol.71, issue.5, pp.508-514, 2007.
DOI : 10.1016/j.brainresbull.2006.11.005

H. Meng, From The Cover: DCDC2 is associated with reading disability and modulates neuronal development in the brain, Proceedings of the National Academy of Sciences, vol.102, issue.47, pp.17053-17058, 2005.
DOI : 10.1073/pnas.0508591102

I. Khalilov, In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures, Nature Neuroscience, vol.6, issue.10, pp.1079-1085, 2003.
DOI : 10.1038/nn1125

URL : https://hal.archives-ouvertes.fr/inserm-00484787

D. H. Geschwind, Dementia and neurodevelopmental predisposition: Cognitive dysfunction in presymptomatic subjects precedes dementia by decades in frontotemporal dementia, Annals of Neurology, vol.6, issue.6, pp.741-746, 2001.
DOI : 10.1002/ana.10024

D. H. Geschwind and B. L. Miller, Molecular approaches to cerebral laterality: Development and neurodegeneration, American Journal of Medical Genetics, vol.124, issue.4, pp.370-381, 2001.
DOI : 10.1002/1096-8628(20010715)101:4<370::AID-AJMG1223>3.0.CO;2-G

R. Kittappa, The foxa2 gene controls the birth and spontaneous degeneration of dopamine neurons in old age Morphology of the cerebral cortex in preclinical Huntington's disease, PLoS Biol. Am. J. Psychiatry, vol.5, issue.164, pp.1428-1434, 2007.

J. S. Paulsen, Brain Structure in Preclinical Huntington???s Disease, Biological Psychiatry, vol.59, issue.1, pp.57-63, 2006.
DOI : 10.1016/j.biopsych.2005.06.003

A. J. Milnerwood, R. , and L. A. , Corticostriatal synaptic function in mouse models of Huntington's disease: early effects of huntingtin repeat length and protein load, The Journal of Physiology, vol.45, issue.3, pp.817-831, 2007.
DOI : 10.1113/jphysiol.2007.142448

N. Brouwers, Molecular genetics of Alzheimer's disease: An update, Annals of Medicine, vol.314, issue.1, 2008.
DOI : 10.1074/jbc.271.8.4436

T. L. Young-pearse, A Critical Function for -Amyloid Precursor Protein in Neuronal Migration Revealed by In Utero RNA Interference, Journal of Neuroscience, vol.27, issue.52, pp.14459-14469, 2007.
DOI : 10.1523/JNEUROSCI.4701-07.2007

R. Roncarati, The ??-secretase-generated intracellular domain of ??-amyloid precursor protein binds Numb and inhibits Notch signaling, Proceedings of the National Academy of Sciences, vol.99, issue.10, pp.7102-7107, 2002.
DOI : 10.1073/pnas.102192599

B. Dubois, Research criteria for the diagnosis of Alzheimer's disease: revising the NINCDS???ADRDA criteria, The Lancet Neurology, vol.6, issue.8, pp.734-746, 2007.
DOI : 10.1016/S1474-4422(07)70178-3

P. Roll, SRPX2 mutations in disorders of language cortex and cognition, Human Molecular Genetics, vol.15, issue.7, pp.1195-1207, 2006.
DOI : 10.1093/hmg/ddl035

URL : https://hal.archives-ouvertes.fr/hal-00089725

B. Royer, Molecular evolution of the human SRPX2 gene that causes brain disorders of the Rolandic and Sylvian speech areas, BMC Genetics, vol.8, issue.1, p.72, 2007.
DOI : 10.1186/1471-2156-8-72

R. Vigot, Differential Compartmentalization and Distinct Functions of GABAB Receptor Variants, Neuron, vol.50, issue.4, pp.589-601, 2006.
DOI : 10.1016/j.neuron.2006.04.014

URL : https://hal.archives-ouvertes.fr/hal-00413775

P. Szepetowski, Familial Infantile Convulsions and Paroxysmal Choreoathetosis: A New Neurological Syndrome Linked to the Pericentromeric Region of Human Chromosome 16, The American Journal of Human Genetics, vol.61, issue.4, pp.889-898, 1997.
DOI : 10.1086/514877

C. Zucca, Retrospective diagnosis of congenital cytomegalovirus infection and cortical maldevelopment, Neurology, vol.61, issue.5, pp.710-712, 2003.
DOI : 10.1212/WNL.61.5.710

Y. J. Crow and J. H. Livingston, Aicardi-Gouti??res syndrome: an important Mendelian mimic of congenital infection, Developmental Medicine & Child Neurology, vol.44, issue.Suppl. 1, pp.410-416, 2008.
DOI : 10.1111/j.1469-8749.2008.02062.x

J. B. Stephenson, Aicardi???Gouti??res syndrome (AGS), European Journal of Paediatric Neurology, vol.12, issue.5, pp.355-358, 2008.
DOI : 10.1016/j.ejpn.2007.11.010

S. W. Flavell and M. E. Greenberg, Signaling Mechanisms Linking Neuronal Activity to Gene Expression and Plasticity of the Nervous System, Annual Review of Neuroscience, vol.31, issue.1, pp.563-590, 2008.
DOI : 10.1146/annurev.neuro.31.060407.125631

J. A. Kovelman and A. B. Scheibel, Biological substrates of schizophrenia, Acta Neurologica Scandinavica, vol.46, issue.3, pp.1-32, 1986.
DOI : 10.1111/j.1600-0404.1986.tb03237.x

M. Cannon, Obstetric Complications and Schizophrenia: Historical and Meta-Analytic Review, American Journal of Psychiatry, vol.159, issue.7, pp.1080-1092, 2002.
DOI : 10.1176/appi.ajp.159.7.1080

URL : http://doi.org/10.1176/appi.ajp.159.7.1080

D. I. Phillips, Programming of the stress response: a fundamental mechanism underlying the long-term effects of the fetal environment?, Journal of Internal Medicine, vol.14, issue.5, pp.453-460, 2007.
DOI : 10.1002/ajhb.20096

B. S. Mcewen, Early life influences on life-long patterns of behavior and health, Mental Retardation and Developmental Disabilities Research Reviews, vol.56, issue.3, p.149, 2003.
DOI : 10.1002/mrdd.10074

M. Gunnar and K. Quevedo, The Neurobiology of Stress and Development, Annual Review of Psychology, vol.58, issue.1, pp.145-173, 2007.
DOI : 10.1146/annurev.psych.58.110405.085605

E. R. Kloet, Stress and the brain: from adaptation to disease, Nature Reviews Neuroscience, vol.28, issue.6, pp.463-475, 2005.
DOI : 10.1210/er.2002-0006

I. Cohen, On the Origin of Interictal Activity in Human Temporal Lobe Epilepsy in Vitro, Science, vol.298, issue.5597, pp.1418-1421, 2002.
DOI : 10.1126/science.1076510

I. Khalilov, Epileptogenic Actions of GABA and Fast Oscillations in the Developing Hippocampus, Neuron, vol.48, issue.5, p.787, 2005.
DOI : 10.1016/j.neuron.2005.09.026

URL : https://hal.archives-ouvertes.fr/inserm-00484426

C. Rivera, The K + /Cl À co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation, Nature, vol.397, pp.251-255, 1999.

V. I. Dzhala, NKCC1 transporter facilitates seizures in the developing brain, Nature Medicine, vol.94, issue.11, pp.1205-1213, 2005.
DOI : 10.1007/s004410051013

B. B. Pond, The Chloride Transporter Na+-K+-Cl- Cotransporter Isoform-1 Contributes to Intracellular Chloride Increases after In Vitro Ischemia, Journal of Neuroscience, vol.26, issue.5, pp.1396-1406, 2006.
DOI : 10.1523/JNEUROSCI.1421-05.2006

J. Epsztein, Ongoing Epileptiform Activity in the Post-Ischemic Hippocampus Is Associated with a Permanent Shift of the Excitatory-Inhibitory Synaptic Balance in CA3 Pyramidal Neurons, Journal of Neuroscience, vol.26, issue.26, pp.7082-7092, 2006.
DOI : 10.1523/JNEUROSCI.1666-06.2006

URL : https://hal.archives-ouvertes.fr/inserm-00484241

J. A. Coull, Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain, Nature, vol.424, issue.6951, pp.938-942, 2003.
DOI : 10.1038/nature01868

A. J. Barkovich, Classification system for malformations of cortical development: Update 2001, Neurology, vol.57, issue.12, pp.2168-2178, 2001.
DOI : 10.1212/WNL.57.12.2168

F. Chassoux, Stereoelectroencephalography in focal cortical dysplasia: A 3D approach to delineating the dysplastic cortex, Brain, vol.123, issue.8, pp.1733-1751, 2000.
DOI : 10.1093/brain/123.8.1733

A. Palmini, Intrinsic epileptogenicity of human dysplastic cortex as suggested by corticography and surgical results, Annals of Neurology, vol.34, issue.4, pp.476-487, 1995.
DOI : 10.1002/ana.410370410

O. Delalande, VERTICAL PARASAGITTAL HEMISPHEROTOMY, Operative Neurosurgery, vol.60, pp.19-32, 2007.
DOI : 10.1227/01.NEU.0000249246.48299.12

B. E. Porter, Dysplasia, Neurology, vol.61, issue.3, pp.365-368, 2003.
DOI : 10.1212/01.WNL.0000076487.28227.6E

L. Tyvaert, Different structures involved during ictal and interictal epileptic activity in malformations of cortical development: an EEG-fMRI study, Brain, vol.131, issue.8, pp.2042-2060, 2008.
DOI : 10.1093/brain/awn145

URL : https://hal.archives-ouvertes.fr/hal-01246787