T. Freund and G. Buzsaki, Interneurons of the hippocampus, Hippocampus, vol.495, issue.1, pp.345-470, 1996.
DOI : 10.1002/(SICI)1098-1063(1996)6:4<347::AID-HIPO1>3.0.CO;2-I

URL : https://hal.archives-ouvertes.fr/inserm-00484796

A. Ylinen, A. Bragin, and Z. Nadasdy, Sharp wave associated high-frequency oscillation (200Hz) in the intact hippocampus: network and intracellular mechanisms, J Neurosci, vol.15, pp.30-46, 1995.

G. Buzsaki, Rhythms of the Brain, 2006.
DOI : 10.1093/acprof:oso/9780195301069.001.0001

R. Khazipov, A. Sirota, X. Leinekugel, G. Holmes, B. Ari et al., Early motor activity drives spindle bursts in the developing somatosensory cortex, Nature, vol.15, issue.7018, pp.758-761, 2004.
DOI : 10.1007/s00424-002-0831-z

URL : https://hal.archives-ouvertes.fr/inserm-00484640

X. Leinekugel, R. Khazipov, R. Cannon, H. Hirase, B. Ari et al., Correlated Bursts of Activity in the Neonatal Hippocampus in Vivo, Science, vol.296, issue.5575, pp.2049-2052, 2002.
DOI : 10.1126/science.1071111

M. Bartos, I. Vida, and M. Frotscher, Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks, Proceedings of the National Academy of Sciences, vol.99, issue.20, pp.13222-13227, 2002.
DOI : 10.1073/pnas.192233099

P. Fuentealba and M. Steriade, The reticular nucleus revisited: Intrinsic and network properties of a thalamic pacemaker, Progress in Neurobiology, vol.75, issue.2, pp.125-141, 2005.
DOI : 10.1016/j.pneurobio.2005.01.002

A. Destexhe, D. Contreras, and M. Steriade, Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells, J Neurophysiol, vol.79, pp.999-1016, 1998.

M. Cunningham, M. Whittington, and A. Bibbig, A role for fast rhythmic bursting neurons in cortical gamma oscillations in vitro, Proceedings of the National Academy of Sciences, vol.101, issue.18, pp.7152-7157, 2004.
DOI : 10.1073/pnas.0402060101

Y. Isomura, A. Sirota, and S. Ozen, Integration and Segregation of Activity in Entorhinal-Hippocampal Subregions by Neocortical Slow Oscillations, Neuron, vol.52, issue.5, pp.871-882, 2006.
DOI : 10.1016/j.neuron.2006.10.023

T. Bliss, B. Lancaster, and H. Wheal, Long-term potentiation in commissural and Schaffer projections to hippocampal CA1 cells: an in vivo study in the rat., The Journal of Physiology, vol.341, issue.1, pp.617-626, 1983.
DOI : 10.1113/jphysiol.1983.sp014828

T. Bliss and G. Collingridge, A synaptic model of memory: long-term potentiation in the hippocampus, Nature, vol.361, issue.6407, pp.31-39, 1993.
DOI : 10.1038/361031a0

R. Malenka, J. Kauer, R. Zucker, and R. Nicoll, Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission, Science, vol.242, issue.4875, pp.81-84, 1988.
DOI : 10.1126/science.2845577

R. Nicoll and R. Malenka, Expression Mechanisms Underlying NMDA Receptor-Dependent Long-Term Potentiation, Annals of the New York Academy of Sciences, vol.92, issue.1 MOLECULAR AND, pp.515-525, 1999.
DOI : 10.1126/science.274.5289.972

E. Lothman, E. Bertram, and I. , Epileptogenic Effects of Status Epilepticus, Epilepsia, vol.248, issue.s1, pp.59-70, 1993.
DOI : 10.1016/0006-8993(83)91098-3

B. Ari and Y. , Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy, Neuroscience, vol.14, pp.375-403, 1985.

B. Ari, Y. Cossart, and R. , Kainate, a double agent that generates seizures: two decades of progress, Trends Neurosci, vol.23, pp.580-587, 2000.
URL : https://hal.archives-ouvertes.fr/inserm-00485223

B. Ari, Y. Holmes, and G. , Effects of seizures on developmental processes in the immature brain, Lancet Neurol, vol.5, pp.1055-1063, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00483898

A. Represa, E. Tremblay, and Y. Ben-ari, Kainate binding sites in the hippocampal mossy fibers: Localization and plasticity, Neuroscience, vol.20, issue.3, pp.739-748, 1987.
DOI : 10.1016/0306-4522(87)90237-5

Y. Ben-ari and M. Gho, Long-lasting modification of the synaptic properties of rat CA3 hippocampal neurones induced by kainic acid., The Journal of Physiology, vol.404, issue.1, pp.365-384, 1988.
DOI : 10.1113/jphysiol.1988.sp017294

L. Nowak, P. Bregestovski, P. Ascher, A. Herbet, and A. Prochiantz, Magnesium gates glutamate-activated channels in mouse central neurones, Nature, vol.396, issue.5950, pp.462-465, 1984.
DOI : 10.1038/307462a0

R. Malenka, Synaptic plasticity in the hippocampus: LTP and LTD, Cell, vol.78, issue.4, pp.535-538, 1994.
DOI : 10.1016/0092-8674(94)90517-7

L. Aniksztejn and Y. Ben-ari, Expression of LTP by AMPA and/or NMDA receptors is determined by the extent of NMDA receptors activation during the tetanus, J Neurophysiol, vol.74, pp.2349-2357, 1995.

Y. Ben-ari and L. Aniksztejn, A united theory for the multiple forms of LTP?, Trends in Neurosciences, vol.18, issue.12, pp.519-520, 1995.
DOI : 10.1016/0166-2236(95)98371-5

V. Crepel, C. Hammond, P. Chinestra, D. Diabira, and Y. Ben-ari, A selective LTP of NMDA receptor-mediated currents induced by anoxia in CA1 hippocampal neurons, J Neurophysiol, vol.70, pp.2045-2055, 1993.

V. Crepel, P. Congar, L. Aniksztejn, H. Gozlan, C. Hammond et al., Chapter 18 Synaptic plasticity in ischemia: Role of NMDA receptors, Prog Brain Res, vol.116, pp.273-85273, 1998.
DOI : 10.1016/S0079-6123(08)60443-4

Y. Ben-ari, Limbic seizure and brain damage produced by kainic acid: Mechanisms and relevance to human temporal lobe epilepsy, Neuroscience, vol.14, issue.2, pp.375-403, 1985.
DOI : 10.1016/0306-4522(85)90299-4

J. Lerma, M. Morales, M. Vicente, and O. Herreras, Glutamate receptors of the kainate type and synaptic transmission, Trends in Neurosciences, vol.20, issue.1, pp.9-12, 1997.
DOI : 10.1016/S0166-2236(96)20055-4

R. Cossart, J. Epsztein, and R. Tyzio, Quantal Release of Glutamate Generates Pure Kainate and Mixed AMPA/Kainate EPSCs in Hippocampal Neurons, Neuron, vol.35, issue.1, pp.147-159, 2002.
DOI : 10.1016/S0896-6273(02)00753-5

URL : https://hal.archives-ouvertes.fr/inserm-00484870

P. Castillo, R. Malenka, and R. Nicoll, Kainate receptors mediate a slow postsynaptic current in hippocampal CA3 neurons, Nature, vol.388, pp.182-186, 1997.

R. Cossart, M. Esclapez, J. Hirsch, C. Bernard, and Y. Ben-ari, Activation of GluR5 receptors in interneurons increases tonic GABAergic inhibition of pyramidal neurons, Nature Neuroscience, vol.1, issue.6, pp.470-478, 1998.
DOI : 10.1038/2185

F. Coussen and C. Mulle, Kainate receptor-interacting proteins and membrane trafficking, Biochemical Society Transactions, vol.34, issue.5, pp.927-930, 2006.
DOI : 10.1042/BST0340927

M. Hollmann, O. Shea-greenfield, A. Rogers, S. Heinemann, and S. , Cloning by functional expression of a member of the glutamate receptor family, Nature, vol.342, issue.6250, pp.643-648, 1989.
DOI : 10.1038/342643a0

B. Bettler, J. Egebjerg, and G. Sharma, Cloning of a putative glutamate receptor: A low affinity kainate-binding subunit, Neuron, vol.8, issue.2, pp.257-265, 1992.
DOI : 10.1016/0896-6273(92)90292-L

C. Mulle, A. Sailer, I. Perez-otano, and H. Dickinson-anson, Altered synaptic physiology and reduced susceptibility to kainate-induced seizures in GluR6-deficient mice, Nature, vol.392, pp.601-605, 1998.

J. Gaïarsa, L. Zagrean, and Y. Ben-ari, Neonatal irradiation prevents the formation of hippocampal mossy fibers and the epileptic action of kainate on rat CA3 pyramidal neurons, J Neurophysiol, vol.71, 1994.

R. Cossart, M. Esclapez, J. Hirsch, C. Bernard, B. Ari et al., GluR5 kainate receptor activation in interneurons increases tonic inhibition of pyramidal cells, Nature Neuroscience, vol.1, issue.6, pp.470-478, 1998.
DOI : 10.1038/2185

URL : https://hal.archives-ouvertes.fr/inserm-00487305

I. Khalilov, J. Hirsch, R. Cossart, B. Ari, and Y. , Paradoxical anti-epileptic effects of a GluR5 agonist of kainate receptors, J Neurophysiol, vol.88, pp.523-527, 2002.
URL : https://hal.archives-ouvertes.fr/inserm-00484867

E. Lothman, E. Bertram, and J. Stringer, Functional anatomy of hippocampal seizures, Progress in Neurobiology, vol.37, issue.1, pp.1-82, 1991.
DOI : 10.1016/0301-0082(91)90011-O

Y. Ben-ari, E. Tremblay, O. Ottersen, and B. Meldrum, The role of epileptic activity in hippocampal and ???remote??? cerebral lesions induced by kainic acid, Brain Research, vol.191, issue.1, pp.79-97, 1980.
DOI : 10.1016/0006-8993(80)90316-9

J. Nadler, B. Perry, and C. Cotman, Selective reinnervation of hippocampal area CA1 and the fascia dentata after destruction of CA3-CA4 afferents with kainic acid, Brain Research, vol.182, issue.1, pp.1-9, 1980.
DOI : 10.1016/0006-8993(80)90825-2

J. Nadler and . Minireview, Kainic acid as a tool for the study of temporal lobe epilepsy, Life Sciences, vol.29, issue.20, pp.2031-2042, 1981.
DOI : 10.1016/0024-3205(81)90659-7

E. Lothman, Basic mechanisms of the epilepsies, Curr Opin Neurol Neurosurg, vol.5, pp.216-223, 1992.

M. Esclapez, J. Hirsch, B. Ari, Y. Bernard, and C. , Newly formed excitatory pathways provide a substrate for hyperexcitability in experimental temporal lobe epilepsy, The Journal of Comparative Neurology, vol.851, issue.4, pp.449-460, 1999.
DOI : 10.1002/(SICI)1096-9861(19990614)408:4<449::AID-CNE1>3.0.CO;2-R

A. Represa, H. Pollard, J. Moreau, G. Ghilini, M. Khrestchatisky et al., Mossy fiber sprouting in epileptic rats is associated with a transient increased expression of ??-tubulin, Neuroscience Letters, vol.156, issue.1-2, pp.149-152, 1993.
DOI : 10.1016/0304-3940(93)90460-3

A. Represa, E. Tremblay, and Y. Ben-ari, Sprouting of Mossy Fibers in the Hippocampus of Epileptic Human and Rat, Adv Exp Med Biol, vol.268, pp.419-24419, 1990.
DOI : 10.1007/978-1-4684-5769-8_46

A. Represa, I. Jorquera, L. Gal-la-salle, G. Ben-ari, and Y. , Epilepsy induced collateral sprouting of hippocampal mossy fibers: Does it induce the development of ectopic synapses with granule cell dendrites?, Hippocampus, vol.5, issue.3, pp.257-268, 1993.
DOI : 10.1002/hipo.450030303

E. Nedivi, D. Hevroni, D. Naot, D. Israeli, and Y. Citri, Numerous candidate plasticity-related genes revealed by differential cDNA cloning, Nature, vol.363, issue.6431, pp.718-722, 1993.
DOI : 10.1038/363718a0

H. Pollard, K. Bugra, M. Khrestchatisky, A. Represa, and Y. Ben-ari, Seizureinduced molecular changes, sprouting and synaptogenesis of hippocampal mossy fibers, Epilepsy Res, vol.12, pp.355-363, 1996.

Y. Ben-ari and A. Represa, Brief seizure episodes induce long-term potentiation and mossy fibre sprouting in the hippocampus, Trends in Neurosciences, vol.13, issue.8, pp.312-318, 1990.
DOI : 10.1016/0166-2236(90)90135-W

M. Khrestchatisky, L. Ferhat, and G. Charton, Molecular correlates between reactive and developmental plasticity in the rat hippocampus, Journal of Neurobiology, vol.9, issue.3, pp.426-436, 1995.
DOI : 10.1002/neu.480260314

C. Bernard, R. Cossart, J. Hirsch, M. Esclapez, and Y. Ben-ari, What is GABAergic Inhibition? How Is it Modified in Epilepsy?, Epilepsia, vol.79, issue.s6, pp.90-95, 2000.
DOI : 10.1016/S0006-8993(98)00922-6

J. Epsztein, M. Milh, and R. Bihi, Ongoing Epileptiform Activity in the Post-Ischemic Hippocampus Is Associated with a Permanent Shift of the Excitatory-Inhibitory Synaptic Balance in CA3 Pyramidal Neurons, Journal of Neuroscience, vol.26, issue.26, pp.7082-7092, 2006.
DOI : 10.1523/JNEUROSCI.1666-06.2006

URL : https://hal.archives-ouvertes.fr/inserm-00484241

J. Kapur, H. Michelson, G. Buterbaugh, and E. Lothman, Evidence for a chronic loss of inhibition in the hippocampus after kindling: electrophysiological studies, Epilepsy Research, vol.4, issue.2, pp.90-99, 1989.
DOI : 10.1016/0920-1211(89)90013-2

I. Mody, T. Otis, K. Staley, and G. Kohr, The balance between excitation and inhibition in dentate granule cells and its role in epilepsy, Epilepsy Res Suppl, vol.9, pp.331-339, 1992.

J. Hirsch, C. Agassandian, and A. Merchan-pérez, Deficit in quantal release of GABA in experimental models of temporal lobe epilepsy, Nat Neurosci, vol.2, pp.499-500, 1999.
URL : https://hal.archives-ouvertes.fr/inserm-00486214

R. Cossart, C. Denocourt, J. Hirsch, and A. Merchan-perez, Dendritic but not somatic GABAergic inhibition is decreased in experimental epilepsy, Nat Neurosci, vol.4, pp.52-62, 2001.
URL : https://hal.archives-ouvertes.fr/inserm-00484880

R. Miles, K. Toth, A. Gulyas, N. Hajos, and T. Freund, Differences between Somatic and Dendritic Inhibition in the Hippocampus, Neuron, vol.16, issue.4, pp.815-823, 1996.
DOI : 10.1016/S0896-6273(00)80101-4

J. Epsztein, A. Represa, I. Jorquera, B. Ari, Y. Crepel et al., Recurrent Mossy Fibers Establish Aberrant Kainate Receptor-Operated Synapses on Granule Cells from Epileptic Rats, Journal of Neuroscience, vol.25, issue.36, pp.8229-8239, 2005.
DOI : 10.1523/JNEUROSCI.1469-05.2005

URL : https://hal.archives-ouvertes.fr/inserm-00484549

I. Cohen, V. Navarro, S. Clemenceau, M. Baulac, and R. Miles, On the Origin of Interictal Activity in Human Temporal Lobe Epilepsy in Vitro, Science, vol.298, issue.5597, p.1418, 2002.
DOI : 10.1126/science.1076510

Y. Benari, E. Cherubini, R. Corradetti, and J. Gaiarsa, Giant synaptic potentials in immature rat CA3 hippocampal neurones., The Journal of Physiology, vol.416, issue.1, pp.303-325, 1989.
DOI : 10.1113/jphysiol.1989.sp017762

B. Ari, Y. , B. Ari, and Y. , Excitatory actions of GABA during development: The nature of the nurture Trophic actions of GABA on neuronal development, Nat Rev Neurosci. Trends Neurosci, vol.328, pp.728-739278, 2002.

C. Rivera, J. Voipio, and J. Payne, The K+/Cl-co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation, Nature, vol.397, pp.251-255, 1999.

C. Rivera, J. Voipio, and J. Thomas-crusells, Mechanism of Activity-Dependent Downregulation of the Neuron-Specific K-Cl Cotransporter KCC2, Journal of Neuroscience, vol.24, issue.19, pp.4683-4691, 2004.
DOI : 10.1523/JNEUROSCI.5265-03.2004

H. Fiumelli, L. Cancedda, and M. Poo, Modulation of GABAergic Transmission by Activity via Postsynaptic Ca2+-Dependent Regulation of KCC2 Function, Neuron, vol.48, issue.5, pp.773-786, 2005.
DOI : 10.1016/j.neuron.2005.10.025

P. Congar, J. Gaiarsa, T. Popovici, B. Ari, Y. Crepel et al., Permanent reduction of seizure threshold in post-ischemic CA3 pyramidal neurons, J Neurophysiol, vol.83, pp.2040-2046, 2000.
URL : https://hal.archives-ouvertes.fr/inserm-00485226

M. Lossius, O. Ronning, G. Slapo, P. Mowinckel, and L. Gjerstad, Poststroke Epilepsy: Occurrence and Predictors-A Long-term Prospective Controlled Study (Akershus Stroke Study), Epilepsia, vol.33, issue.8, pp.1246-1251, 2005.
DOI : 10.1111/j.1600-0404.2004.00273.x

L. Cocito, E. Favale, and L. Reni, Epileptic seizures in cerebral arterial occlusive disease, Stroke, vol.13, issue.2, pp.189-195, 1982.
DOI : 10.1161/01.STR.13.2.189

W. Pulsinelli, Selective Neuronal Vulnerability: Morphological and Molecular Characteristics, Prog Brain Res, vol.63, pp.29-37, 1985.
DOI : 10.1016/S0079-6123(08)61973-1

R. Schmidt-kastner and T. Freund, Selective vulnerability of the hippocampus in brain ischemia, Neuroscience, vol.40, issue.3, pp.599-636, 1991.
DOI : 10.1016/0306-4522(91)90001-5

T. Shatskikh, M. Raghavendra, Q. Zhao, Z. Cui, and G. Holmes, Electrical induction of spikes in the hippocampus impairs recognition capacity and spatial memory in rats, Epilepsy & Behavior, vol.9, issue.4, pp.549-556, 2006.
DOI : 10.1016/j.yebeh.2006.08.014

E. Cherubini, Y. Ben-ari, and K. Krnjevic, Anoxia produces smaller changes in synaptic transmission, membrane potential, and input resistance in immature rat hippocampus, J Neurophysiol, vol.62, pp.882-895, 1989.

V. Crepel, K. Krnjevic, and Y. Ben-ari, Developmental and regional differences in the vulnerability of rat hippocampal slices to lack of glucose, Neuroscience, vol.47, issue.3, pp.579-587, 1992.
DOI : 10.1016/0306-4522(92)90167-Z

N. Villeneuve, Y. Ben-ari, G. Holmes, and J. Gaïarsa, Neonatal seizures induced persistent changes in intrinsic properties of CA1 rat hippocampal cells, Annals of Neurology, vol.78, issue.6, pp.729-738, 2000.
DOI : 10.1002/1531-8249(200006)47:6<729::AID-ANA5>3.0.CO;2-C

URL : https://hal.archives-ouvertes.fr/inserm-00485225

I. Khalilov, G. Holmes, B. Ari, and Y. , In vitro formation of a secondary epileptogenic mirror focus by interhippocampal propagation of seizures, Nature Neuroscience, vol.6, issue.10, pp.1079-1085, 2003.
DOI : 10.1038/nn1125

URL : https://hal.archives-ouvertes.fr/inserm-00484787

R. Khazipov, L. Desfreres, I. Khalilov, and Y. Ben-ari, Three-independent-compartment chamber to study in vitro commissural synapses, J Neurophysiol, vol.81, pp.921-924, 1999.
URL : https://hal.archives-ouvertes.fr/inserm-00487282

I. Khalilov, M. Esclapez, and I. Medina, A Novel In Vitro Preparation: the Intact Hippocampal Formation, Neuron, vol.19, issue.4, pp.743-749, 1997.
DOI : 10.1016/S0896-6273(00)80956-3

URL : https://hal.archives-ouvertes.fr/inserm-00522462

I. Khalilov, M. Van-quyen, H. Gozlan, B. Ari, and Y. , Epileptogenic Actions of GABA and Fast Oscillations in the Developing Hippocampus, Neuron, vol.48, issue.5, pp.787-796, 2005.
DOI : 10.1016/j.neuron.2005.09.026

URL : https://hal.archives-ouvertes.fr/inserm-00484426

L. Van, Q. Khalilov, I. , B. Ari, and Y. , The dark side of high-frequency oscillations in the developing brain, Trends Neurosci, vol.29, pp.419-427, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00484357