G. Marotti, The structure of bone tissues and the cellular control of their deposition, Ital J Anat Embryol=Arch Ital Anat Embryol, vol.101, pp.25-79, 1996.

T. Franz-odendaal, B. Hall, and P. Witten, Buried alive: How osteoblasts become osteocytes, Developmental Dynamics, vol.113, issue.31, pp.176-190, 2006.
DOI : 10.1002/dvdy.20603

M. Mullender, D. Van-der-meer, R. Huiskes, and P. Lips, Osteocyte density changes in aging and osteoporosis, Bone, vol.18, issue.2, pp.109-113, 1996.
DOI : 10.1016/8756-3282(95)00444-0

H. Frost, Bone Dynamics in Metabolic Bone Disease, The Journal of Bone & Joint Surgery, vol.48, issue.6, pp.1192-1203, 1966.
DOI : 10.2106/00004623-196648060-00018

S. Manolagas, Birth and Death of Bone Cells: Basic Regulatory Mechanisms and Implications for the Pathogenesis and Treatment of Osteoporosis, Endocrine Reviews, vol.21, issue.2, pp.115-137, 2000.
DOI : 10.1210/er.21.2.115

C. Mcculloch and J. Heersche, Lifetime of the osteoblast in mouse periodontium, The Anatomical Record, vol.26, issue.2, pp.128-135, 1988.
DOI : 10.1002/ar.1092220204

S. Manolagas, Choreography from the tomb: An emerging role of dying osteocytes in the purposeful, and perhaps not so purposeful, targeting of bone remodeling, BoneKEy-Osteovision, vol.90, issue.1, pp.5-14, 2006.
DOI : 10.1138/20060193

E. Seeman, Osteocytes???martyrs for integrity of bone strength, Osteoporosis International, vol.10, issue.1, pp.1443-1448, 2006.
DOI : 10.1007/s00198-006-0220-0

A. Vatsa, R. Breuls, C. Semeins, P. Salmon, T. Smit et al., Osteocyte morphology in fibula and calvaria ??? Is there a role for mechanosensing?, Bone, vol.43, issue.3, pp.452-458, 2008.
DOI : 10.1016/j.bone.2008.01.030

C. Palumbo, S. Palazzini, D. Zaffe, and G. Marotti, Osteocyte Differentiation in the Tibia of Newborn Rabbit: An Ultrastructural Study of the Formation of Cytoplasmic Processes, Cells Tissues Organs, vol.137, issue.4, pp.350-358, 1990.
DOI : 10.1159/000146907

F. Bronner, Bone and calcium homeostasis, Neurotoxicology, vol.13, pp.775-782, 1992.

G. Marotti, M. Muglia, and C. Palumbo, Structure and function of lamellar bone, Clin Rheumatol, vol.13, pp.63-68, 1994.

J. Currey, The many adaptations of bone, Journal of Biomechanics, vol.36, issue.10, pp.1487-1495, 2003.
DOI : 10.1016/S0021-9290(03)00124-6

B. Noble, The osteocyte lineage, Archives of Biochemistry and Biophysics, vol.473, issue.2, pp.106-111, 2008.
DOI : 10.1016/j.abb.2008.04.009

P. Zhang, M. Su, S. Tanaka, and H. Yokota, Knee loading stimulates cortical bone formation in murine femurs, BMC Musculoskeletal Disorders, vol.19, issue.1, p.73, 2006.
DOI : 10.2187/bss.19.245

J. Aubin and K. Turksen, Monoclonal antibodies as tools for studying the osteoblast lineage, Microscopy Research and Technique, vol.36, issue.2, pp.128-140, 1996.
DOI : 10.1002/(SICI)1097-0029(19960201)33:2<128::AID-JEMT4>3.0.CO;2-P

C. Baud, Submicroscopic Structure and Functional Aspects of the Osteocyte*, Clinical Orthopaedics and Related Research, vol.56, pp.227-236, 1968.
DOI : 10.1097/00003086-196801000-00025

D. Cameron, H. Paschall, and R. Robinson, CHANGES IN THE FINE STRUCTURE OF BONE CELLS AFTER THE ADMINISTRATION OF PARATHYROID EXTRACT, The Journal of Cell Biology, vol.33, issue.1, pp.1-14, 1967.
DOI : 10.1083/jcb.33.1.1

Y. Kato, J. Windle, B. Koop, G. Mundy, and L. Bonewald, Establishment of an Osteocyte-like Cell Line, MLO-Y4, Journal of Bone and Mineral Research, vol.137, issue.12, pp.2014-2023, 1997.
DOI : 10.1359/jbmr.1997.12.12.2014

T. Gross, N. Akeno, T. Clemens, S. Komarova, S. Srinivasan et al., Selected contribution: osteocytes upregulate HIF-1alpha in response to acute disuse and oxygen deprivation, J Appl Physiol, vol.90, pp.2514-2519, 2001.

K. Inoue, Y. Mikuni-takagaki, K. Oikawa, T. Itoh, M. Inada et al., A Crucial Role for Matrix Metalloproteinase 2 in Osteocytic Canalicular Formation and Bone Metabolism, Journal of Biological Chemistry, vol.281, issue.44, pp.33814-33824, 2006.
DOI : 10.1074/jbc.M607290200

L. Fisher and N. Fedarko, Six Genes Expressed in Bones and Teeth Encode the Current Members of the SIBLING Family of Proteins, Connective Tissue Research, vol.275, issue.1, pp.33-40, 2003.
DOI : 10.1074/jbc.M110757200

S. Toyosawa, S. Shintani, T. Fujiwara, T. Ooshima, A. Sato et al., Dentin Matrix Protein 1 Is Predominantly Expressed in Chicken and Rat Osteocytes But Not in Osteoblasts, Journal of Bone and Mineral Research, vol.79, issue.11, pp.2017-2026, 2001.
DOI : 10.1359/jbmr.2001.16.11.2017

J. Feng, L. Ward, S. Liu, Y. Lu, Y. Xie et al., Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism, Nature Genetics, vol.67, issue.11, pp.1310-1315, 2006.
DOI : 10.1038/ng1905

D. Petersen, G. Tkalcevic, A. Mansolf, R. Rivera-gonzalez, and T. Brown, Identification of Osteoblast/Osteocyte Factor 45 (OF45), a Bone-specific cDNA Encoding an RGD-containing Protein That Is Highly Expressed in Osteoblasts and Osteocytes, Journal of Biological Chemistry, vol.275, issue.46, pp.36172-36180, 2000.
DOI : 10.1074/jbc.M003622200

P. Rowe, P. De-zoysa, R. Dong, H. Wang, K. White et al., MEPE, a New Gene Expressed in Bone Marrow and Tumors Causing Osteomalacia, Genomics, vol.67, issue.1, pp.54-68, 2000.
DOI : 10.1006/geno.2000.6235

P. Rowe, Y. Kumagai, G. Gutierrez, I. Garrett, R. Blacher et al., MEPE has the properties of an osteoblastic phosphatonin and minhibin, Bone, vol.34, issue.2, pp.303-319, 2004.
DOI : 10.1016/j.bone.2003.10.005

L. Gowen, D. Petersen, A. Mansolf, H. Qi, J. Stock et al., Targeted Disruption of the Osteoblast/Osteocyte Factor 45 Gene (OF45) Results in Increased Bone Formation and Bone Mass, Journal of Biological Chemistry, vol.278, issue.3, pp.1998-2007, 2003.
DOI : 10.1074/jbc.M203250200

L. Bonewald, Osteocytes as Dynamic Multifunctional Cells, Annals of the New York Academy of Sciences, vol.1116, issue.1, pp.281-290, 2007.
DOI : 10.1196/annals.1402.018

T. Adachi, Y. Aonuma, M. Tanaka, M. Hojo, T. Takano-yamamoto et al., Calcium response in single osteocytes to locally applied mechanical stimulus: Differences in cell process and cell body, Journal of Biomechanics, vol.42, issue.12, pp.1989-1995, 2009.
DOI : 10.1016/j.jbiomech.2009.04.034

Y. Wang, L. Mcnamara, M. Schaffler, and S. Weinbaum, Strain amplification and integrin based signaling in osteocytes, J Musculoskelet Neuronal Interact, vol.8, pp.332-334, 2008.

L. Bonewald, Mechanosensation and transduction in osteocytes, BoneKEy-Osteovision, vol.3, issue.10, pp.7-15, 2006.
DOI : 10.1138/20060233

D. Nicolella, D. Moravits, A. Gale, L. Bonewald, and J. Lankford, Osteocyte lacunae tissue strain in cortical bone, Journal of Biomechanics, vol.39, issue.9, pp.1735-1743, 2006.
DOI : 10.1016/j.jbiomech.2005.04.032

C. Rubin, Skeletal strain and the functional significance of bone architecture, Calcified Tissue International, vol.159, issue.Suppl, pp.11-18, 1984.
DOI : 10.1007/BF02406128

C. Turner, M. Forwood, and M. Otter, Mechanotransduction in bone: do bone cells act as sensors of fluid flow, Faseb J, vol.8, pp.875-878, 1994.

A. Robling, F. Hinant, D. Burr, and C. Turner, Improved Bone Structure and Strength After Long-Term Mechanical Loading Is Greatest if Loading Is Separated Into Short Bouts, Journal of Bone and Mineral Research, vol.18, issue.8, pp.1545-1554, 2002.
DOI : 10.1359/jbmr.2002.17.8.1545

S. Weinbaum, S. Cowin, and Y. Zeng, A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses, Journal of Biomechanics, vol.27, issue.3, pp.339-360, 1994.
DOI : 10.1016/0021-9290(94)90010-8

S. Cowin, Mechanosensation and fluid transport in living bone, J Musculoskelet Neuronal Interact, vol.2, pp.256-260, 2002.

Y. Han, S. Cowin, M. Schaffler, and S. Weinbaum, Mechanotransduction and strain amplification in osteocyte cell processes, Proceedings of the National Academy of Sciences, vol.101, issue.47, pp.16689-16694, 2004.
DOI : 10.1073/pnas.0407429101

Z. Xiao, S. Zhang, J. Mahlios, G. Zhou, B. Magenheimer et al., Expression, Journal of Biological Chemistry, vol.281, issue.41, pp.30884-30895, 2006.
DOI : 10.1074/jbc.M604772200

URL : https://hal.archives-ouvertes.fr/hal-00586175

A. Malone, C. Anderson, P. Tummala, R. Kwon, T. Johnston et al., Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism, Proceedings of the National Academy of Sciences, vol.104, issue.33, pp.13325-13330, 2007.
DOI : 10.1073/pnas.0700636104

J. Dodd, J. Raleigh, and T. Gross, Osteocyte hypoxia: a novel mechanotransduction pathway, Am J Physiol, vol.277, pp.598-602, 1999.

L. Bonewald and M. Johnson, Osteocytes, mechanosensing and Wnt signaling, Bone, vol.42, issue.4, pp.606-615, 2008.
DOI : 10.1016/j.bone.2007.12.224

A. Kawata and Y. Mikuni-takagaki, Mechanotransduction in Stretched Osteocytes???Temporal Expression of Immediate Early and Other Genes, Biochemical and Biophysical Research Communications, vol.246, issue.2, pp.404-408, 1998.
DOI : 10.1006/bbrc.1998.8632

J. Lean, A. Mackay, J. Chow, and T. Chambers, Osteocytic expression of mRNA for c-fos and IGF-I: an immediate early gene response to an osteogenic stimulus, Am J Physiol, vol.270, pp.937-945, 1996.

T. Skerry, L. Bitensky, J. Chayen, and L. Lanyon, Early strain-related changes in enzyme activity in osteocytes following bone loading in vivo, Journal of Bone and Mineral Research, vol.6, issue.1, pp.783-788, 1989.
DOI : 10.1002/jbmr.5650040519

Y. Mikuni-takagaki, Y. Suzuki, T. Kawase, and S. Saito, Distinct responses of different populations of bone cells to mechanical stress, Endocrinology, vol.137, pp.2028-2035, 1996.

A. Robling, P. Niziolek, L. Baldridge, K. Condon, M. Allen et al., Mechanical Stimulation of Bone in Vivo Reduces Osteocyte Expression of Sost/Sclerostin, Journal of Biological Chemistry, vol.283, issue.9, pp.5866-5875, 2008.
DOI : 10.1074/jbc.M705092200

A. Robling, T. Bellido, and C. Turner, Mechanical Stimulation of Bone in Vivo Reduces Osteocyte Expression of Sost/Sclerostin, Journal of Biological Chemistry, vol.283, issue.9, p.354, 2006.
DOI : 10.1074/jbc.M705092200

J. Klein-nulend, E. Burger, C. Semeins, L. Raisz, and C. Pilbeam, Pulsating Fluid Flow Stimulates Prostaglandin Release and Inducible Prostaglandin G/H Synthase mRNA Expression in Primary Mouse Bone Cells, Journal of Bone and Mineral Research, vol.66, issue.1, pp.45-51, 1997.
DOI : 10.1359/jbmr.1997.12.1.45

S. Rawlinson, A. El-haj, S. Minter, I. Tavares, A. Bennett et al., Loading-related increases in prostaglandin production in cores of adult canine cancellous bone in vitro: A role for prostacyclin in adaptive bone remodeling?, Journal of Bone and Mineral Research, vol.42, issue.12, pp.1345-1351, 1991.
DOI : 10.1002/jbmr.5650061212

J. Vance, S. Galley, D. Liu, and S. Donahue, Release, Tissue Engineering, vol.11, issue.11-12, pp.1832-1839, 2005.
DOI : 10.1089/ten.2005.11.1832

N. Basso and J. Heersche, Effects of hind limb unloading and reloading on nitric oxide synthase expression and apoptosis of osteocytes and chondrocytes, Bone, vol.39, issue.4, pp.807-814, 2006.
DOI : 10.1016/j.bone.2006.04.014

J. Klein-nulend, C. Semeins, N. Ajubi, P. Nijweide, and E. Burger, Pulsating Fluid Flow Increases Nitric Oxide (NO) Synthesis by Osteocytes but Not Periosteal Fibroblasts - Correlation with Prostaglandin Upregulation, Biochemical and Biophysical Research Communications, vol.217, issue.2, pp.640-648, 1995.
DOI : 10.1006/bbrc.1995.2822

G. Zaman, A. Pitsillides, S. Rawlinson, R. Suswillo, J. Mosley et al., Mechanical Strain Stimulates Nitric Oxide Production by Rapid Activation of Endothelial Nitric Oxide Synthase in Osteocytes, Journal of Bone and Mineral Research, vol.8, issue.Suppl 1, pp.1123-1131, 1999.
DOI : 10.1359/jbmr.1999.14.7.1123

P. Cherian, A. Siller-jackson, S. Gu, X. Wang, L. Bonewald et al., Mechanical Strain Opens Connexin 43 Hemichannels in Osteocytes: A Novel Mechanism for the Release of Prostaglandin, Molecular Biology of the Cell, vol.16, issue.7, pp.3100-3106, 2005.
DOI : 10.1091/mbc.E04-10-0912

A. Siller-jackson, S. Burra, S. Gu, X. Xia, L. Bonewald et al., Adaptation of Connexin 43-Hemichannel Prostaglandin Release to Mechanical Loading, Journal of Biological Chemistry, vol.283, issue.39, pp.26374-26382, 2008.
DOI : 10.1074/jbc.M803136200

L. Plotkin, S. Manolagas, and T. Bellido, Transduction of Cell Survival Signals by Connexin-43 Hemichannels, Journal of Biological Chemistry, vol.277, issue.10, pp.8648-8657, 2002.
DOI : 10.1074/jbc.M108625200

B. Noble and J. Reeve, Osteocyte function, osteocyte death and bone fracture resistance, Molecular and Cellular Endocrinology, vol.159, issue.1-2, pp.7-13, 2000.
DOI : 10.1016/S0303-7207(99)00174-4

Y. Ma, R. Cain, D. Halladay, X. Yang, Q. Zeng et al., Catabolic Effects of Continuous Human PTH (1-38) in Vivo Is Associated with Sustained Stimulation of RANKL and Inhibition of Osteoprotegerin and Gene-Associated Bone Formation, Endocrinology, vol.142, issue.9, pp.4047-4054, 2001.
DOI : 10.1210/en.142.9.4047

G. Silvestrini, P. Ballanti, M. Sebastiani, M. Leopizzi, D. Vito et al., OPG and RANKL mRNA and protein expressions in the primary and secondary metaphyseal trabecular bone of PTH-treated rats are independent of that of SOST, Journal of Molecular Histology, vol.142, issue.4, pp.237-242, 2008.
DOI : 10.1007/s10735-007-9158-6

A. Tomkinson, E. Gevers, J. Wit, J. Reeve, and B. Noble, The Role of Estrogen in the Control of Rat Osteocyte Apoptosis, Journal of Bone and Mineral Research, vol.34, issue.Suppl, pp.1243-1250, 1998.
DOI : 10.1359/jbmr.1998.13.8.1243

T. Ikeda, A. Yamaguchi, S. Yokose, Y. Nagai, H. Yamato et al., Changes in biological activity of bone cells in ovariectomized rats revealed by in situ hybridization, Journal of Bone and Mineral Research, vol.7, issue.Suppl 1, pp.780-788, 1996.
DOI : 10.1002/jbmr.5650110609

F. Cantatore, G. Loverro, A. Ingrosso, R. Lacanna, E. Sassanelli et al., Effect of oestrogen replacement on bone metabolism and cytokines in surgical menopause, Clinical Rheumatology, vol.6, issue.2, pp.157-160, 1995.
DOI : 10.1007/BF02214935

D. Burr, M. Forwood, D. Fyhrie, R. Martin, M. Schaffler et al., Bone Microdamage and Skeletal Fragility in Osteoporotic and Stress Fractures, Journal of Bone and Mineral Research, vol.13, issue.Suppl 1, pp.6-15, 1997.
DOI : 10.1359/jbmr.1997.12.1.6

B. Noble, H. Stevens, N. Loveridge, and J. Reeve, Identification of apoptotic changes in osteocytes in normal and pathological human bone, Bone, vol.20, issue.3, pp.273-282, 1997.
DOI : 10.1016/S8756-3282(96)00365-1

L. Gerstenfeld, Osteopontin in Skeletal Tissue Homeostasis: An Emerging Picture of the Autocrine/Paracrine Functions of the Extracellular Matrix, Journal of Bone and Mineral Research, vol.273, issue.6, pp.850-855, 1999.
DOI : 10.1359/jbmr.1999.14.6.850

A. Gohel, A. Hand, and G. Gronowicz, Immunogold localization of beta 1-integrin in bone: effect of glucocorticoids and insulin-like growth factor I on integrins and osteocyte formation., Journal of Histochemistry & Cytochemistry, vol.43, issue.11, pp.1085-1096, 1995.
DOI : 10.1177/43.11.7560891

E. Aarden, P. Nijweide, A. Van-der-plas, M. Alblas, E. Mackie et al., Adhesive properties of isolated chick osteocytes in vitro, Bone, vol.18, issue.4, pp.305-313, 1996.
DOI : 10.1016/8756-3282(96)00010-5

L. You, S. Weinbaum, S. Cowin, and M. Schaffler, Ultrastructure of the osteocyte process and its pericellular matrix, The Anatomical Record, vol.22, issue.2, pp.505-513, 2004.
DOI : 10.1002/ar.a.20050

A. Bakker, J. Klein-nulend, and E. Burger, Shear stress inhibits while disuse promotes osteocyte apoptosis, Biochemical and Biophysical Research Communications, vol.320, issue.4, pp.1163-1168, 2004.
DOI : 10.1016/j.bbrc.2004.06.056

L. Plotkin, I. Mathov, J. Aguirre, A. Parfitt, S. Manolagas et al., Mechanical stimulation prevents osteocyte apoptosis: requirement of integrins, Src kinases, and ERKs, AJP: Cell Physiology, vol.289, issue.3, pp.633-643, 2005.
DOI : 10.1152/ajpcell.00278.2004

D. Talmage and R. Talmage, Calcium homeostasis: how bone solubility relates to all aspects of bone physiology, J Musculoskelet Neuronal Interact, vol.7, pp.108-112, 2007.

A. Teti and A. Zallone, Do osteocytes contribute to bone mineral homeostasis? Osteocytic osteolysis revisited, Bone, vol.44, issue.1, pp.11-16, 2009.
DOI : 10.1016/j.bone.2008.09.017

K. Tazawa, K. Hoshi, S. Kawamoto, M. Tanaka, S. Ejiri et al., Osteocytic osteolysis observed in rats to which parathyroid hormone was continuously administered, Journal of Bone and Mineral Metabolism, vol.22, issue.6, pp.524-529, 2004.
DOI : 10.1007/s00774-004-0519-x

D. Baylink and J. Wergedal, Bone formation by osteocytes, Am J Physiol, vol.221, pp.669-678, 1971.

S. Jande and L. Belanger, The Life Cycle of the Osteocyte, Clinical Orthopaedics and Related Research, vol.&NA;, issue.94, pp.281-305, 1973.
DOI : 10.1097/00003086-197307000-00035

J. Amanzadeh, R. Reilly, and . Jr, Hypophosphatemia: an evidence-based approach to its clinical consequences and management, Nature Clinical Practice Nephrology, vol.23, issue.3, pp.136-148, 2006.
DOI : 10.1038/ncpneph0124

M. Murshed, D. Harmey, J. Millan, M. Mckee, and G. Karsenty, Unique coexpression in osteoblasts of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone, Genes & Development, vol.19, issue.9, pp.1093-1104, 2005.
DOI : 10.1101/gad.1276205

G. Block, P. Klassen, J. Lazarus, N. Ofsthun, E. Lowrie et al., Mineral Metabolism, Mortality, and Morbidity in Maintenance Hemodialysis, Journal of the American Society of Nephrology, vol.15, issue.8, pp.2208-2218, 2004.
DOI : 10.1097/01.ASN.0000133041.27682.A2

R. Rizzoli, H. Fleisch, and J. Bonjour, Role of 1, 25- dihydroxyvitamin D3 on intestinal phosphate absorption in rats with a normal vitamin D supply, Osteoporos Int J Clin Invest, vol.82, issue.60, pp.639-647, 1977.

R. Talmage, S. Doppelt, and F. Fondren, An interpretation of acute changes in plasma45Ca following parathyroid hormone administration to thyroparathyroidectomized rats, Calcified Tissue Research, vol.91, issue.1, pp.117-128, 1976.
DOI : 10.1007/BF02010351

M. Shiraki, M. Gee, B. Baum, and G. Roth, Parathyroid Hormone Stimulates Phosphate Efflux through an Apparently Adenosine 3???,5???-Monophosphate-Independent Process in Rat Parotid Cell Aggregates, Endocrinology, vol.118, issue.5, pp.2009-2015, 1986.
DOI : 10.1210/endo-118-5-2009

L. Quarles, Endocrine functions of bone in mineral metabolism regulation, Journal of Clinical Investigation, vol.118, issue.12, pp.3820-3828, 2008.
DOI : 10.1172/JCI36479

T. Yamashita, M. Yoshioka, and N. Itoh, Identification of a Novel Fibroblast Growth Factor, FGF-23, Preferentially Expressed in the Ventrolateral Thalamic Nucleus of the Brain, Biochemical and Biophysical Research Communications, vol.277, issue.2, pp.494-498, 2000.
DOI : 10.1006/bbrc.2000.3696

T. Shimada, S. Mizutani, T. Muto, T. Yoneya, R. Hino et al., Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia, Proceedings of the National Academy of Sciences, vol.98, issue.11, pp.6500-6505, 2001.
DOI : 10.1073/pnas.101545198

N. Itoh and D. Ornitz, Evolution of the Fgf and Fgfr gene families, Trends in Genetics, vol.20, issue.11, pp.563-569, 2004.
DOI : 10.1016/j.tig.2004.08.007

H. Tsujikawa, Y. Kurotaki, T. Fujimori, K. Fukuda, and Y. Nabeshima, , a Gene Related to a Syndrome Resembling Human Premature Aging, Functions in a Negative Regulatory Circuit of Vitamin D Endocrine System, Molecular Endocrinology, vol.17, issue.12, pp.2393-2403, 2003.
DOI : 10.1210/me.2003-0048

S. Liu, J. Zhou, W. Tang, X. Jiang, D. Rowe et al., Pathogenic role of Fgf23 in Hyp mice, AJP: Endocrinology and Metabolism, vol.291, issue.1, pp.38-49, 2006.
DOI : 10.1152/ajpendo.00008.2006

H. Kurosu, M. Yamamoto, J. Clark, J. Pastor, A. Nandi et al., Suppression of Aging in Mice by the Hormone Klotho, Science, vol.309, issue.5742, pp.1829-1833, 2005.
DOI : 10.1126/science.1112766

I. Urakawa, Y. Yamazaki, T. Shimada, K. Iijima, H. Hasegawa et al., Klotho converts canonical FGF receptor into a specific receptor for FGF23, Nature, vol.143, issue.7120, pp.770-774, 2006.
DOI : 10.1038/nature05315

A. Ortiz, Hutchinson?Gilford progeria syndrome, N Engl J Med, vol.358, pp.2410-2411, 2008.

D. Sitara, M. Razzaque, M. Hesse, S. Yoganathan, T. Taguchi et al., Homozygous ablation of fibroblast growth factor-23 results in hyperphosphatemia and impaired skeletogenesis, and reverses hypophosphatemia in Phex-deficient mice, Matrix Biology, vol.23, issue.7, pp.421-432, 2004.
DOI : 10.1016/j.matbio.2004.09.007

H. Kurosu, Y. Ogawa, M. Miyoshi, M. Yamamoto, A. Nandi et al., Regulation of Fibroblast Growth Factor-23 Signaling by Klotho, Journal of Biological Chemistry, vol.281, issue.10, pp.6120-6123, 2006.
DOI : 10.1074/jbc.C500457200

I. Ben-dov, H. Galitzer, V. Lavi-moshayoff, R. Goetz, M. Kuro-o et al., The parathyroid is a target organ for FGF23 in rats, Journal of Clinical Investigation, vol.117, pp.4003-4008, 2007.
DOI : 10.1172/JCI32409

Y. Nabeshima, The discovery of ??-Klotho and FGF23 unveiled new insight into calcium and phosphate homeostasis, Cellular and Molecular Life Sciences, vol.65, issue.20, pp.3218-3230, 2008.
DOI : 10.1007/s00018-008-8177-0

F. Hannan, N. Athanasou, J. Teh, C. Gibbons, B. Shine et al., Oncogenic hypophosphataemic osteomalacia: biomarker roles of fibroblast growth factor 23, 1,25-dihydroxyvitamin D3 and lymphatic vessel endothelial hyaluronan receptor 1, European Journal of Endocrinology, vol.158, issue.2, pp.265-271, 2008.
DOI : 10.1530/EJE-07-0485

N. Koriyama, K. Nishimoto, T. Kodama, M. Nakazaki, Y. Kurono et al., Oncogenic Osteomalacia in a Case with a Maxillary Sinus Mesenchymal Tumor, The American Journal of the Medical Sciences, vol.332, issue.3, pp.142-147, 2006.
DOI : 10.1097/00000441-200609000-00010

S. Liu, J. Zhou, W. Tang, R. Menard, J. Feng et al., Pathogenic role of Fgf23 in Dmp1-null mice, AJP: Endocrinology and Metabolism, vol.295, issue.2, pp.254-261, 2008.
DOI : 10.1152/ajpendo.90201.2008

X. Bai, D. Miao, D. Panda, S. Grady, M. Mckee et al., (Phosphate-Regulating Gene with Homologies to Endopeptidases on the X Chromosome) Expression, Molecular Endocrinology, vol.16, issue.12, pp.2913-2925, 2002.
DOI : 10.1210/me.2002-0113

P. Marie, F. Debiais, M. Cohen-solal, and M. De-vernejoul, New factors controlling bone remodeling, Joint Bone Spine, vol.67, pp.150-156, 2000.

M. Egermann, E. Schneider, C. Evans, and A. Baltzer, The potential of gene therapy for fracture healing in osteoporosis, Osteoporosis International, vol.110, issue.S02, pp.120-128, 2005.
DOI : 10.1007/s00198-004-1817-9

O. Fromigue, D. Modrowski, and P. Marie, Growth Factors and Bone Formation in Osteoporosis: Roles for Fibroblast Growth Factor and Transforming Growth Factor Beta, Current Pharmaceutical Design, vol.10, issue.21, pp.2593-2603, 2004.
DOI : 10.2174/1381612043383773

J. Lane, M. Gardner, J. Lin, M. Van-der-meulen, and E. Myers, The aging spine: new technologies and therapeutics for the osteoporotic spine, European Spine Journal, vol.12, issue.S2, pp.147-154, 2003.
DOI : 10.1007/s00586-003-0636-6

R. Weinstein, R. Nicholas, and S. Manolagas, Apoptosis of Osteocytes in Glucocorticoid-Induced Osteonecrosis of the Hip, Journal of Clinical Endocrinology & Metabolism, vol.85, issue.8, pp.2907-2912, 2000.
DOI : 10.1210/jc.85.8.2907

S. Tolomio, A. Ermolao, G. Travain, and M. Zaccaria, Short-Term Adapted Physical Activity Program Improves Bone Quality in Osteopenic/Osteoporotic Postmenopausal Women, Journal of Physical Activity and Health, vol.5, issue.6, pp.844-853, 2008.
DOI : 10.1123/jpah.5.6.844

J. Kitagawa and Y. Nakahara, Associations of Daily Walking Steps with Calcaneal Ultrasound Parameters and a Bone Resorption Marker in Elderly Japanese Women, Journal of PHYSIOLOGICAL ANTHROPOLOGY, vol.27, issue.6, pp.295-300, 2008.
DOI : 10.2114/jpa2.27.295

J. Aguirre, L. Plotkin, S. Stewart, R. Weinstein, A. Parfitt et al., Osteocyte Apoptosis Is Induced by Weightlessness in Mice and Precedes Osteoclast Recruitment and Bone Loss, Journal of Bone and Mineral Research, vol.30, issue.4, pp.605-615, 2006.
DOI : 10.1359/jbmr.060107

F. Morvan, K. Boulukos, P. Clement-lacroix, R. Roman, S. Suc-royer et al., Deletion of a Single Allele of the Dkk1 Gene Leads to an Increase in Bone Formation and Bone Mass, Journal of Bone and Mineral Research, vol.280, issue.6, pp.934-945, 2006.
DOI : 10.1359/jbmr.060311

D. Winkler, M. Sutherland, J. Geoghegan, C. Yu, T. Hayes et al., Osteocyte control of bone formation via sclerostin, a novel BMP antagonist, The EMBO Journal, vol.262, issue.23, pp.6267-6276, 2003.
DOI : 10.1093/emboj/cdg599

G. Silvestrini, P. Ballanti, M. Leopizzi, M. Sebastiani, S. Berni et al., Effects of intermittent parathyroid hormone (PTH) administration on SOST mRNA and protein in rat bone, Journal of Molecular Histology, vol.22, issue.Suppl 1, pp.261-269, 2007.
DOI : 10.1007/s10735-007-9096-3

T. Bellido, Downregulation of SOST/sclerostin by PTH: a novel mechanism of hormonal control of bone formation mediated by osteocytes, J Musculoskelet Neuronal Interact, vol.6, pp.358-359, 2006.

H. Keller and M. Kneissel, SOST is a target gene for PTH in bone, Bone, vol.37, issue.2, pp.148-158, 2005.
DOI : 10.1016/j.bone.2005.03.018

R. Van-bezooijen, P. Ten-dijke, S. Papapoulos, and C. Lowik, SOST/sclerostin, an osteocyte-derived negative regulator of bone formation, Cytokine & Growth Factor Reviews, vol.16, issue.3, pp.319-327, 2005.
DOI : 10.1016/j.cytogfr.2005.02.005

K. Poole, R. Van-bezooijen, N. Loveridge, H. Hamersma, S. Papapoulos et al., Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation, The FASEB Journal, vol.19, pp.1842-1844, 2005.
DOI : 10.1096/fj.05-4221fje

P. Kostenuik, D. Lacey, W. Simonet, H. Ke, and C. Paszty, Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength, J Bone Miner Res, vol.23, pp.860-869, 2008.

X. Li, M. Ominsky, K. Warmington, S. Morony, J. Gong et al., Sclerostin Antibody Treatment Increases Bone Formation, Bone Mass, and Bone Strength in a Rat Model of Postmenopausal Osteoporosis*, Journal of Bone and Mineral Research, vol.24, issue.4, pp.578-588, 2009.
DOI : 10.1359/jbmr.081206

V. Unger, N. Kumar, N. Gilula, and M. Yeager, Three-Dimensional Structure of a Recombinant Gap Junction Membrane Channel, Science, vol.283, issue.5405, pp.1176-1180, 1999.
DOI : 10.1126/science.283.5405.1176

D. Goodenough, J. Goliger, and D. Paul, Connexins, Connexons, and Intercellular Communication, Annual Review of Biochemistry, vol.65, issue.1, pp.475-502, 1996.
DOI : 10.1146/annurev.bi.65.070196.002355

L. Plotkin, R. Weinstein, A. Parfitt, P. Roberson, S. Manolagas et al., Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin, Journal of Clinical Investigation, vol.104, issue.10, pp.1363-1374, 1999.
DOI : 10.1172/JCI6800

H. Follet, J. Li, R. Phipps, S. Hui, K. Condon et al., Risedronate and alendronate suppress osteocyte apoptosis following cyclic fatigue loading, Bone, vol.40, issue.4, pp.1172-1177, 2007.
DOI : 10.1016/j.bone.2006.12.052

URL : https://hal.archives-ouvertes.fr/inserm-00557225

L. Plotkin, V. Lezcano, J. Thostenson, R. Weinstein, S. Manolagas et al., Connexin 43 Is Required for the Anti-Apoptotic Effect of Bisphosphonates on Osteocytes and Osteoblasts In Vivo, Journal of Bone and Mineral Research, vol.22, issue.11, pp.1712-1721, 2008.
DOI : 10.1093/hmg/ddm329

J. Stains and R. Civitelli, Gap junctions in skeletal development and function, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1719, issue.1-2, pp.69-81, 2005.
DOI : 10.1016/j.bbamem.2005.10.012

J. Stains and R. Civitelli, Gap Junctions Regulate Extracellular Signal-regulated Kinase Signaling to Affect Gene Transcription, Molecular Biology of the Cell, vol.16, issue.1, pp.64-72, 2005.
DOI : 10.1091/mbc.E04-04-0339

R. Civitelli, Connexin43 Modulation of Osteoblast/Osteocyte Apoptosis: A Potential Therapeutic Target?, Journal of Bone and Mineral Research, vol.23, issue.11, pp.1709-1711, 2008.
DOI : 10.1210/en.2004-1414

K. Nose, H. Saito, and T. Kuroki, Isolation of a gene sequence induced later by tumor-promoting 12-O-tetradecanoylphorbol- 13-acetate in mouse osteoblastic cells (MC3T3-E1) and expressed constitutively in ras-transformed cells, Cell Growth Differ, vol.1, pp.511-518, 1990.

A. Wetterwald, W. Hoffstetter, M. Cecchini, B. Lanske, C. Wagner et al., Characterization and cloning of the E11 antigen, a marker expressed by Rat Osteoblasts and Osteocytes, Bone, vol.18, issue.2, pp.125-132, 1996.
DOI : 10.1016/8756-3282(95)00457-2

K. Zhang, C. Barragan-adjemian, L. Ye, S. Kotha, M. Dallas et al., E11/gp38 Selective Expression in Osteocytes: Regulation by Mechanical Strain and Role in Dendrite Elongation, Molecular and Cellular Biology, vol.26, issue.12, pp.4539-4552, 2006.
DOI : 10.1128/MCB.02120-05

E. Schulze, M. Witt, M. Kasper, C. Lowik, and R. Funk, Immunohistochemical investigations on the differentiation marker protein E11 in rat calvaria, calvaria cell culture and the osteoblastic cell line ROS 17/2.8, Histochemistry and Cell Biology, vol.111, issue.1, pp.61-69, 1999.
DOI : 10.1007/s004180050334

L. Sprague, A. Wetterwald, U. Heinzman, and M. Atkinson, Phenotypic changes following over-expression of sense or antisense E11 cDNA in ROS 17/2.8 cells, J Bone Miner Res, vol.11, p.132, 1996.

T. Heino, T. Hentunen, and H. Vaananen, Conditioned medium from osteocytes stimulates the proliferation of bone marrow mesenchymal stem cells and their differentiation into osteoblasts, Experimental Cell Research, vol.294, issue.2, pp.458-468, 2004.
DOI : 10.1016/j.yexcr.2003.11.016

C. Hartmann, A Wnt canon orchestrating osteoblastogenesis, Trends in Cell Biology, vol.16, issue.3, pp.151-158, 2006.
DOI : 10.1016/j.tcb.2006.01.001

P. Bodine and B. Komm, Wnt signaling and osteoblastogenesis, Reviews in Endocrine and Metabolic Disorders, vol.17, issue.1-2, pp.33-39, 2006.
DOI : 10.1007/s11154-006-9002-4

J. Westendorf, R. Kahler, and T. Schroeder, Wnt signaling in osteoblasts and bone diseases, Gene, vol.341, pp.19-39, 2004.
DOI : 10.1016/j.gene.2004.06.044

B. Brott and S. Sokol, Regulation of Wnt/LRP Signaling by Distinct Domains of Dickkopf Proteins, Molecular and Cellular Biology, vol.22, issue.17, pp.6100-6110, 2002.
DOI : 10.1128/MCB.22.17.6100-6110.2002

W. Balemans, N. Patel, M. Ebeling, V. Hul, E. Wuyts et al., Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease, Journal of Medical Genetics, vol.39, issue.2, pp.91-97, 2002.
DOI : 10.1136/jmg.39.2.91

K. Staehling-hampton, S. Proll, B. Paeper, L. Zhao, P. Charmley et al., A 52-kb deletion in the SOST-MEOX1 intergenic region on 17q12, 2002.

W. Balemans, M. Ebeling, N. Patel, V. Hul, E. Olson et al., Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST), Human Molecular Genetics, vol.10, issue.5, pp.537-543, 2001.
DOI : 10.1093/hmg/10.5.537

X. Li, M. Ominsky, K. Warmington, S. Morony, J. Gong et al., Sclerostin Antibody Treatment Increases Bone Formation, Bone Mass, and Bone Strength in a Rat Model of Postmenopausal Osteoporosis*, Journal of Bone and Mineral Research, vol.24, issue.4, pp.578-588, 2008.
DOI : 10.1359/jbmr.081206

R. Van-hove, P. Nolte, A. Vatsa, C. Semeins, P. Salmon et al., Osteocyte morphology in human tibiae of different bone pathologies with different bone mineral density ??? Is there a role for mechanosensing?, Bone, vol.45, issue.2, pp.321-329, 2009.
DOI : 10.1016/j.bone.2009.04.238

E. Waldorff, K. Christenson, L. Cooney, and S. Goldstein, Microdamage Repair and Remodeling Requires Mechanical Loading, Journal of Bone and Mineral Research, vol.12, 2009.
DOI : 10.1359/jbmr.091016

A. Dean, S. Harris, I. Kalajzic, and J. Ruan, A systems biology approach to the identification and analysis of transcriptional regulatory networks in osteocytes, BMC Bioinformatics, vol.10, issue.Suppl 9, p.5, 2009.
DOI : 10.1186/1471-2105-10-S9-S5