S. F. Altschul, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Research, vol.25, issue.17, pp.25-3389, 1997.
DOI : 10.1093/nar/25.17.3389

C. J. Sigrist, PROSITE: A documented database using patterns and profiles as motif descriptors, Briefings in Bioinformatics, vol.3, issue.3, pp.265-74, 2002.
DOI : 10.1093/bib/3.3.265

N. Hulo, The PROSITE database, Nucleic Acids Research, vol.34, issue.90001, pp.227-257, 2006.
DOI : 10.1093/nar/gkj063

E. De-castro, ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins, Nucleic Acids Research, vol.34, issue.Web Server, pp.362-367, 2006.
DOI : 10.1093/nar/gkl124

A. Gattiker, E. Gasteiger, and A. Bairoch, ScanProsite: a reference implementation of a PROSITE scanning tool, Appl Bioinformatics, vol.1, issue.2, pp.107-115, 2002.

E. L. Sonnhammer, S. R. Eddy, and R. Durbin, Pfam: A comprehensive database of protein domain families based on seed alignments, Proteins: Structure, Function, and Genetics, vol.183, issue.3, pp.405-425, 1997.
DOI : 10.1002/(SICI)1097-0134(199707)28:3<405::AID-PROT10>3.0.CO;2-L

R. D. Finn, Pfam: clans, web tools and services, Nucleic Acids Research, vol.34, issue.90001, pp.247-51, 2006.
DOI : 10.1093/nar/gkj149

I. Friedberg, T. Harder, and A. Godzik, JAFA: a protein function annotation meta-server, Nucleic Acids Research, vol.34, issue.Web Server, pp.379-81, 2006.
DOI : 10.1093/nar/gkl045

A. E. Todd, Progress of Structural Genomics Initiatives: An Analysis of Solved Target Structures, Journal of Molecular Biology, vol.348, issue.5, pp.1235-60, 2005.
DOI : 10.1016/j.jmb.2005.03.037

K. U. Wendt, Structures and diseases, Nature Structural & Molecular Biology, vol.11, issue.2, pp.117-137, 2008.
DOI : 10.1038/nchembio0705-64

A. G. De-brevern, New opportunities to fight against infectious diseases and to identify pertinent drug targets with novel methodologies, Infect Disord Drug Targets, issue.93, pp.246-253, 2009.

R. V. Guido, G. Oliva, and A. D. Andricopulo, Virtual screening and its integration with modern drug design technologies, Curr Med Chem, vol.15, issue.1, pp.37-46, 2008.

J. M. Rollinger, H. Stuppner, and T. Langer, Virtual screening for the discovery of bioactive natural products, Prog Drug Res, vol.65, pp.211-213, 2008.
DOI : 10.1007/978-3-7643-8117-2_6

S. A. Shaikh, From Drug Target to Leads-Sketching A Physicochemical Pathway for Lead Molecule Design In Silico, Current Pharmaceutical Design, vol.13, issue.34, pp.13-3454, 2007.
DOI : 10.2174/138161207782794220

B. Waszkowycz, Towards improving compound selection in structure-based virtual screening, Drug Discovery Today, vol.13, issue.5-6, pp.219-245, 2008.
DOI : 10.1016/j.drudis.2007.12.002

F. Moriaud, Computational Fragment-Based Approach at PDB Scale by Protein Local Similarity, Journal of Chemical Information and Modeling, vol.49, issue.2, pp.280-294, 2009.
DOI : 10.1021/ci8003094

K. Oguievetskaia, Computational fragment-based drug design to explore the hydrophobic sub-pocket of the mitotic kinesin Eg5 allosteric binding site, Journal of Computer-Aided Molecular Design, vol.42, issue.8, 2009.
DOI : 10.1007/s10822-009-9286-z

URL : https://hal.archives-ouvertes.fr/inserm-00396557

A. Crespo and A. Fernandez, Induced Disorder in Protein-Ligand Complexes as a Drug-Design Strategy, Mol Pharm, 2008.

K. Das, High-resolution structures of HIV-1 reverse transcriptase/TMC278 complexes: Strategic flexibility explains potency against resistance mutations, Proceedings of the National Academy of Sciences, vol.105, issue.5, pp.1466-71, 2008.
DOI : 10.1073/pnas.0711209105

H. M. Berman, The Protein Data Bank, Nucleic Acids Research, vol.28, issue.1, pp.235-277, 2000.
DOI : 10.1093/nar/28.1.235

F. C. Bernstein, The protein data bank: A computer-based archival file for macromolecular structures, Journal of Molecular Biology, vol.112, issue.3, pp.535-577, 1977.
DOI : 10.1016/S0022-2836(77)80200-3

E. R. Jefferson, T. P. Walsh, and G. J. Barton, A comparison of SCOP and CATH with respect to domain-domain interactions, Proteins: Structure, Function, and Bioinformatics, vol.276, issue.Suppl 1, pp.54-62, 2008.
DOI : 10.1002/prot.21496

C. Hadley and D. T. Jones, A systematic comparison of protein structure classifications: SCOP, CATH and FSSP, Structure, vol.7, issue.9, pp.1099-112, 1999.
DOI : 10.1016/S0969-2126(99)80177-4

G. Getz, Automated assignment of SCOP and CATH protein structure classifications from FSSP scores, Proteins: Structure, Function, and Genetics, vol.119, issue.4, pp.405-420, 2002.
DOI : 10.1002/prot.1176

A. G. Murzin, SCOP: A structural classification of proteins database for the investigation of sequences and structures, Journal of Molecular Biology, vol.247, issue.4, pp.536-576, 1995.
DOI : 10.1016/S0022-2836(05)80134-2

A. Andreeva, Data growth and its impact on the SCOP database: new developments, Nucleic Acids Research, vol.36, issue.Database, pp.419-444, 2008.
DOI : 10.1093/nar/gkm993

S. F. Altschul, Basic local alignment search tool, Journal of Molecular Biology, vol.215, issue.3, pp.403-413, 1990.
DOI : 10.1016/S0022-2836(05)80360-2

S. Yoon, Clustering protein environments for function prediction: finding PROSITE motifs in 3D, BMC Bioinformatics, vol.8, issue.Suppl 4, p.10, 2007.
DOI : 10.1186/1471-2105-8-S4-S10

B. G. Ma, Characters of very ancient proteins, Biochemical and Biophysical Research Communications, vol.366, issue.3, pp.607-618, 2008.
DOI : 10.1016/j.bbrc.2007.12.014

A. Harrison, Quantifying the Similarities within Fold Space, Journal of Molecular Biology, vol.323, issue.5, pp.909-935, 2002.
DOI : 10.1016/S0022-2836(02)00992-0

C. T. Porter, G. J. Bartlett, and J. M. Thornton, The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data, Nucleic Acids Research, vol.32, issue.90001, pp.32-129, 2004.
DOI : 10.1093/nar/gkh028

G. J. Bartlett, Analysis of Catalytic Residues in Enzyme Active Sites, Journal of Molecular Biology, vol.324, issue.1, pp.105-126, 2002.
DOI : 10.1016/S0022-2836(02)01036-7

S. Schmitt, D. Kuhn, and G. Klebe, A New Method to Detect Related Function Among Proteins Independent of Sequence and Fold Homology, Journal of Molecular Biology, vol.323, issue.2, pp.387-406, 2002.
DOI : 10.1016/S0022-2836(02)00811-2

A. Weber, Unexpected Nanomolar Inhibition of Carbonic Anhydrase by COX-2-Selective Celecoxib:?? New Pharmacological Opportunities Due to Related Binding Site Recognition, Journal of Medicinal Chemistry, vol.47, issue.3, pp.47-550, 2004.
DOI : 10.1021/jm030912m

D. Kuhn, Functional Classification of Protein Kinase Binding Sites Using Cavbase, ChemMedChem, vol.10, issue.10, pp.1432-1447, 2007.
DOI : 10.1002/cmdc.200700075

D. Kuhn, From the Similarity Analysis of Protein Cavities to the Functional Classification of Protein Families Using Cavbase, Journal of Molecular Biology, vol.359, issue.4, pp.1023-1067, 2006.
DOI : 10.1016/j.jmb.2006.04.024

A. Shulman-peleg, R. Nussinov, and H. J. Wolfson, Recognition of Functional Sites in Protein Structures, Journal of Molecular Biology, vol.339, issue.3, pp.607-640, 2004.
DOI : 10.1016/j.jmb.2004.04.012

S. Mintz, Generation and analysis of a protein-protein interface data set with similar chemical and spatial patterns of interactions, Proteins: Structure, Function, and Bioinformatics, vol.312, issue.Suppl 1, pp.61-67, 2005.
DOI : 10.1002/prot.20580

A. Shulman-peleg, R. Nussinov, and H. J. Wolfson, SiteEngines: recognition and comparison of binding sites and protein-protein interfaces, Nucleic Acids Research, vol.33, issue.Web Server, pp.33-337, 2005.
DOI : 10.1093/nar/gki482

M. Baroni, A Common Reference Framework for Analyzing/Comparing Proteins and Ligands. Fingerprints for Ligands And Proteins (FLAP):?? Theory and Application, Journal of Chemical Information and Modeling, vol.47, issue.2, pp.47-279, 2007.
DOI : 10.1021/ci600253e

R. Powers, Comparison of protein active site structures for functional annotation of proteins and drug design, Proteins: Structure, Function, and Bioinformatics, vol.2, issue.6, pp.124-159, 2006.
DOI : 10.1002/prot.21092

K. Kinoshita, Y. Murakami, and H. Nakamura, eF-seek: prediction of the functional sites of proteins by searching for similar electrostatic potential and molecular surface shape, Nucleic Acids Research, vol.35, issue.Web Server, pp.35-398, 2007.
DOI : 10.1093/nar/gkm351

D. M. Standley, Protein structure databases with new web services for structural biology and biomedical research, Briefings in Bioinformatics, vol.9, issue.4, 2008.
DOI : 10.1093/bib/bbn015

J. C. Nebel, P. Herzyk, and D. R. Gilbert, Automatic generation of 3D motifs for classification of protein binding sites, BMC Bioinformatics, vol.8, issue.1, p.321, 2007.
DOI : 10.1186/1471-2105-8-321

O. Lichtarge, H. R. Bourne, and F. E. Cohen, An Evolutionary Trace Method Defines Binding Surfaces Common to Protein Families, Journal of Molecular Biology, vol.257, issue.2, pp.342-58, 1996.
DOI : 10.1006/jmbi.1996.0167

I. Mihalek, I. Res, and O. Lichtarge, Evolutionary trace report_maker: a new type of service for comparative analysis of proteins, Bioinformatics, vol.22, issue.13, pp.22-1656, 2006.
DOI : 10.1093/bioinformatics/btl157

D. H. Morgan, ET viewer: an application for predicting and visualizing functional sites in protein structures, Bioinformatics, vol.22, issue.16, pp.22-2049, 2006.
DOI : 10.1093/bioinformatics/btl285

S. Madabushi, Evolutionary Trace of G Protein-coupled Receptors Reveals Clusters of Residues That Determine Global and Class-specific Functions, Journal of Biological Chemistry, vol.279, issue.9, pp.279-8126, 2004.
DOI : 10.1074/jbc.M312671200

D. M. Kristensen, Prediction of enzyme function based on 3D templates of evolutionarily important amino acids, BMC Bioinformatics, vol.9, issue.1, p.17, 2008.
DOI : 10.1186/1471-2105-9-17

R. A. George, Effective function annotation through catalytic residue conservation, Proceedings of the National Academy of Sciences, vol.102, issue.35, pp.12299-304, 2005.
DOI : 10.1073/pnas.0504833102

R. A. Laskowski, J. D. Watson, and J. M. Thornton, From protein structure to biochemical function?, Journal of Structural and Functional Genomics, vol.4, issue.2/3, pp.167-77, 2003.
DOI : 10.1023/A:1026127927612

R. A. Laskowski, J. D. Watson, and J. M. Thornton, ProFunc: a server for predicting protein function from 3D structure, Nucleic Acids Research, vol.33, issue.Web Server, pp.33-89, 2005.
DOI : 10.1093/nar/gki414

R. J. Morris, Real spherical harmonic expansion coefficients as 3D shape descriptors for protein binding pocket and ligand comparisons, Bioinformatics, vol.21, issue.10, pp.2347-55, 2005.
DOI : 10.1093/bioinformatics/bti337

J. D. Watson, Towards Fully Automated Structure-based Function Prediction in Structural Genomics: A Case Study, Journal of Molecular Biology, vol.367, issue.5, pp.1511-1533, 2007.
DOI : 10.1016/j.jmb.2007.01.063

M. Brylinski, L. Konieczny, and I. Roterman, Hydrophobic collapse in??late-stage folding (in??silico) of??bovine pancreatic trypsin inhibitor, Biochimie, vol.88, issue.9, pp.1229-1268, 2006.
DOI : 10.1016/j.biochi.2006.03.008

L. Konieczny, M. Brylinski, and I. Roterman, Gauss-function-Based model of hydrophobicity density in proteins, In Silico Biol, vol.6, issue.12, pp.15-22, 2006.

M. Brylinski, L. Konieczny, and I. Roterman, Ligation site in proteins recognized in silico, Bioinformation, vol.1, issue.4, pp.127-136, 2006.
DOI : 10.6026/97320630001127

W. Jurkowski, Conformational subspace in simulation of early-stage protein folding, Proteins: Structure, Function, and Bioinformatics, vol.13, issue.Suppl 3, pp.115-142, 2004.
DOI : 10.1002/prot.20002

M. Brylinski, Prediction of Functional Sites Based on the Fuzzy Oil Drop Model, PLoS Computational Biology, vol.3, issue.5, p.94, 2007.
DOI : 10.1371/journal.pcbi.0030094.sg010

M. Jambon, A new bioinformatic approach to detect common 3D sites in protein structures, Proteins: Structure, Function, and Bioinformatics, vol.228, issue.Suppl, pp.137-182, 2003.
DOI : 10.1002/prot.10339

URL : https://hal.archives-ouvertes.fr/hal-00306913

M. Jambon, The SuMo server: 3D search for protein functional sites, Bioinformatics, vol.21, issue.20, pp.3929-3959, 2005.
DOI : 10.1093/bioinformatics/bti645

URL : https://hal.archives-ouvertes.fr/hal-00313736

O. Doppelt-azeroual, Analysis of HSP90 related folds with MED-SuMo classification approach. Drug Design Development and Therapy, pp.59-72, 2009.
URL : https://hal.archives-ouvertes.fr/inserm-00348737

O. Doppelt, Functional annotation strategy for protein structures, Bioinformation, vol.1, issue.9, pp.357-366, 2007.
DOI : 10.6026/97320630001357

URL : https://hal.archives-ouvertes.fr/inserm-00143366

S. Van-dongen, Graph Clustering by Flow Simulation, 2000.

W. Kabsch, Atomic structure of the actin: DNase I complex, Nature, vol.347, issue.6288, pp.37-44, 1990.
DOI : 10.1038/347037a0

A. G. De-brevern, C. Etchebest, and S. Hazout, Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks, Proteins: Structure, Function, and Genetics, vol.7, issue.3, pp.41-271, 2000.
DOI : 10.1002/1097-0134(20001115)41:3<271::AID-PROT10>3.0.CO;2-Z

URL : https://hal.archives-ouvertes.fr/inserm-00132821

S. Hazout, Entropy-derived measures for assessing the accuracy of N-state prediction algorithms., in In Recent Advances in Structural Bioinformatics, pp.395-417, 2007.

C. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal, vol.27, issue.3, pp.379-423, 1948.
DOI : 10.1002/j.1538-7305.1948.tb01338.x

P. Z. Gatzeva-topalova, A. P. May, and M. C. Sousa, Structure and Mechanism of ArnA: Conformational Change Implies Ordered Dehydrogenase Mechanism in Key Enzyme for Polymyxin Resistance, Structure, vol.13, issue.6, pp.929-942, 2005.
DOI : 10.1016/j.str.2005.03.018

S. T. Allard, Toward a Structural Understanding of the Dehydratase Mechanism, Structure, vol.10, issue.1, pp.81-92, 2002.
DOI : 10.1016/S0969-2126(01)00694-3

N. A. Webb, A. M. Mulichak, J. S. Lam, H. L. Rocchetta, and R. M. Garavito, Crystal structure of a tetrameric GDP-D-mannose 4,6-dehydratase from a bacterial GDP-D-rhamnose biosynthetic pathway, Protein Science, vol.13, issue.2, pp.529-539, 2004.
DOI : 10.1110/ps.03393904

L. W. Hung, I. X. Wang, K. Nikaido, P. Q. Liu, G. F. Ames et al., Crystal structure of the ATP-binding subunit of an ABC transporter, Nature, issue.396, pp.703-707, 1998.

J. Chen, G. Lu, J. Lin, A. L. Davidson, and F. A. Quiocho, A Tweezers-like Motion of the ATP-Binding Cassette Dimer in an ABC Transport Cycle, Molecular Cell, vol.12, issue.3, pp.651-661, 2003.
DOI : 10.1016/j.molcel.2003.08.004

H. A. Lewis, Structure of nucleotide-binding domain 1 of the cystic fibrosis transmembrane conductance regulator, The EMBO Journal, vol.23, issue.2, pp.282-93, 2004.
DOI : 10.1038/sj.emboj.7600040

O. Ramaen, N. Leulliot, C. Sizun, N. Ulryck, O. Pamlard et al., Structure of the Human Multidrug Resistance Protein 1 Nucleotide Binding Domain 1 bound to Mg2+/ATP Reveals a Non-productive Catalytic Site, Journal of Molecular Biology, vol.359, issue.4, pp.940-949, 2006.
DOI : 10.1016/j.jmb.2006.04.005

URL : https://hal.archives-ouvertes.fr/hal-00079738

J. Zaitseva, A structural analysis of asymmetry required for catalytic activity of an ABC-ATPase domain dimer, The EMBO Journal, vol.44, issue.14, pp.25-3432, 2006.
DOI : 10.1038/sj.emboj.7601208

R. Gaudet and D. C. Wiley, Structure of the ABC ATPase domain of human TAP1, the transporter associated with antigen processing, The EMBO Journal, vol.20, issue.17, pp.4964-4972, 2001.
DOI : 10.1093/emboj/20.17.4964

I. Beis and E. A. Newsholme, The contents of adenine nucleotides, phosphagens and some glycolytic intermediates in resting muscles from vertebrates and invertebrates, Biochemical Journal, vol.152, issue.1, pp.23-32, 1975.
DOI : 10.1042/bj1520023

C. L. Reyes, X-ray Structures of the Signal Recognition Particle Receptor Reveal Targeting Cycle Intermediates, PLoS ONE, vol.54, issue.3, p.607, 2007.
DOI : 10.1371/journal.pone.0000607.t001

T. Kornberg and M. L. Gefter, Deoxyribonucleic acid synthesis in cell-free extracts. IV. Purification and catalytic properties of deoxyribonucleic acid polymerase III, J Biol Chem, issue.17, pp.247-5369, 1972.

D. Y. Kim and K. K. Kim, Crystal Structure of ClpX Molecular Chaperone from Helicobacter pylori, Journal of Biological Chemistry, vol.278, issue.50, pp.278-50664, 2003.
DOI : 10.1074/jbc.M305882200

G. D. Bowman, M. O. Donnell, and J. Kuriyan, Structural analysis of a eukaryotic sliding DNA clamp???clamp loader complex, Nature, vol.276, issue.6993, pp.429-724, 2004.
DOI : 10.1107/S0021889899012339

S. L. Kazmirski, Structural analysis of the inactive state of the Escherichia coli DNA polymerase clamp-loader complex, Proceedings of the National Academy of Sciences, vol.101, issue.48, pp.16750-16755, 2004.
DOI : 10.1073/pnas.0407904101

W. Xu, S. C. Harrison, and M. J. Eck, Three-dimensional structure of the tyrosine kinase c-Src, Nature, vol.385, issue.6617, pp.385-595, 1997.
DOI : 10.1038/385595a0

S. Goldsmith-fischman and B. Honig, Structural genomics: Computational methods for structure analysis, Protein Science, vol.95, issue.9, pp.1813-1834, 2003.
DOI : 10.1110/ps.0242903

B. H. Dessailly, M. F. Lensink, and S. J. Wodak, Relating destabilizing regions to known functional sites in proteins, BMC Bioinformatics, vol.8, issue.1, p.141, 2007.
DOI : 10.1186/1471-2105-8-141

D. P. Brown, N. Krishnamurthy, and K. Sjolander, Automated Protein Subfamily Identification and Classification, PLoS Computational Biology, vol.32, issue.8, p.160, 2007.
DOI : 10.1371/journal.pcbi.0030160.sd006

URL : http://doi.org/10.1371/journal.pcbi.0030160

L. Mao, Molecular Determinants for ATP-binding in Proteins: A Data Mining and Quantum Chemical Analysis, Journal of Molecular Biology, vol.336, issue.3, pp.787-807, 2004.
DOI : 10.1016/j.jmb.2003.12.056

K. Niefind, GTP plus water mimic ATP in the active site of protein kinase CK2, Nat Struct Biol, issue.612, pp.1100-1103, 1999.

C. W. Yde, Inclining the Purine Base Binding Plane in Protein Kinase CK2 by Exchanging the Flanking Side-chains Generates a Preference for ATP as a Cosubstrate, Journal of Molecular Biology, vol.347, issue.2, pp.399-414, 2005.
DOI : 10.1016/j.jmb.2005.01.003

C. Sotriffer and G. Klebe, Identification and mapping of small-molecule binding sites in proteins: computational tools for structure-based drug design, Il Farmaco, vol.57, issue.3, pp.243-51, 2002.
DOI : 10.1016/S0014-827X(02)01211-9

L. Wei and R. B. Altman, Recognizing protein binding sites using statistical descriptions of their 3D environments, Pac Symp Biocomput, pp.497-508, 1998.

A. Kasuya and J. M. Thornton, Three-dimensional structure analysis of PROSITE patterns, Journal of Molecular Biology, vol.286, issue.5, pp.1673-91, 1999.
DOI : 10.1006/jmbi.1999.2581

S. Wu, M. P. Liang, and R. B. Altman, The SeqFEATURE library of 3D functional site models: comparison to existing methods and applications to protein function annotation, Genome Biology, vol.9, issue.1, p.8, 2008.
DOI : 10.1186/gb-2008-9-1-r8

I. Halperin, The FEATURE framework for protein function annotation: modeling new functions, improving performance, and extending to novel applications, BMC Genomics, vol.9, issue.Suppl 2, p.2, 2008.
DOI : 10.1186/1471-2164-9-S2-S2

C. J. Manly, Strategies and tactics for optimizing the Hit-to-Lead process and beyond???A computational chemistry perspective, Drug Discovery Today, vol.13, issue.3-4, pp.13-16, 2008.
DOI : 10.1016/j.drudis.2007.10.019

M. Vieth, Kinomics???structural biology and chemogenomics of kinase inhibitors and targets, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1697, issue.1-2, pp.243-57, 2004.
DOI : 10.1016/j.bbapap.2003.11.028

A. Krupa, K. R. Abhinandan, and N. Srinivasan, KinG: a database of protein kinases in genomes, Nucleic Acids Research, vol.32, issue.90001, pp.32-153, 2004.
DOI : 10.1093/nar/gkh019

S. Cheek, A comprehensive update of the sequence and structure classification of kinases, BMC Struct Biol, issue.5, p.6, 2005.

G. Manning, The Protein Kinase Complement of the Human Genome, Science, vol.298, issue.5600, pp.298-1912, 2002.
DOI : 10.1126/science.1075762

A. C. Dar, T. E. Dever, and F. Sicheri, Higher-Order Substrate Recognition of eIF2?? by the RNA-Dependent Protein Kinase PKR, Cell, vol.122, issue.6, pp.887-900, 2005.
DOI : 10.1016/j.cell.2005.06.044

N. R. Brown, Effects of Phosphorylation of Threonine 160 on Cyclin-dependent Kinase 2 Structure and Activity, Journal of Biological Chemistry, vol.274, issue.13, pp.274-8746, 1999.
DOI : 10.1074/jbc.274.13.8746

M. Aoki, Structural insight into nucleotide recognition in tau-protein kinase I/glycogen synthase kinase 3 beta, Acta Crystallogr D Biol Crystallogr, pp.60-439, 2004.

P. Pevarello, 3-Amino-1,4,5,6-tetrahydropyrrolo[3,4-c]pyrazoles: A new class of CDK2 inhibitors, Bioorganic & Medicinal Chemistry Letters, vol.16, issue.4, pp.1084-90, 2006.
DOI : 10.1016/j.bmcl.2005.10.071

R. Dutta and M. Inouye, GHKL, an emergent ATPase/kinase superfamily, Trends in Biochemical Sciences, vol.25, issue.1, pp.24-32, 2000.
DOI : 10.1016/S0968-0004(99)01503-0

F. Ferre, Functional annotation by identification of local surface similarities: a novel tool for structural genomics, BMC Bioinformatics, issue.6, p.194, 2005.

E. Gasteiger, ExPASy: the proteomics server for in-depth protein knowledge and analysis, Nucleic Acids Research, vol.31, issue.13, pp.31-3784, 2003.
DOI : 10.1093/nar/gkg563

A. J. Enright and C. A. Ouzounis, BioLayout--an automatic graph layout algorithm for similarity visualization, Bioinformatics, vol.17, issue.9, pp.853-857, 2001.
DOI : 10.1093/bioinformatics/17.9.853

L. Goldovsky, BioLayoutJava, Applied Bioinformatics, vol.30, issue.1, pp.71-75, 2005.
DOI : 10.2165/00822942-200504010-00009

S. Cheek, H. Zhang, and N. V. Grishin, Sequence and Structure Classification of Kinases, Journal of Molecular Biology, vol.320, issue.4, pp.855-81, 2002.
DOI : 10.1016/S0022-2836(02)00538-7

J. Panek, I. Eidhammer, and R. Aasland, A new method for identification of protein (sub)families in a set of proteins based on hydropathy distribution in proteins, Proteins: Structure, Function, and Bioinformatics, vol.95, issue.4, pp.923-957, 2005.
DOI : 10.1002/prot.20356

K. Henrick, Remediation of the protein data bank archive, Nucleic Acids Research, vol.36, issue.Database, pp.36-426, 2008.
DOI : 10.1093/nar/gkm937

D. Higgins, T. J. Gibson, T. Thompson, J. D. Higgins, D. G. Gibson et al., improving the sensitivity of progressivemultiple sequence alignment through sequence weighting,position-specific gap penalties and weight matrix choice, Nucleic Acids Research, vol.22, pp.4673-4680, 1994.