D. Rudnick, PROSPECTIVE AREAS AND DIFFERENTIATION POTENCIES IN THE CHICK BLASTODERM, Annals of the New York Academy of Sciences, vol.75, issue.5, pp.761-772, 1938.
DOI : 10.1111/j.1749-6632.1948.tb30963.x

P. Tam and G. Schoenwolf, Cardiac fate map: lineage, allocation, morphogenetic movement and cell commitment, Heart, vol.Development, pp.3-18, 1999.

M. Hendrikx, K. Hensen, C. Clijsters, H. Jongen, R. Koninckx et al., Recovery of Regional but Not Global Contractile Function by the Direct Intramyocardial Autologous Bone Marrow Transplantation: Results From a Randomized Controlled Clinical Trial, Circulation, vol.114, issue.1_suppl, pp.101-107, 2006.
DOI : 10.1161/CIRCULATIONAHA.105.000505

P. Menasche, O. Alfieri, S. Janssens, W. Mckenna, H. Reichenspurner et al., The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) Trial: First Randomized Placebo-Controlled Study of Myoblast Transplantation, Circulation, vol.117, issue.9, pp.1189-1200, 2008.
DOI : 10.1161/CIRCULATIONAHA.107.734103

J. Pouly, P. Bruneval, C. Mandet, S. Proksch, S. Peyrard et al., Cardiac stem cells in the real world, The Journal of Thoracic and Cardiovascular Surgery, vol.135, issue.3, pp.673-678, 2008.
DOI : 10.1016/j.jtcvs.2007.10.024

N. S. Roy, C. Cleren, S. K. Singh, L. Yang, M. F. Beal et al., Functional engraftment of human ES cell???derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes, Nature Medicine, vol.17, issue.11, pp.1259-1268, 2006.
DOI : 10.1038/nm1495

M. A. Laflamme, K. Y. Chen, A. V. Naumova, V. Muskheli, J. A. Fugate et al., Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts, Nature Biotechnology, vol.48, issue.9, pp.1015-1024, 2007.
DOI : 10.1038/nbt1327

O. Caspi, I. Huber, I. Kehat, M. Habib, G. Arbel et al., Transplantation of Human Embryonic Stem Cell-Derived Cardiomyocytes Improves Myocardial Performance in Infarcted Rat Hearts, Journal of the American College of Cardiology, vol.50, issue.19, pp.1884-18931008, 2007.
DOI : 10.1016/j.jacc.2007.07.054

R. Passier, L. W. Van-laake, and C. L. Mummery, Stem-cell-based therapy and lessons from the heart, Nature, vol.100, issue.7193, pp.322-329, 2008.
DOI : 10.1038/nature07040

D. J. Garry and E. N. Olson, A Common Progenitor at the Heart of Development, Cell, vol.127, issue.6, pp.1101-1104, 2006.
DOI : 10.1016/j.cell.2006.11.031

A. Moretti, L. Caron, A. Nakano, J. T. Lam, A. Bernshausen et al., Multipotent Embryonic Isl1+ Progenitor Cells Lead to Cardiac, Smooth Muscle, and Endothelial Cell Diversification, Cell, vol.127, issue.6, pp.1151-1165, 2006.
DOI : 10.1016/j.cell.2006.10.029

Q. Ma, B. Zhou, and W. T. Pu, Reassessment of Isl1 and Nkx2-5 cardiac fate maps using a Gata4-based reporter of Cre activity, Developmental Biology, vol.323, issue.1, p.22, 2008.
DOI : 10.1016/j.ydbio.2008.08.013

S. J. Kattman, T. L. Huber, and G. M. Keller, Multipotent Flk-1+ Cardiovascular Progenitor Cells??Give Rise to the Cardiomyocyte, Endothelial, and Vascular Smooth Muscle Lineages, Developmental Cell, vol.11, issue.5, pp.723-732, 2006.
DOI : 10.1016/j.devcel.2006.10.002

L. Yang, M. H. Soonpaa, E. D. Adler, T. K. Roepke, S. J. Kattman et al., Human cardiovascular progenitor cells develop from a KDR+ embryonic-stem-cell-derived population, Nature, vol.225, issue.7194, pp.524-528, 2008.
DOI : 10.1038/nature06894

D. J. Crease, S. Dyson, and J. B. And-gurdon, Cooperation between the activin and Wnt pathways in the spatial control of organizer gene expression, Proceedings of the National Academy of Sciences, vol.95, issue.8, pp.4398-4403, 1998.
DOI : 10.1073/pnas.95.8.4398

M. M. Bakre, A. Hoi, J. C. Mong, Y. Y. Koh, K. Y. Wong et al., Generation of Multipotential Mesendodermal Progenitors from Mouse Embryonic Stem Cells via Sustained Wnt Pathway Activation, Journal of Biological Chemistry, vol.282, issue.43, pp.31703-31712, 2007.
DOI : 10.1074/jbc.M704287200

S. Stefanovic, N. Abboud, S. Desilets, D. Nury, C. Cowan et al., Interplay of Oct4 with Sox2 and Sox17: a molecular switch from stem cell pluripotency to specifying a cardiac fate, The Journal of Cell Biology, vol.46, issue.5, pp.665-673, 2009.
DOI : 10.1083/jcb.200901040.dv

URL : https://hal.archives-ouvertes.fr/inserm-00409113

J. K. Henderson, J. S. Draper, H. S. Baillie, S. Fishel, J. A. Thomson et al., Preimplantation Human Embryos and Embryonic Stem Cells Show Comparable Expression of Stage-Specific Embryonic Antigens, Stem Cells, vol.106, issue.4, pp.329-337, 2002.
DOI : 10.1634/stemcells.20-4-329

J. Leschik, S. Stefanovic, B. Brinon, and M. Puceat, Cardiac commitment of primate embryonic stem cells, Nature Protocols, vol.6, issue.9, pp.1381-1387, 2008.
DOI : 10.1038/nprot.2008.116

URL : https://hal.archives-ouvertes.fr/inserm-00297337

S. Stefanovic and M. Puceat, Oct-3/4: Not Just a Gatekeeper of Pluripotency for Embryonic Stem Cell, a Cell Fate Instructor through a Gene Dosage Effect, Cell Cycle, vol.6, issue.1, pp.8-10, 2007.
DOI : 10.4161/cc.6.1.3633

A. Bondue, G. Lapouge, C. Paulissen, C. Semeraro, M. Iacovino et al., Mesp1 Acts as a Master Regulator of Multipotent Cardiovascular Progenitor Specification, Cell Stem Cell, vol.3, issue.1, pp.69-84, 2008.
DOI : 10.1016/j.stem.2008.06.009

L. Christiaen, A. Stolfi, B. Davidson, and M. Levine, Spatio-temporal intersection of Lhx3 and Tbx6 defines the cardiac field through synergistic activation of Mesp, Developmental Biology, vol.328, issue.2, pp.552-560, 2009.
DOI : 10.1016/j.ydbio.2009.01.033

C. L. Cai, J. C. Martin, Y. Sun, L. Cui, L. Wang et al., A myocardial lineage derives from Tbx18 epicardial cells, Nature, vol.279, issue.7200, pp.104-108, 2008.
DOI : 10.1038/nature06969

D. Franco, S. M. Meilhac, V. M. Christoffels, A. Kispert, M. Buckingham et al., Left and right ventricular contributions to the formation of the interventricular septum in the mouse heart, Developmental Biology, vol.294, issue.2, pp.366-375, 2006.
DOI : 10.1016/j.ydbio.2006.02.045

URL : https://hal.archives-ouvertes.fr/hal-00311136

T. Horsthuis, H. P. Buermans, J. F. Brons, A. O. Verkerk, M. L. Bakker et al., Gene Expression Profiling of the Forming Atrioventricular Node Using a Novel Tbx3-Based Node-Specific Transgenic Reporter, Circulation Research, vol.105, issue.1, pp.61-69, 2009.
DOI : 10.1161/CIRCRESAHA.108.192443

B. E. Bernstein, T. S. Mikkelsen, X. Xie, M. Kamal, D. J. Huebert et al., A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells, Cell, vol.125, issue.2, pp.315-3261428, 2006.
DOI : 10.1016/j.cell.2006.02.041

K. N. Ivey, A. Muth, J. Arnold, F. W. King, R. F. Yeh et al., MicroRNA Regulation of Cell Lineages in Mouse and Human Embryonic Stem Cells, Cell Stem Cell, vol.2, issue.3, pp.219-229, 2008.
DOI : 10.1016/j.stem.2008.01.016

A. Ventura, A. G. Young, M. M. Winslow, L. Lintault, A. Meissner et al., Targeted deletion BlinNuryStefanovic et al 40120-RG-1 R4 32 reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters The miR-430/427/302 family controls mesendodermal fate specification via species-specific target selection, Cell. Dev Cell, vol.132, issue.16, pp.875-886517, 2008.

R. D. Morin, M. D. O-'connor, M. Griffith, F. Kuchenbauer, A. Delaney et al., Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells, Genome Research, vol.18, issue.4, pp.610-621, 2008.
DOI : 10.1101/gr.7179508

A. Marson, S. S. Levine, M. F. Cole, G. M. Frampton, T. Brambrink et al., Connecting microRNA Genes to the Core Transcriptional Regulatory Circuitry of Embryonic Stem Cells, Cell, vol.134, issue.3, pp.521-533, 2008.
DOI : 10.1016/j.cell.2008.07.020

L. A. Boyer, T. I. Lee, M. F. Cole, S. E. Johnstone, S. S. Levine et al., Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells, Cell, vol.122, issue.6, pp.947-956, 2005.
DOI : 10.1016/j.cell.2005.08.020

R. Abu-issa, G. Smyth, I. Smoak, K. Yamamura, and E. N. Meyers, Fgf8 is required for pharyngeal arch and cardiovascular development in the mouse, Development, vol.129, pp.4613-4625, 2002.

J. Liao, V. S. Aggarwal, S. Nowotschin, A. Bondarev, S. Lipner et al., Identification of downstream genetic pathways of Tbx1 in the second heart field, Developmental Biology, vol.316, issue.2, pp.524-537, 2008.
DOI : 10.1016/j.ydbio.2008.01.037

L. Ryckebusch, Z. Wang, N. Bertrand, S. C. Lin, X. Chi et al., Retinoic acid deficiency alters second heart field formation, Foxh1 is essential for development of the anterior heart field. Dev Cell, pp.2913-2918331, 2004.
DOI : 10.1073/pnas.0712344105

J. Y. Chan, M. Takeda, L. E. Briggs, M. L. Graham, J. T. Lu et al., Identification of Cardiac-Specific Myosin Light Chain Kinase, Circulation Research, vol.102, issue.5, pp.571-580, 2008.
DOI : 10.1161/CIRCRESAHA.107.161687

A. Tomescot, J. Leschik, V. Bellamy, G. Dubois, E. Messas et al., Differentiation In Vivo of Cardiac Committed Human Embryonic Stem Cells in Postmyocardial Infarcted Rats, STEM CELLS, vol.66, issue.9, pp.2200-2205, 2007.
DOI : 10.1634/stemcells.2007-0133

URL : https://hal.archives-ouvertes.fr/inserm-00149211

F. Colucci, C. Soudais, E. Rosmaraki, L. Vanes, V. L. Tybulewicz et al., Dissecting NK cell development using a novel alymphoid mouse model: investigating the role of the c-abl proto-oncogene in murine NK cell differentiation, J Immunol, vol.162, pp.2761-2765, 1999.

T. Sumi, N. Tsuneyoshi, N. Nakatsuji, H. Suemori, A. T. Naito et al., Defining early lineage specification of human embryonic stem cells by the orchestrated balance of canonical Wnt/{beta}-catenin, Activin/Nodal and BMP signaling Developmental stage-specific biphasic roles of Wnt/beta-catenin signaling in cardiomyogenesis and hematopoiesis, Development. Proc Natl Acad Sci, vol.135, issue.103, pp.2969-297919812, 2006.

D. Zeineddine, E. Papadimou, K. Chebli, M. Gineste, J. Liu et al., Oct-3/4 Dose Dependently Regulates Specification of Embryonic Stem Cells toward a Cardiac Lineage and Early Heart Development, Developmental Cell, vol.11, issue.4, pp.535-546, 2006.
DOI : 10.1016/j.devcel.2006.07.013

L. A. Boyer, T. I. Lee, M. F. Cole, S. E. Johnstone, S. S. Levine et al., Core Transcriptional Regulatory Circuitry in Human Embryonic Stem Cells, Cell, vol.122, issue.6, pp.947-956, 2005.
DOI : 10.1016/j.cell.2005.08.020

A. Kulisz and H. G. Simon, An Evolutionarily Conserved Nuclear Export Signal Facilitates Cytoplasmic Localization of the Tbx5 Transcription Factor, Molecular and Cellular Biology, vol.28, issue.5, pp.1553-1564, 2008.
DOI : 10.1128/MCB.00935-07

F. Bernex, P. De-sepulveda, C. Kress, C. Elbaz, C. Delouis et al., Spatial and temporal patterns of c-kit-expressing cells in WlacZ/+ and WlacZ/WlacZ mouse embryos, Development, vol.122, pp.3023-3033, 1996.

C. L. Cai, X. Liang, Y. Shi, P. H. Chu, S. L. Pfaff et al., Isl1 Identifies a Cardiac Progenitor Population that Proliferates Prior to Differentiation and Contributes a Majority of Cells to the Heart, Developmental Cell, vol.5, issue.6, pp.877-889, 2003.
DOI : 10.1016/S1534-5807(03)00363-0

K. L. Waldo, D. H. Kumiski, K. T. Wallis, H. A. Stadt, M. R. Hutson et al., Conotruncal myocardium arises from a secondary heart field, Development, vol.128, pp.3179-3188, 2001.

Y. Morikawa, C. , and P. , Cardiac Neural Crest Expression of Hand2 Regulates Outflow and Second Heart Field Development, Circulation Research, vol.103, issue.12, pp.1422-1429, 1413.
DOI : 10.1161/CIRCRESAHA.108.180083

R. W. Stottmann, M. Choi, Y. Mishina, E. N. Meyers, J. Y. Klingensmith et al., BMP receptor IA is required in mammalian neural crest cells for development of the cardiac outflow tract and ventricular myocardium, Cardiac neural crest cells contribute to the dormant multipotent stem cell in the mammalian heart, pp.2205-22181135, 2004.
DOI : 10.1242/dev.01086

O. Seguchi, S. Takashima, S. Yamazaki, M. Asakura, Y. Asano et al., A cardiac myosin light chain kinase regulates sarcomere assembly in the vertebrate heart, Journal of Clinical Investigation, vol.117, issue.10, pp.2812-2824, 2007.
DOI : 10.1172/JCI30804DS1

N. Maherali, T. Ahfeldt, A. Rigamonti, J. Utikal, C. Cowan et al., A High-Efficiency System for the Generation and Study of Human Induced Pluripotent Stem Cells, Cell Stem Cell, vol.3, issue.3, pp.340-345, 2008.
DOI : 10.1016/j.stem.2008.08.003

M. W. Pfaffl, A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Research, vol.29, issue.9, p.45, 2001.
DOI : 10.1093/nar/29.9.e45

C. Rucker-martin, F. Pecker, D. Godreau, and S. N. Hatem, Dedifferentiation of atrial myocytes during atrial fibrillation: role of fibroblast proliferation in vitro, Cardiovascular Research, vol.55, issue.1, pp.38-52, 2002.
DOI : 10.1016/S0008-6363(02)00338-3

J. D. Nelson, O. Denisenko, and K. Bomsztyk, Protocol for the fast chromatin immunoprecipitation (ChIP) method, Nature Protocols, vol.34, issue.1, pp.179-185, 2006.
DOI : 10.1038/nprot.2006.27

J. A. Dahl, C. , and P. , ChIP, a Quick and Quantitative Chromatin Immunoprecipitation Assay, Unravels Epigenetic Dynamics of Developmentally Regulated Genes in Human Carcinoma Cells, Stem Cells, vol.6, issue.4, pp.1037-1046, 2007.
DOI : 10.1634/stemcells.2006-0430

Z. Li, J. Lu, M. Sun, S. Mi, H. Zhang et al., Distinct microRNA expression profiles in acute myeloid leukemia with common translocations, Proceedings of the National Academy of Sciences, vol.105, issue.40, pp.15535-15540, 2008.
DOI : 10.1073/pnas.0808266105