D. Gabrilovich, The Terminology Issue for Myeloid-Derived Suppressor Cells, Cancer Research, vol.67, issue.1, pp.425-426, 2007.
DOI : 10.1158/0008-5472.CAN-06-3037

S. Ostrand-rosenberg and P. Sinha, Myeloid-Derived Suppressor Cells: Linking Inflammation and Cancer, The Journal of Immunology, vol.182, issue.8
DOI : 10.4049/jimmunol.0802740

P. Filipazzi, Identification of a New Subset of Myeloid Suppressor Cells in Peripheral Blood of Melanoma Patients With Modulation by a Granulocyte-Macrophage Colony-Stimulation Factor???Based Antitumor Vaccine, Journal of Clinical Oncology, vol.25, issue.18, pp.2546-2553, 2007.
DOI : 10.1200/JCO.2006.08.5829

N. Mirza, All-trans-Retinoic Acid Improves Differentiation of Myeloid Cells and Immune Response in Cancer Patients, Cancer Research, vol.66, issue.18, pp.9299-9307, 2006.
DOI : 10.1158/0008-5472.CAN-06-1690

M. Srivastava, Lung cancer patients??? CD4+ T cells are activated in vitro by MHC II cell-based vaccines despite the presence of myeloid-derived suppressor cells, Cancer Immunology, Immunotherapy, vol.65, issue.10, pp.1493-1504, 2008.
DOI : 10.1007/s00262-008-0490-9

A. Zea, Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion, Cancer Res, vol.65, issue.8, pp.3044-3048, 2005.

S. Tu, Overexpression of Interleukin-1?? Induces Gastric Inflammation and Cancer and Mobilizes Myeloid-Derived Suppressor Cells in Mice, Cancer Cell, vol.14, issue.5, pp.408-419, 2008.
DOI : 10.1016/j.ccr.2008.10.011

B. Almand, Increased Production of Immature Myeloid Cells in Cancer Patients: A Mechanism of Immunosuppression in Cancer, The Journal of Immunology, vol.166, issue.1, pp.678-689, 2001.
DOI : 10.4049/jimmunol.166.1.678

C. Diaz-montero, Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin???cyclophosphamide chemotherapy, Cancer Immunology, Immunotherapy, vol.65, issue.1, pp.49-59, 2009.
DOI : 10.1007/s00262-008-0523-4

A. Ochoa, A. Zea, C. Hernandez, and P. Rodriguez, Arginase, Prostaglandins, and Myeloid-Derived Suppressor Cells in Renal Cell Carcinoma, Clinical Cancer Research, vol.13, issue.2, pp.721-726, 2007.
DOI : 10.1158/1078-0432.CCR-06-2197

S. Nagaraj, Altered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancer, Nature Medicine, vol.166, issue.7, pp.828-835, 2007.
DOI : 10.1038/nm1609

D. Gabrilovich and S. Nagaraj, Myeloid-derived suppressor cells as regulators of the immune system, Nature Reviews Immunology, vol.172, issue.3, pp.162-174, 2009.
DOI : 10.1038/nri2506

Y. Nefedova, M. Fishman, S. Sherman, X. Wang, A. Beg et al., Mechanism of All-Trans Retinoic Acid Effect on Tumor-Associated Myeloid-Derived Suppressor Cells, Cancer Research, vol.67, issue.22, pp.11021-11028, 2007.
DOI : 10.1158/0008-5472.CAN-07-2593

Y. Nefedova, Hyperactivation of STAT3 Is Involved in Abnormal Differentiation of Dendritic Cells in Cancer, The Journal of Immunology, vol.172, issue.1, pp.464-474, 2004.
DOI : 10.4049/jimmunol.172.1.464

P. Cheng, Inhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 protein, The Journal of Experimental Medicine, vol.94, issue.10, pp.2235-2249, 2008.
DOI : 10.2527/jas.2005-766

C. Corzo, Mechanism Regulating Reactive Oxygen Species in Tumor-Induced Myeloid-Derived Suppressor Cells, The Journal of Immunology, vol.182, issue.9, pp.5693-5701, 2009.
DOI : 10.4049/jimmunol.0900092

T. Wang, Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells, Nature Medicine, vol.10, issue.1, pp.48-54, 2004.
DOI : 10.1038/nm976

J. Lieblein, STAT3 can be activated through paracrine signaling in breast epithelial cells, BMC Cancer, vol.62, issue.19, p.302, 2008.
DOI : 10.1002/ijc.22930

G. Gallina, Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells, Journal of Clinical Investigation, vol.116, issue.10, pp.2777-2790, 2006.
DOI : 10.1172/JCI28828DS1

M. Kortylewski, Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity, Nature Medicine, vol.187, issue.12, pp.1314-1321, 2005.
DOI : 10.1038/nm1325

G. Mignot, S. Roux, C. Thery, E. Segura, and L. Zitvogel, Prospects for exosomes in immunotherapy of cancer, Journal of Cellular and Molecular Medicine, vol.65, issue.2, pp.376-388, 2006.
DOI : 10.1111/j.1582-4934.2006.tb00406.x

URL : https://hal.archives-ouvertes.fr/inserm-00451701

C. Thery, L. Zitvogel, and S. Amigorena, Exosomes: composition , biogenesis and function, Nat Rev Immunol, vol.2, issue.8, pp.569-579, 2002.

G. Van-niel, I. Porto-carreiro, S. Simoes, and G. Raposo, Exosomes: A Common Pathway for a Specialized Function, Journal of Biochemistry, vol.140, issue.1, pp.13-21, 2006.
DOI : 10.1093/jb/mvj128

X. Xiang, Induction of myeloid-derived suppressor cells by tumor exosomes, International Journal of Cancer, vol.319, issue.11, pp.2621-2633, 2009.
DOI : 10.1002/ijc.24249

R. Valenti, Human Tumor-Released Microvesicles Promote the Differentiation of Myeloid Cells with Transforming Growth Factor-??-Mediated Suppressive Activity on T Lymphocytes, Cancer Research, vol.66, issue.18, pp.9290-9298, 2006.
DOI : 10.1158/0008-5472.CAN-06-1819

Z. Zhong, Z. Wen, J. Darnell, and . Jr, Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6, Science, vol.264, issue.5155, pp.95-98, 1994.
DOI : 10.1126/science.8140422

S. Chen, Activated STAT3 is a mediator and biomarker of VEGF endothelial activation, Cancer Biology & Therapy, vol.7, issue.12, pp.1994-2003, 2008.
DOI : 10.4161/cbt.7.12.6967

M. Iero, Tumour-released exosomes and their implications in cancer immunity, Cell Death and Differentiation, vol.3, issue.1, pp.80-88, 2008.
DOI : 10.1016/j.coi.2006.01.011

A. Savina, M. Furlan, M. Vidal, and M. Colombo, Exosome Release Is Regulated by a Calcium-dependent Mechanism in K562 Cells, Journal of Biological Chemistry, vol.278, issue.22, pp.20083-20090, 2003.
DOI : 10.1074/jbc.M301642200

E. Leadbetter, Chromatin???IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors, Nature, vol.416, issue.6881, pp.603-607, 2002.
DOI : 10.1038/416603a

L. Apetoh, Toll-like receptor 4???dependent contribution of the immune system to anticancer chemotherapy and radiotherapy, Nature Medicine, vol.289, issue.9, pp.1050-1059, 2007.
DOI : 10.1038/nm1622

URL : https://hal.archives-ouvertes.fr/hal-00316924

S. Kim, Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis, Nature, vol.156, issue.7225, pp.102-106, 2009.
DOI : 10.1182/blood-2003-10-3372

M. Tsan and B. Gao, Endogenous ligands of Toll-like receptors, Journal of Leukocyte Biology, vol.76, issue.3, pp.514-519, 2004.
DOI : 10.1189/jlb.0304127

R. Vabulas, Endocytosed HSP60s Use Toll-like Receptor 2 (TLR2) and TLR4 to Activate the Toll/Interleukin-1 Receptor Signaling Pathway in Innate Immune Cells, Journal of Biological Chemistry, vol.276, issue.33, pp.31332-31339, 2001.
DOI : 10.1074/jbc.M103217200

A. Asea, Novel Signal Transduction Pathway Utilized by Extracellular HSP70. ROLE OF Toll-LIKE RECEPTOR (TLR) 2 AND TLR4, Journal of Biological Chemistry, vol.277, issue.17
DOI : 10.1074/jbc.M200497200

R. Vabulas, HSP70 as Endogenous Stimulus of the Toll/Interleukin-1 Receptor Signal Pathway, Journal of Biological Chemistry, vol.277, issue.17, pp.15107-15112, 2002.
DOI : 10.1074/jbc.M111204200

R. Vabulas, The Endoplasmic Reticulum-resident Heat Shock Protein Gp96 Activates Dendritic Cells via the Toll-like Receptor 2/4 Pathway, Journal of Biological Chemistry, vol.277, issue.23, pp.20847-20853, 2002.
DOI : 10.1074/jbc.M200425200

J. Park, Involvement of Toll-like Receptors 2 and 4 in Cellular Activation by High Mobility Group Box 1 Protein, Journal of Biological Chemistry, vol.279, issue.9, pp.7370-7377, 2004.
DOI : 10.1074/jbc.M306793200

F. Ghiringhelli, CD4+CD25+ regulatory T???cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative, European Journal of Immunology, vol.34, issue.2, pp.336-344, 2004.
DOI : 10.1002/eji.200324181

S. Roux, CD4+CD25+ Tregs control the TRAIL-dependent cytotoxicity of tumor-infiltrating DCs in rodent models of colon cancer, Journal of Clinical Investigation, vol.118, issue.11, pp.3751-3761, 2008.
DOI : 10.1172/JCI35890DS1

URL : https://hal.archives-ouvertes.fr/inserm-00451698

S. Mandruzzato, IL4Ralpha+ myeloid-derived suppressor cell expansion in cancer patients

P. Pan, Reversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor function, Blood, vol.111, issue.1, pp.219-228, 2008.
DOI : 10.1182/blood-2007-04-086835

J. Ozao-choy, The Novel Role of Tyrosine Kinase Inhibitor in the Reversal of Immune Suppression and Modulation of Tumor Microenvironment for Immune-Based Cancer Therapies, Cancer Research, vol.69, issue.6, pp.2514-2522, 2009.
DOI : 10.1158/0008-5472.CAN-08-4709

P. Sinha, V. Clements, A. Fulton, and S. Ostrand-rosenberg, Prostaglandin E2 Promotes Tumor Progression by Inducing Myeloid-Derived Suppressor Cells, Cancer Research, vol.67, issue.9, pp.4507-4513, 2007.
DOI : 10.1158/0008-5472.CAN-06-4174

F. Andre, Malignant effusions and immunogenic tumour-derived exosomes, The Lancet, vol.360, issue.9329, pp.295-305, 2002.
DOI : 10.1016/S0140-6736(02)09552-1

J. Wolfers, Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming, Nature Medicine, vol.7, issue.3, pp.297-303, 2001.
DOI : 10.1038/85438

A. Abusamra, Tumor exosomes expressing Fas ligand mediate CD8+ T-cell apoptosis, Blood Cells, Molecules, and Diseases, vol.35, issue.2, pp.169-173, 2005.
DOI : 10.1016/j.bcmd.2005.07.001

J. Youn, S. Nagaraj, M. Collazo, and D. Gabrilovich, Subsets of Myeloid-Derived Suppressor Cells in Tumor-Bearing Mice, The Journal of Immunology, vol.181, issue.8, pp.5791-5802, 2008.
DOI : 10.4049/jimmunol.181.8.5791

M. Jaattela, Escaping Cell Death: Survival Proteins in Cancer, Experimental Cell Research, vol.248, issue.1, pp.30-43, 1999.
DOI : 10.1006/excr.1999.4455

S. Calderwood, M. Khaleque, D. Sawyer, and D. Ciocca, Heat shock proteins in cancer: chaperones of tumorigenesis, Trends in Biochemical Sciences, vol.31, issue.3, pp.164-172, 2006.
DOI : 10.1016/j.tibs.2006.01.006

H. Singh-jasuja, The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of its receptor, European Journal of Immunology, vol.30, issue.8, pp.2211-2215, 2000.
DOI : 10.1002/1521-4141(2000)30:8<2211::AID-IMMU2211>3.0.CO;2-0

G. Multhoff, Activation of natural killer cells by heat shock protein 70, International Journal of Hyperthermia, vol.18, issue.6, pp.576-585, 2002.
DOI : 10.1080/0265673021000017109

D. Millar, Hsp70 promotes antigen-presenting cell function and converts T-cell tolerance to autoimmunity in vivo, Nature Medicine, vol.9, issue.12, pp.1469-1476, 2003.
DOI : 10.1038/nm962

A. Kingston, C. Hicks, M. Colston, and M. Billingham, A 71-kD heat shock protein (hsp) from Mycobacterium tuberculosis has modulatory effects on experimental rat arthritis, Clinical and Experimental Immunology, vol.103, issue.1, pp.77-82, 1996.
DOI : 10.1046/j.1365-2249.1996.929628.x

D. Elias, D. Markovits, T. Reshef, R. Van-der-zee, and I. Cohen, Induction and therapy of autoimmune diabetes in the non-obese diabetic (NOD/Lt) mouse by a 65-kDa heat shock protein., Proceedings of the National Academy of Sciences, vol.87, issue.4, pp.1576-1580, 1990.
DOI : 10.1073/pnas.87.4.1576

B. Prakken, Induction of IL-10 and Inhibition of Experimental Arthritis Are Specific Features of Microbial Heat Shock Proteins That Are Absent for Other Evolutionarily Conserved Immunodominant Proteins, The Journal of Immunology, vol.167, issue.8, pp.4147-4153, 2001.
DOI : 10.4049/jimmunol.167.8.4147

R. Aneja, K. Odoms, K. Dunsmore, T. Shanley, and H. Wong, Extracellular Heat Shock Protein-70 Induces Endotoxin Tolerance in THP-1 Cells, The Journal of Immunology, vol.177, issue.10, pp.7184-7192, 2006.
DOI : 10.4049/jimmunol.177.10.7184

A. Asea, HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine, Nat Med, vol.6, issue.4, pp.435-442, 2000.

E. Galloway, Activation of hepatocytes by extracellular heat shock protein 72, AJP: Cell Physiology, vol.295, issue.2, pp.514-520, 2008.
DOI : 10.1152/ajpcell.00032.2008

M. Tsan and B. Gao, Heat shock proteins and immune system, Journal of Leukocyte Biology, vol.85, issue.6, pp.905-910, 2009.
DOI : 10.1189/jlb.0109005

S. Gupta and A. Knowlton, HSP60 trafficking in adult cardiac myocytes: role of the exosomal pathway, AJP: Heart and Circulatory Physiology, vol.292, issue.6, pp.3052-3056, 2007.
DOI : 10.1152/ajpheart.01355.2006

W. Boireau, A. Rouleau, G. Lucchi, and P. Ducoroy, Revisited BIA-MS combination: Entire ???on-a-chip??? processing leading to the proteins identification at low femtomole to sub-femtomole levels, Biosensors and Bioelectronics, vol.24, issue.5, pp.1121-1127, 2009.
DOI : 10.1016/j.bios.2008.06.030

URL : https://hal.archives-ouvertes.fr/hal-00347652