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Dendritic Spike Saturation of Endogenous Calcium
Buffer and Induction of Postsynaptic Cerebellar LTP
Marco Canepari*, Kaspar E. Vogt

Division of Pharmacology and Neurobiology, Biozentrum–University of Basel, Basel, Switzerland

Abstract

The architecture of parallel fiber axons contacting cerebellar Purkinje neurons retains spatial information over long
distances. Parallel fiber synapses can trigger local dendritic calcium spikes, but whether and how this calcium signal leads to
plastic changes that decode the parallel fiber input organization is unknown. By combining voltage and calcium imaging,
we show that calcium signals, elicited by parallel fiber stimulation and mediated by voltage-gated calcium channels,
increase non-linearly during high-frequency bursts of electrically constant calcium spikes, because they locally and
transiently saturate the endogenous buffer. We demonstrate that these non-linear calcium signals, independently of NMDA
or metabotropic glutamate receptor activation, can induce parallel fiber long-term potentiation. Two-photon imaging in
coronal slices revealed that calcium signals inducing long-term potentiation can be observed by stimulating either the
parallel fiber or the ascending fiber pathway. We propose that local dendritic calcium spikes, evoked by synaptic potentials,
provide a unique mechanism to spatially decode parallel fiber signals into cerebellar circuitry changes.
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Introduction

Neuronal dendrites can fire action potentials mediated by

voltage-gated calcium channels (VGCC) that may be sufficient to

induce long-term potentiation (LTP) of synaptic potentials [1,2].

Calcium signals mediated by VGCCs differ from those mediated

by ionotropic or metabotropic glutamate receptors. Whereas the

latter signals co-localize with activated receptors, either by direct

calcium influx or by secondary intracellular pathways, the extent

of the former signals is determined by the spread of the dendritic

spike. In the cerebellar Purkinje neuron (PN), calcium spikes can

be elicited by parallel fiber (PF) stimulation and can be localized to

small regions [3]. However, the function of calcium spikes elicited

by neighboring presynaptic fibers is unknown. In particular,

dendritic excitation has been associated with PF synaptic plasticity

in relation to the climbing fibre (CF)-excitatory postsynaptic

potential (EPSP) providing the calcium signal underlying coinci-

dent PF and CF detection and PF- long-term depression (LTD)

[4], but the role of local PF-elicited calcium spikes in long-term

synaptic plasticity is unexplored.

In this report we show that PF-elicited dendritic calcium spikes

can induce postsynaptic PF-LTP in the mouse cerebellum. We

demonstrate that this phenomenon is correlated with the ability of

high-frequency calcium spike bursts to locally and transiently

saturate the endogenous calcium buffer (ECB) leading to supra-

linear summation of intracellular free calcium concentration

changes (D[Ca2+]i). Since dendritic excitation depends on the

spatiotemporal summation of synaptic inputs, the present results

suggest that a major physiological role of PF-evoked dendritic

calcium spikes is to functionally associate cerebellar granule cell

axons synchronously targeting the same PN dendritic region.

Results

Dendritic calcium spikes and non-linear summation of
calcium signals elicited by PF-EPSPs

Dendritic membrane potential and calcium signals were

optically investigated in mouse cerebellar sagittal slices. We

measured changes in dendritic membrane potential (DVm) and in

intracellular free calcium concentration (D[Ca2+]i) signals in PNs

loaded with the voltage sensitive dye JPW-1114 and 1 mM of the

low-affinity calcium indicator Fura-FF as previously described [5].

High frequency trains of PF-EPSPs can elicit calcium spikes that

mediate D[Ca2+]i which depend on the number of stimuli [6]. In

the example of Figure 1A, PF stimulation in the vicinity of a

dendritic branch with 3, 5, 7 and 10 pulses at 100 Hz elicited local

DVm and D[Ca2+]i signals which declined sharply with the distance

from the site of stimulation (Figure 1B). In the burst of 10 EPSPs,

the somatic response facilitated from ,5 mV to ,20 mV after the

third pulse with episodes of somatic action potentials. The

amplitude of the somatic EPSPs was comparable to the size of

the DVm signal measured in the majority of the dendritic field.

However, in the area where D[Ca2+]i signals were detected, the

peak DVm signal exceeded 40 mV (Figure 1A). This value

compares with the size of dendritic calcium spikes measured with

electrode dendritic recordings [7,3]. Notably, the size of the

dendritic calcium spike associated with the 3rd–10th EPSP did not

change, but the D[Ca2+]i increased supra-linearly with the number

of events. This result was observed in all 5 PNs tested for 3–10 PF

EPSPs (Figure 1C).

The supra-linear D[Ca2+]i signal described above was due to two

factors as shown in the experiment in Figure 1D where D[Ca2+]i
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Figure 1. Dendritic DVm and D[Ca2+]i associated with PF-EPSPs. A. PN reconstruction (left) and recorded dendrites with three sample regions
(868 pixels) and the position of the stimulating electrode; peak DVm and D[Ca2+]i signals following 10 PF-EPSPs at 100 Hz represented with color-
coded scales. B. DVm and D[Ca2+]i signals associated with 3, 5, 7 and 10 PF-EPSPs in the three regions; somatic recordings reported; peak DVm.40 mV
and detectable D[Ca2+]i signals in region 1 and in region 2 for the longer bursts. C. Peak DVm corresponding to 1–10 EPSPs and peak D[Ca2+]i

following 3, 5, 7 and 10 EPSPs from 5 PNs; each symbol represents a different cell. D. Recorded dendrites with the 868 pixel region of maximal
D[Ca2+]i signal; peak DVm and D[Ca2+]i signals following 7 PF-EPSPs at 100 Hz represented in color-code. E. (Left)-DVm and D[Ca2+]i recordings from
the region in D following 7 PF-EPSPs; D[Ca2+]i recording following 3 PF-EPSPs reported above; normalized D[Ca2+]i recordings with 3 and 7 PF-EPSPs
reported below. (Right)-Peak DVm and D[Ca2+]i signals corresponding to the 3rd and 7th EPSP; normalized peak D[Ca2+]i signals corresponding to the
3rd and 7th EPSP superimposed and single exponential decay fit (20 ms) reported below. F. Fractional changes (Mean6SD, N = 8 cells) of the 7th peak
DVm relative to the 3rd peak, of the peak 7-EPSPs D[Ca2+]i relative to the peak 3-EPSPs D[Ca2+]i and of the 7-EPSPs D[Ca2+]i decay time constant (t7)
relative to the 3-EPSPs D[Ca2+]i; decay time constant (t3). G. D[Ca2+]i recordings following 7 PF-EPSPs at 100 Hz before (control) and 10–15 minutes
after addition of 100 mM CPCCOEt, 100 mM LY367385, 30 mM CPA, 100 mM AP5 or 10 mM NBQX as indicated; EPSPs and D[Ca2+]i signals blocked by
NBQX. H. Fractional changes (Mean6SD) of the peak D[Ca2+]i signal after addition of a drug; CPCCOEt, LY367385, CPA or AP5: paired t-test, p.0.1,
N = 7; of NBQX: paired t-test, p,0.01, N = 6.
doi:10.1371/journal.pone.0004011.g001
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signals were analyzed for 3 and 7 EPSPs. First, the contribution to

the D[Ca2+]i signal of each calcium spike increased during the

burst. Second, the fast component of the decay time constant (t) of

the D[Ca2+]i signals decreased with the number of EPSPs,

enhancing the summation of D[Ca2+]i contributions from individ-

ual spikes. In Figure 1E the D[Ca2+]i signals associated with the 3rd

and 7th EPSPs are superimposed and normalized to their maxima.

Single exponential functions are fitted to the initial 20 ms decay of

the two D[Ca2+]i signals. In contrast to the marked change in the

D[Ca2+]i signal, the difference in the peak DVm signal associated

with the 3rd and 7th EPSPs was minimal. As shown in Figure 1F, in

8 cells with a peak D[Ca2+]i signal of 0.7–1.5 mM after 7 PF-

EPSPs, the D[Ca2+]i contribution of the 7th EPSP spike, relative to

the 3rd, was higher (ratio: 1.6660.22; paired t-test p,0.01) and the

decay time constant of the D[Ca2+]i signal after 7 EPSPs, relative to

the D[Ca2+]i signal after 3 EPSPs, slower (ratio: 1.9860.51; paired

t-test p,0.01). However, the peak DVm associated with the 7th

EPSP, relative to the peak DVm associated with the 3rd EPSP, was

not different (ratio: 1.0060.03, paired t-test p.0.2), indicating no

change in the calcium spikes during the burst.

The peak D[Ca2+]i signal followed the calcium spike by 2–4 ms,

suggesting calcium spike influx independent of mGluR1-mediated

signals or of influx via NMDA receptors, expressed in mature PNs

[8]. D[Ca2+]i signals following 7 PF-EPSPs were not significantly

affected by the addition of the mGluR1 antagonists CPCCOEt

(100 mM) and LY367385 (100 mM), by the blocker of endoplasmic

reticulum calcium-ATPase Cyclopiazonic acid (CPA, 30 mM) or

by blocking NMDA receptors with AP5 (100 mM) (Figure 1G). As

shown in Figure 1H, The ratios between D[Ca2+]i signals before

and (10–15 minutes) after addition of these drugs were 1.0660.25,

0.9860.14, 1.0460.26 and 1.0760.19 respectively (N = 7, paired

t-test p.0.1 in all three cases). The D[Ca2+]i signal was blocked by

suppressing depolarization with the AMPA receptor antagonist

NBQX (10 mM) (fractional D[Ca2+]i change: 0.0560.05, N = 6,

paired t-test p,0.01). As AMPA receptors do not contribute to

dendritic calcium signals in PNs [6], we conclude that fast D[Ca2+]i

signals associated with PF-stimulation spikes were mediated by

VGCCs.

The size of the D[Ca2+]i transients increases with the number of

stimulated PF terminals and therefore with the excited dendritic

area [6]. Figure 2A shows one example of a PN where DVm and

D[Ca2+]i signals were measured following PF stimulation at two

different intensities. The area of dendritic excitation and of the

observable D[Ca2+]i signal enlarged with the stronger stimulation.

In the region excited by the weaker stimulation, the peak D[Ca2+]i

increased with the stronger stimulation (Figure 2B), but the peaks

of DVm corresponding to the last spikes did not change (Figure 2C).

The same result was observed in 7 cells tested with two stimulation

intensities, as shown in the scatter plot of Figure 2D.

This first set of experiments shows that the non-linear D[Ca2+]i

increase associated with PF-evoked dendritic spikes is independent

of the electrical amplitude of the calcium spike.

Dendritic calcium spikes and calcium signals elicited by
CF-EPSPs

Dendritic calcium spikes can be also elicited by CF-EPSPs [9],

but they are spread over a large area of the dendritic tree. In

another set of experiments we examined whether and how supra-

linear calcium signals can occur following CF stimulation.

CF-EPSP bursts are dominated by short-term depression due to

presynaptic depletion [10,11]. In the experiment shown in

Figure 3A, DVm and D[Ca2+]i signals following either 1 CF-EPSP

or 5 CF-EPSPs at 100 Hz were measured. Although CF activation

occurs at low frequencies, it was important to perform this test to

compare CF-mediated excitation with PF-mediated calcium spikes

and because CF high frequency stimulation was used in another

study [12]. The peak DVm signals corresponding to the 2nd–5th

EPSP were smaller compared to the first one. In most dendritic

regions, the first EPSP of the train evoked a calcium transient, but

nowhere a D[Ca2+]i signal associated with the 2nd–5th EPSP was

observed. In 4 cells, we measured DVm and D[Ca2+]i signals over

the whole imaged dendritic area. The peak DVm signals of the 1st,

2nd, 3rd, 4th, and 5th EPSP were 43.064.2 mV, 29.062.4 mV,

30.065.0 mV, 29.3.065.0 mV and 28.563.7 mV respectively,

whereas the D[Ca2+]i signal following 1 CF-EPSPs and 5-CF

EPSPs were unaltered (168650 nM and 165650 nM respectively,

Figure 2. Dendritic DVm and D[Ca2+]i while increasing the
number of stimulated PFs. A. Recorded dendrites with three
sample regions (1–3). Peak DVm and D[Ca2+]i following 7 PF-EPSPs at
100 delivered by the electrode ‘‘stim’’ at a ‘‘weak’’ and ‘‘strong’’
stimulation intensities represented in color-code. B. DVm and D[Ca2+]i

recordings from the regions 1–3 following PF stimulation at the two
stimulation intensities; somatic recordings also reported. C. DVm

corresponding to the last two spikes following weak and strong PF
stimulation. D. Scatter plot of peak D[Ca2+]i against peak DVm averaged
over the last three spikes at two stimulation intensities from 7 cells;
empty symbols: weak stimulation; filled symbols: strong stimulation;
each symbol represents a different cell.
doi:10.1371/journal.pone.0004011.g002
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Figure 3B). The size of this D[Ca2+]i signal was in the range of what

estimated in a different quantitative study [13]. However, it must

be pointed out that our estimate could be biased by our

approximate estimation of D[Ca2+]i (see Materials and Methods)

and by the assumed dissociation constant of Fura-FF (Kd = 10 mM)

derived from the literature [14]. In summary, CF-EPSP high-

frequency bursts are associated with small dendritic D[Ca2+]i

signals because only the first EPSP of a train can evoke a calcium

transient.

Although CF-mediated D[Ca2+]i signals are small, when paired

with a short delay after PF-EPSPs bursts, CF-EPSPs are associated

with a supra-linear dendritic D[Ca2+]i signal, independent of the

activation of mGluR1s and calcium release from stores [12].

Therefore, we tested whether the DVm signal associated with the

CF-EPSP was changed by the pairing protocol. Figure 3C shows

one experiment in which DVm and D[Ca2+]i signals were measured

for a pairing protocol with one CF-EPSP delayed by 90 ms from

the beginning of a 7 PF-EPSPs burst. In the region of PF-evoked

dendritic calcium spikes, the D[Ca2+]i signal associated with the

CF-EPSP increased during the pairing protocol (Figure 3D). The

site of the supra-linear D[Ca2+]i signal (Figure 3E), obtained as the

difference between the D[Ca2+]i signals during paired and

unpaired stimulation, co-localized with the region of the PF-

evoked dendritic spikes (Figure 3C). However, the dendritic

depolarization associated with the CF-EPSP did not change

following the pairing protocol (Figure 3E), indicating that the

previous PF-EPSPs burst did not affect the CF-evoked calcium

spike. In 6 cells (Figure 3F), in the region excited by the PF-EPSPs

burst, the paired peak CF-associated D[Ca2+]i, obtained by

subtracting the PF- D[Ca2+]i from the paired D[Ca2+]i, was

433633 nM, higher (p,0.01, two-sample t-test) than the unpaired

peak CF D[Ca2+]i (192650 nM). In contrast, the paired peak CF

DVm (43.567.7 mV) did not change from the unpaired CF DVm

(45.768.3 mV, p.0.2 two-sample t-test). Therefore, the dendritic

supra-linear calcium signal, associated with paired PF and CF

stimulation, is independent of the DVm peak of the CF-evoked

calcium spike.

Supra-linear D[Ca2+]i signals associated with calcium
spikes are due to local saturation of the endogenous
calcium buffer

The evidence that progressively larger spike-D[Ca2+]i compo-

nents do not correlate with changes in the electrical amplitude of

dendritic calcium spikes excludes the possibility of increasing

calcium influx and indicates a saturation of calcium binding

proteins forming the ECB. To directly estimate the amount of

Figure 3. Dendritic DVm and D[Ca2+]i associated with CF-EPSPs.
A. (Left) Recorded dendrites with three sample regions (1–3) and the
whole dendritic regions (d) indicated. (Right)-DVm and D[Ca2+]i

associated with 1 CF-EPSP or 5 CF-EPSPs at 100 Hz in the regions
1,2,3 and d; somatic recordings reported. B. Mean6SD of the peak DVm

associated with 5 CF-EPSPs at 100 Hz and of the peak D[Ca2+]i

associated with 1 CF-EPSP and 5 CF-EPSPs at 100 Hz from 4 PNs over
the imaged dendritic area. C. (Left)-Recorded dendrites with three
sample regions (1–3); peak DVm and D[Ca2+]i following 7 PF-EPSPs at
100 Hz delivered by ‘‘stim’’ represented in color-code. (Right)-Corre-
sponding D[Ca2+]i recordings from the regions 1–3; somatic recording
reported. D. DVm and D[Ca2+]i in the regions 1–3 following 1 CF EPSP
unpaired (CF) and paired to 7 PF-EPSPs with a delay of 90 ms; paired
CF-mediated D[Ca2+]i signal larger in the region excited by the PF-
EPSPs. E. (Left)–DVm associated with the CF-EPSP in unpaired and
paired conditions; no change in the CF DVm signal. (Right)–Supra-linear
D[Ca2+]i from the difference between D[Ca2+]i associated with the
pairing protocol and D[Ca2+]i associated with the unpaired PF-EPSPs
and CF-EPSP; color-coded image is the supra-linear D[Ca2+]i. F.
Mean6SD of the peak CF DVm and D[Ca2+]i associated 1 CF-EPSP
unpaired or paired to 7 PF-EPSPs from 6 PNs; two populations t-tests:
DVm signals, p.0.1; D[Ca2+]i signals, p,0.01.
doi:10.1371/journal.pone.0004011.g003
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calcium influx, we sequentially patched PNs first with Fura-FF to

measure D[Ca2+]i signals and later with 10 mM of the high-affinity

calcium indicator Bis-Fura-2 (BF2). We estimated the amount of

calcium bound to the non-saturated high-affinity calcium indicator

BF2 as described in the Materials and Methods.

It must be pointed out that BF2 injection blocks calcium

dependent processes preventing the test of putative calcium-

dependent modulations on calcium influx. However, calcium

down-regulates calcium spikes by activating calcium-gated potas-

sium channels [3], which are coupled to P/Q type calcium

channels [15] and this mechanism would only decrease calcium

influx.

In the cell of Figure 4A the region where a change of

fluorescence (either a D[Ca2+]i or BF2-DF/F0 signal) was detected

following 7 PF-EPSPs was wider in the presence of BF2, a

phenomenon possibly due to the diffusion of the bound-indicator

and to a larger firing region in conditions where activation of the

calcium-activated BK channels is prevented [3]. In addition, the

block of calcium-activated potassium channels (in particular SK

channels) increased somatic firing [16] during both PF and CF

stimulation (Figure 4B). Taking into account these effects due to

BF2 injection, we compared D[Ca2+]i signals and BF2-DF/F0

signal as shown in Figure 4C. The 7 PF-EPSPs relative to 3 PF-

EPSPs BF2-DF/F0 was smaller than the corresponding D[Ca2+]i

signals ratio and no paired CF-associated supra-linear BF2-DF/F0

signal was detected. These results were not due to BF2 saturation,

since 20-PF-EPSPs induced a BF2-DF/F0 ,3.5 times larger than

that associated with 7 PF-EPSPs (Figure 4D). In N = 5 cells

(Figure 4E), the 7 PF-EPSPs relative to 3 PF-EPSPs BF2-DF/F0

(2.4860.76) was smaller than the corresponding control D[Ca2+]i

signals ratio (4.2660.64, paired t-test: p,0.01). The paired CF-

BF2-DF/F0 signal was almost identical to the unpaired CF-BF2-

DF/F0 signal (ratio: 0.9660.06) compared to the larger paired CF-

D[Ca2+]i signal (ratio: 2.7360.17, paired t-test: p,0.01). We

concluded that in conditions of enhanced excitation by the block

of calcium-activated potassium channels, calcium influx is constant

for consecutive calcium spikes and their individual contributions to

BF2-DF/F0 summate linearly.

To finally confirm that ECB saturation can occur during

dendritic calcium bursts, we ran computer simulations using the

single compartment model of dendritic calcium dynamics in PN

dendrites described by Schmidt et al. [13]. The model predicts the

time course of free calcium concentration in the presence of the

ECBs calbindin D28k (CB) and parvalbumin (PV). We began the

analysis by using the same set of conditions of Schmidt et al. [13]

and, from this starting point, we modified the parameters

according to our different conditions (different calcium indicator,

different Mg-ATP concentration and different temperature) as

described in detail in the Materials and Methods. In particular, we

referred to the published values for the kinetics of CB [17] and PV

[18] and doubled the on-rate (Kon) and the dissociation constant

(Kd) to account for the different temperature (32-33uC instead of

room temperature). As shown by Schmidt et al. [13], CB affects

the peak amplitude and the fast components of D[Ca2+]i signals

whereas PV does not. Thus, in order to obtain a D[Ca2+]i signal

amplitude of ,300 nM, for a single calcium spike, we set the CB

concentration to 100 mM, a value that is larger than that used by

Schmidt et al. [13], but still smaller than that estimated in another

study where dendritic ECB saturation was reported [19].

Figure 4. Dendritic calcium influx measured with BF2. A.
Recorded dendrites with the color-coded fluorescence signals following
7 PF-EPSPs at 100 Hz from 1 mM Fura-FF and 10 mM BF2; the position
of the stimulating electrode ‘‘stim’’ and the 868 pixels region of
maximal D[Ca2+]i indicated; the area of the BF2 signal wider. B. Somatic
recordings following 7 PF-EPSPs, 3 PF-EPSPs and 1 CF-EPSP 15 minutes
after whole-cell with 1 mM Fura-FF (left) and 30 minutes after whole-
cell with 10 mM BF2 (right); increased somatic excitability with BF2. C.
D[Ca2+]i (left) and BF2-DF/F0 (right) following 7 PF-EPSPs, 3 PF-EPSPs, a
PF-CF pairing (paired), 1 unpaired CF-EPSP (u-CF); the D[Ca2+]i

corresponding the paired CF-EPSP (p-CF) calculated by subtracting
the 7-PF signal from the paired signal also reported. D. BF2-DF/F0

following 20 PF-EPSPs, 7 PF-EPSPs and 3 PF-EPSPs indicating no
saturation of the indicator. E. Fractional changes (Mean6SD, N = 5 cells)
of the peak D[Ca2+]i and of the BF2-DF/F0 of the 7 PF-EPSPs signals
relative to the 3 PF-EPSPs signal and of the p-CF signals relative to the u-
CF signals; paired t-test on the two fractional changes: p,0.01. F.
Computer simulations of D[Ca2+]i according to the model described in
the Materials and Methods; (Left): CB concentration 100 mM, fast CB

binding site Kon 8.53?107 M21s21; (Right): CB concentration 100 mM,
Fast CB binding site Kon 34.12?107 M21s21; note the better agreement
of the right traces with experimental scenarios.
doi:10.1371/journal.pone.0004011.g004
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Assuming that the first PF-EPSP of a train of 7 EPSPs does not

elicit a calcium spike, we simulated the experimental scenarios of

Figure 4 with 2 and 6 calcium spikes at 100 Hz. We also set the

occurrence of the CF-EPSP 80 ms after the first calcium spike.

The results of this first simulation are reported in Figure 4F (left

traces). Dendritic ECB saturation, in particular of CB, is predicted

by the model. Interestingly, both D[Ca2+]i amplitude and its degree

of non-linearity during consecutive spikes depend not only on the

CB concentration, but also on its kinetics and affinity. Figure 4F

(right traces) shows the result of a second simulation in which the

on-rate and the affinity of the faster binding site of CB were set to

a value 4 times larger than that in the previous simulation. In this

condition the first D[Ca2+]i amplitude was 165 nM and the

supralinear increase of the D[Ca2+]i signal was more prominent

and closer to the experimental observation. This qualitative result

suggests that faster ECB other than CB might play a significant

role in the phenomenon described here.

PF-evoked dendritic spikes induce PF long-term synaptic
plasticity

The transient saturation of ECB leads to a fast and relatively large

D[Ca2+]i signal that may induce synaptic plasticity. To test this

hypothesis, we explored the effect of repetitive bursting activity on the

amplitude of the PF-EPSPs, recorded every 15 s (4 EPSPs every

minute, 0.067 Hz). In the experiment of Figure 5, we tested first the

effect of repeating 3 PF-EPSPs for 60 times at 1 Hz (typically D[Ca2+]i

below ECB saturation) and later the effect of repeating 7 PF-EPSPs

(D[Ca2+]i above ECB saturation). In a 868 pixels region, 3 EPSPs

were associated with 2 calcium spikes and a D[Ca2+]i signal of ,200

nM whereas 7 EPSPs were associated with 6 calcium spikes and a

D[Ca2+]i signal of ,900 nM (Figure 5A). Repetitive application of 3

EPSPs didn’t cause any change in the EPSP amplitude tested up to

15 minutes later, whereas repetitive application of 7 EPSPs caused a

robust LTP (Figure 5B and Figure 5C). The scatter plot and the bar

diagram in Figure 5D show the fractional change of the EPSP

amplitude 10-15 minutes following repetitive stimulation with 3 and

7 EPSPs (summary results from 6 cells). 3 EPSPs which evoked peak

D[Ca2+]i signals ,300 nM never affected the EPSP amplitude

whereas 7 EPSPs associated with peak D[Ca2+]i signals .600 nM

consistently caused LTP.

To better characterize this phenomenon, we used a protocol

(conditioning protocol) of 7 EPSPs at 100 Hz (EPSP burst)

repeated 60 times at 1 Hz. By adjusting the stimulation intensity,

we explored the effect of D[Ca2+]i signals of different size. To

standardize the analysis, we used the 868 pixel region of maximal

D[Ca2+]i size to correlate D[Ca2+]i signals ranging from 0.1 mM

(the minimal detectable D[Ca2+]i) up to 4 mM, with the change in

amplitude of the PF-EPSPs.

Figure 6 shows three representative experiments with condi-

tioning protocols adjusted to obtain peak D[Ca2+]i signals of

,0.2 mM, ,1 mM and ,2 mM. In the first example (Figure 6A

and Figure 6B), the amplitude of the PF-EPSPs, after a transient

post-tetanic potentiation, returned to the initial EPSP amplitude

after ,2 minutes. In the second example (Figure 6C and

Figure 6D), the transient post-tetanic potentiation was followed

by an LTP of the PF-EPSPs lasting for more than 20 minutes. In

the last example (Figure 6E and Figure 6F) the conditioning

protocol induced a long-term depression (LTD) of the PF-EPSP,

lasting for more than 20 minutes. The scatter plot of Figure 6G

summarizes the changes in PF-EPSP amplitudes as a function of

the peak D[Ca2+]i after 5–10 minutes obtained from 34 cells for a

total of N = 45 dendritic locations tested. The graph of Figure 6H

quantifies the dependence of plasticity from the dendritic D[Ca2+]i

signal. In the range of 0.1–0.4 mM the PF-EPSP was occasionally

potentiated but in the majority of the cases it was not affected by

the conditioning protocol (changes in EPSP amplitude after 5–

10 minutes and after 15–20 minutes: 1.1460.20, N = 14 and

1.1560.25, N = 6, respectively). In contrast, in the range of 0.4–

1.5 mM, the PF-EPSP was consistently potentiated by the

conditioning protocol; the change in EPSP amplitude after 5–

10 minutes and after 15–20 minutes was 1.3960.20 (N = 20) and

1.4260.17 (N = 10), respectively. Finally, in the range of 2–4 mM

the conditioning protocol consistently induced LTD (change in the

EPSP amplitude after 5–10 minutes and after 15–20 minutes:

0.6760.13, N = 8 and 0.5860.07, N = 4, respectively).

The profile of long-term plasticity as a function of the D[Ca2+]i

signal confirms the results reported in another study [20]. This

profile was maintained in the presence of the mGluR1 antagonists

CPCCOEt (100 mM, 7 cells and N = 12 dendritic locations) or

LY367385 (100 mM, 8 cells and N = 12 dendritic locations) and of

the NMDA receptor antagonist AP5 (100 mM, 10 cells and N = 13

dendritic locations). In the presence of CPCCOEt, LY367385 and

NMDA respectively, the fractional change in EPSP amplitude in

the range of 0.4–1.5 mM was 1.4760.24 (N = 8), 1.4960.30

(N = 7) and 1.5160.22 (N = 9) after 5–10 minutes and 1.4560.15

(N = 4), 1.4060.17 (N = 4) and 1.5360.19 (N = 4) after 20 min-

utes, whereas in the range of 2–4 mM the fractional change after

5–10 minutes was 0.6460.28 (N = 4), 0.6560.15 (N = 4) and

0.6060.18 (N = 4). Stimulation in control conditions could involve

long-term plasticity mediated by inhibitory synaptic potentials. To

test this hypothesis in 7 cells (N = 10 dendritic locations) we did

experiments in the presence of the GABAA receptor antagonist

bicuculline (20 mM). The fractional change in EPSP amplitude in

the range of 0.4–1.5 mM was 1.5060.29 (N = 6) after 5–

10 minutes and 1.5160.36 (N = 4) after 20 minutes, whereas in

the range of 2–4 mM it was 0.7960.28 (N = 4) after 5–10 minutes,

indicating no effect of bicuculline.

The definitive confirmation that LTP requires calcium influx

via VGCCs is the application of the conditioning protocol during a

complete block of postsynaptic calcium transients. To this aim, we

loaded PNs with 25 mM BAPTA and 100 mM Alexa-488 after

filling the tip of the patch pipette with BAPTA-free solution to

allow measurements of D[Ca2+]i signals before BAPTA diffusion.

In the experiment of Figure 7A, we positioned two stimulation

electrodes as the dendrite became visible with Fura-FF fluores-

cence (,2 minutes after breaking the seal) and measured D[Ca2+]i

associated with EPSP bursts every ,30 s. The amplitude of the

D[Ca2+]i signal, adjusted to be in the LTP range, was constant for

,10–15 minutes. After the first detection of Alexa fluorescence in

the dendrite (Figure 7A), we waited ,35 minutes to allow for

dendritic BAPTA equilibration and to test the conditioning

protocol. No LTP was observed. The same result was obtained

with two stimulating electrodes in 6 experiments (Figure 7B).

Figure 7C shows the scatter plot of the EPSP change 5–10 minutes

after the conditioning protocol relative to the initial value against

the D[Ca2+]i signal in the presence of BAPTA, together with the

data points in control conditions in the range of 0.4–1 mM

D[Ca2+]i. With intracellular BAPTA, the fractional change of the

EPSP amplitude was 1.0060.09 (N = 6), smaller than that

observed in control conditions (1.3860.19, N = 13, p,0.01 two-

sample t-test).

To explore LTP expression, in N = 8 cells the effect of the

conditioning protocol was tested on the paired-pulse ratio of 2 EPSPs

at 20 Hz. In the experiment of Figure 8A, a decrease in the paired-

pulse facilitation by ,20% was observed in the first 2 minutes after

the conditioning protocol, corresponding to the post-tetanic poten-

tiation. The change in the paired-pulse facilitation was reduced to less

than 5% after 5–10 minutes and after 15–20 minutes, corresponding
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to the LTP phase. As shown by the scatter plot of Figure 8B, this

behavior was observed in all the 8 cells tested in this way. A change of

the paired-pulse ratio from the control value (ratio: 0.8560.06;

p,0.05, paired t-test) was observed only in the first two minutes after

the conditioning protocol.

Altogether, these experiments demonstrate that PF-LTP is

induced and expressed postsynaptically.

PF-evoked and AF-evoked dendritic firing and LTP in
coronal slices

It has been shown that PF synapses and synapses from

cerebellar granule cells (CGCs) formed in the ascending tract

[21] have different susceptibility for synaptic plasticity [22,23].

This phenomenon was attributed to the different spatial

arrangements of PF and AF afferents [24]. To discriminate PF

and AF inputs, we did experiments in coronal slices as described

by Sims and Hartell [22,23] and by Marcaggi and Attwell [24]. In

this preparation, the organization of synaptic inputs is preserved

and the dendritic plane of PNs is perpendicular to the slice with a

variable descending angle (Figure 9A). We selected neurons with

dendrites positioned at an angle of ,30u–45u from the slice plane

and imaged the entire dendrite over multiple planes to localize and

quantify D[Ca2+]i signals using two-photon microscopy. We used

the non-ratiometric low-affinity indicator Oregon Green BAPTA-

5N (OG-5N) and calibrated its fluorescence change against Fura-

FF (Figure 9B) in order to compare calcium fluorescence signals.

In the first series of experiments (N = 7 cells), we positioned the

stimulating electrode in the molecular layer (ML) ,150 mm from

Figure 5. Repetitive PF-EPSPs bursts induce PF-LTP. A. (Top)–Recorded dendrites with the position of two stimulating electrodes (s1 and s2)
and the mean D[Ca2+]i peak associated with repetitive 3-EPSPs bursts (3p) and 7-EPSPs bursts (7p) delivered by s1 represented in color-code.
(Bottom)- D[Ca2+]i recordings in the maximal 868 pixels region and somatic recordings associated with 3p (left) and 7p (right) protocols. B. Average
of 20 trials following s1 and s2 stimulation in control, 10-15 minutes after the 3p protocol and 10–15 minutes after 7p protocol. C. Time course of
EPSP amplitudes normalized to control EPSP amplitudes (20 EPSPs in 5 minutes) evoked by s1 and s2; each point is the average of 4 EPSPs in one
minute; the arrows indicate the time of the 3p and 7p protocols (s1). D. (Top)-Scatter plot of mean normalized EPSP 10–15 after a 3p protocol and
after a 7p protocol against peak D[Ca2+]i; each symbol is a different cell. (Bottom)-Mean6SD of normalized EPSP 10–15 minutes after a 3p protocol
and 10–15 after a 7p protocol; paired t-test: p,0.01.
doi:10.1371/journal.pone.0004011.g005
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the monitored PN to stimulate PFs. In the experiment of

Figure 9C, after having localized the scanning plane with the

largest dendritic D[Ca2+]i signal, we recorded calcium fluorescence

over small areas evoked by EPSP bursts at different stimulation

intensities. PF-EPSP bursts locally excited the dendrite leading to

D[Ca2+]i signals in the micromolar range (Figure 9D). The relation

between the amplitude of the first EPSP and the D[Ca2+]i signal

was almost linear up to ,9 mV and D[Ca2+]i signals of ,2 mM in

all the 7 cells tested (Figure 9E). In general, we observed that

D[Ca2+]i signals that are expected to induce LTP were always

associated with EPSP bursts in which the amplitude of the first

EPSP was in the range of 3–6 mV.

In the second series of experiments (N = 6 cells), we positioned the

stimulating electrode in the granule cell layer (GCL) behind the

monitored PN allowing for AF stimulation. In these experiments,

particular care was observed to keep the stimulation intensity below

the threshold for stimulating the CF. In the experiment of Figure 9F,

the AF-EPSP bursts, albeit sparser, could still evoke dendritic spikes

(Figure 9G). In all the cells, compared to the PF stimulation,

D[Ca2+]i signals were smaller, not linearly related with the first EPSP

amplitude (Figure 9H) and generally less localized. These signals,

however, could still reach values compatible with LTP induction.

In the final set of experiments–which did not include calcium

measurements-we tested the conditioning protocol, applied either

to the PF or to the AF pathways in coronal slices. We adjusted the

stimulation intensity to obtain the first EPSP amplitude of 3–

6 mV, leading to D[Ca2+]i signals in the expected PF-LTP range.

For PF stimulation (N = 6 cells), the conditioning protocol induced

LTP (fractional change of EPSP amplitude after 15–20 minutes:

1.5660.21), whereas no change in the PF-EPSP amplitude was

observed in another set of 6 neurons filled with 25 mM BAPTA

(fractional change of EPSP amplitude after 15–20 minutes:

0.9960.07) as shown in Figure 10A and Figure 10B. We repeated

the same test for AF-EPSPs (N = 6 cells in control internal and

N = 6 cells with 25 mM BAPTA) using the same EPSP amplitude.

LTP was also observed for AF-EPSPs (fractional change of EPSP

amplitude after 10–15 minutes: 1.4560.19), but not in the cells

filled with BAPTA (fractional change of EPSP amplitude after 10–

15 minutes: 1.0160.04) as shown in Figure 10C and Figure 10C.

In summary, dendritic calcium spikes and associated LTP were

detected following both PF and AF stimulation.

Discussion

In this report, we describe three novel findings that significantly

further our understanding of the dendritic mechanisms underlying

PN synaptic plasticity. First, we show that local high-frequency

Figure 6. PF-evoked PF long term plasticity depends on the
D[Ca2+]i peak. A. (Left)–Recorded dendrites with the position of
stimulating electrodes s1 and s2 and the D[Ca2+]i peak following a

conditioning protocol delivered by s1 in color-code. (Right)- D[Ca2+]i

signal of ,250 nM in its maximal 868 pixels region (average of 30 trials).
B. Time course of the normalized EPSP amplitudes (20 EPSPs in
5 minutes) evoked by s1 and s2; each point is the average of 4 EPSPs;
the arrow indicates the s1 conditioning protocol; traces are averages of
20 EPSPs before, 5–10 minutes after and 15–20 minutes after the
conditioning protocol. C and D. Same as A and B in another cell with
mean D[Ca2+]i ,1 mM. E and F. Same as A and B in another cell with
mean D[Ca2+]i ,2 mM. G. (Bottom)-Semi-logarithmic scatter plot of mean
normalized EPSP 5–10 after the conditioning protocol against peak
D[Ca2+]i during the conditioning protocol; values in control condition: 35
cells and 45 dendritic locations; CPCCOEt (100 mM): 12 dendritic
locations; LY367385 (100 mM): 12 dendritic locations; AP5 (100 mM): 13
dendritic locations; bicuculline (20 mM): 10 dendritic locations. (Top)-
Mean6SD of normalized EPSP 5–10 minutes after conditioning protocol
in the ranges of 0.1–0.4 mM D[Ca2+]i, of 0.4–1.5 mM D[Ca2+]i and of 2–
4 mM D[Ca2+]i. H. Mean6SD of normalized EPSP 15–20 minutes after
conditioning protocol in the range of 0.4–1.5 mM D[Ca2+]i.
doi:10.1371/journal.pone.0004011.g006
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dendritic spikes generate D[Ca2+]i signals that summate non-

linearly because they transiently saturate the ECB. Second, we

demonstrate that dendritic calcium spikes are associated with the

induction of postsynaptic PF-LTP. Third, we report that dendritic

calcium firing leading to LTP can occur not only by activation of

adjacent PF-EPSPs, but also by activity in the sparser AF tract,

implying a less stringent spatial organization of synaptic inputs

compared to the one necessary for mGluR1- and endocannabi-

noid-mediated PF-LTD [25].

Dendritic calcium spikes can saturate the endogenous
calcium buffer

The ability of a cell to dynamically regulate calcium depends on

the kinetic properties of the calcium-binding proteins forming the

ECB as well as on the time course of the calcium signal [26]. When

more spikes occur sequentially, D[Ca2+]i signals summate non-

linearly if the associated calcium influx partially saturates calcium-

binding molecules. Transient ECB saturation following action

potentials has been shown to occur presynaptically and to

contribute to short-term plasticity [27]. In cultured PNs, pulses of

somatic depolarization have been reported to progressively saturate

the fast ECB [19]. Here, we show that local dendritic calcium spikes

can transiently saturate the ECB leading to long-term synaptic

plasticity. The evidence that the amplitude of the D[Ca2+]i signal

depends on the size of the activated dendritic region suggests that

the saturated ECB involves mostly mobile molecules re-equilibrat-

ing over relatively small volumes. The PN is characterized by an

exceptionally large equilibrium buffering capacity estimated at

,2000 [28]. Both slow calcium-binding proteins like parvalbumin

[18] and fast-binding calcium-binding protein like calbindin D28k

[17] contribute to the equilibrium ECB of PNs [29]. Computer

simulations presented here show that the supra-linear D[Ca2+]i

summation is due to saturation of fast-binding ECBs such as

calbindin D28k or other molecules, as already suggested in another

study [19]. It is important to note that our experimental approach,

utilizing combined voltage and calcium imaging, allowed to observe

that the supra-linear summation of D[Ca2+]i signals is independent

of the increase in calcium influx per spike providing, for the first

time, a direct demonstration for ECB saturation associated with

dendritic depolarization.

Figure 8. Postsynaptic expression of PF-LTP. A. (Top)-EPSP traces
following paired-pulse stimulation (50 ms stimulus interval) before, 0 to
2 minutes after, 5 to 10 minutes after and 15–20 minutes after a
conditioning protocol; normalized traces on the right. (Middle)-Time
course of the normalized EPSP amplitudes (20 EPSPs in 5 minutes); the
arrow indicates the time of the conditioning protocol. (Bottom)-Time
course of the ratio between the second and the first EPSP amplitude
(paired-pulse ratio) normalized to mean control value. B. (Left)-Scatter
plot of the mean normalized paired-pulse ratio 0–2 minutes, 5–
10 minutes and 15–20 minutes after a conditioning protocol. (Right)-
Mean6SD of normalized paired-pulse ratio 0–2 minutes, 5–10 minutes
and 15–20 minutes after a conditioning protocol.
doi:10.1371/journal.pone.0004011.g008

Figure 7. Postsynaptic induction of PF-LTP. A. (Insets)-Alexa-488
fluorescence from a PN 10 minutes (left) and 45 minutes (right) after
whole cell; the pipette filled from the tip with clear solution and from
the back with 25 mM BAPTA and 100 mM Alexa-488. Corresponding
Fura-FF fluorescence from the same PN; D[Ca2+]i peak following 7
stimuli delivered by s1 (top) and s2 (bottom) represented in color code.
B. Time course of normalized EPSP amplitudes evoked by s1 and s2 (20
EPSPs in 5 minutes); the arrows indicate the time of the conditioning
protocols. C. (Left)-Scatter plot of the mean normalized EPSP 5–10 after
conditioning protocol against the peak D[Ca2+]i associated with a
conditioning protocol; control condition, 13 dendritic locations tested;
25 mM BAPTA (5 cells and 6 dendritic locations tested). (Right)-
Mean6SD of normalized EPSP 5–10 minutes after a conditioning
protocol in the range of 0.4–1 mM D[Ca2+]I; two-sample t-test (control
and BAPTA experiments): p,0.01.
doi:10.1371/journal.pone.0004011.g007
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Dendritic calcium spikes can induce long-term plasticity
In this report, we observed that several consecutive dendritic

spikes at 100 Hz can induce PF-LTP. Postsynaptic PF-LTP is

necessary as a reversal mechanism for PF-LTD and its

physiological occurrence is supported by in vivo receptive field

plasticity [30]. The induction mechanism used here is novel,

because our conditioning protocol differs from those previously

described [20,31], but the calcium dependence of the polarity of

plasticity confirms what was already reported [20]. In our study,

however, we could correlate the occurrence of calcium spikes with

the induction of LTP without activation of NMDA or mGluR1

receptors. The induction of LTP by only calcium increase is still a

controversial issue [32]. The present study cannot exclude the

involvement of signaling within PF synaptic transmission.

Repetitive bursts of PF-EPSPs followed by 1 or 2 CF-EPSPs can

induce PF-LTD [4,33] mediated by mGluR1 activation. The

underlying pairing protocol occurs with a concomitant supra-

linear calcium signal [4] associated with the CF-EPSP. However,

as reported by Brenowitz and Regehr [12], not only is the

dendritic component of this supra-linear calcium signal indepen-

dent of mGluR1 activation and calcium release from stores, but

the delay between PF and CF stimulation differs from that

Figure 9. Dendritic PF and AF D[Ca2+]i signals in coronal slices. A. (Left)-Schematic of a sagittal/coronal section of the cerebellum with
Molecular Layer (ML), PN Layer (PNL) and Granule Cell layer (GCL); PF stimulation: stimulation in the ML ,150 mm from the dendritic plane; AF
stimulation: stimulation in the GCL behind the PN. (Right)-3D reconstruction of a PN in a coronal slice; the angle a from the plane of the slice
indicated. B. Relative calibration of fractional fluorescence changes of Fura-FF and OG-5N. (Top)-Recordings from 1 cell, 2 stimulation intensities.
(Bottom)-Scatter plot from 4 cells, 2 stimulation intensities, each symbol represents a cell; linear least square fit indicated. C. Region in the coronal
section of a PN dendritic tree (top) and color-coded peak D[Ca2+]i (bottom) superimposed over the fluorescence image associated with PF stimulation
at three stimulation intensities. D.-D[Ca2+]i recordings from the region in the image shown in C and corresponding somatic recordings at different
time scales. E.-Scatter plot of peak D[Ca2+]i following PF stimulation against the amplitude of the first EPSP; each symbol is a different cell; D[Ca2+]i

signals corresponding to a first EPSP of 3–6 mV in the range of LTP induction. F, G and H. Same as C, D and E in cells where EPSPs and D[Ca2+]i

signals were elicited by AF stimulation; D[Ca2+]i signals in the range of LTP induction.
doi:10.1371/journal.pone.0004011.g009
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responsible for the mGluR1- and endocannabinoid-mediated

short-term plasticity. Here we demonstrate that the CF-associated

supra-linear D[Ca2+]i signal is also due to local ECB saturation.

Data reported in the Supporting Information file Data S1

indicates that the priming calcium signal, necessary for InsP3-

mediated calcium release from stores [34] and generally provided

by the CF-evoked spike [35], can be replaced by PF-evoked

dendritic spikes. If this is the case, what is the mechanism of PF-CF

coincident detection? We don’t have an answer to this question,

but the scenario appears to be a dynamic puzzle involving

differences in calcium signaling [30] and other signaling aspects so

far not investigated.

Calcium spikes decode the architecture of presynaptic
fibers

CGC axons ascend from their original layer and bifurcate

perpendicularly to form beams of parallel trajectories extending

for several millimeters. Synapses to PNs are formed both in the

ascending tract [21] and through the parallel trajectories over long

distances from the branching point [36]. Different biophysical

mechanisms can interplay to decode the arrangement of

presynaptic fibers into postsynaptic signaling. A first mechanism

is glutamate spillover that occurs only in adjacent synapses and

regulates mGluR1 activation and LTD [25]. Here we show that

the dendritic calcium burst is another mechanism that can decode

the architecture of presynaptic fibers into synaptic plasticity. This

property relies on the ability of PF/AF synapses to facilitate and

elicit highly-localized calcium bursts, in contrast to the widespread

CF-mediated dendritic spike.

In contrast to the mGluR1- and endocannabinoid-mediated

LTD and to other forms of synaptic plasticity, that are exclusive of

PF synapses [22,23,24] the LTP described here can also be

induced by the sparser AF activation. Nevertheless, a difference in

susceptibility for this type of plasticity cannot be excluded from the

present experiments.

In summary, glutamate spillover necessary for the activation of

mGluR1 [25] and dendritic calcium bursts can decode the spatial

organization of CGC-PN synapses at two different levels. The fine

structure of PF-adjacent synapses can be decoded by the mGluR1

activation and by the local release of endocannabinoids leading to

LTD. The gross structure of PF/AF synapses can be decoded by

the local depolarization above the threshold for calcium firing

leading to LTP.

Materials and Methods

Slice preparation and electrophysiology
Experiments, approved by Basel cantonal authorities, were

done in 250 mm thick sagittal or in 300 mm thick coronal

cerebellar slices from 25–35 days old mice (C57BL/6, body

weight 10–19 g), decapitated following isoflurane anaesthesia

(according to the Swiss regulation). Slices were prepared in ice-

cold solution using a HM 650 V vibroslicer (Microm, Germany),

incubated at 35uC for 40 minutes and maintained at room

temperature. Somatic whole-cell recordings were made at 32–

34uC using a Multiclamp 700A amplifier (Axon Instruments,

USA) under an upright microscope (Olympus BX51-WI). The

extracellular solution contained (in mM): 125 NaCl, 26 NaHCO3,

20 glucose, 3 KCl, 1 NaH2PO4, 2 CaCl2 and 1 MgCl2, pH 7.4

when bubbled with a gas mixture containing 95% O2, 5% CO2.

The basic intracellullar solution contained (mM): 120 KMeSO4,

10 NaCl, 4 Mg-ATP, 0.3 Tris-GTP, 14 Tris-Phosphocreatine, 20

HEPES (pH 7.3, adjusted with KOH) and indicators were added

to the internal solution. In experiments with either JPW-1114 or

Figure 10. PF-LTP and AF-LTP in coronal slices. A. (Top)-
Averaged EPSP traces following PF stimulation in coronal slices before,
5 to 10 minutes after and 15–20 minutes after a conditioning protocol.
(Bottom)-Time course over 6 cells (Mean6SD) of the normalized EPSP in
the range of 3–6 mV before and after a conditioning protocol; white
symbols: control internal solution; colored symbols: 25 mM BAPTA. B.
Mean6SD over 20 EPSPs evoked 5–10 minutes and 15–20 minutes
after a conditioning protocol; experiments with control solution (N = 6
cells) and with 25 mM intracellular BAPTA in the pipette (N = 6 cells);
two-sample t-test (control and BAPTA experiments): p,0.001. C and D.
Same as A and B in cells where EPSPs were elicited by AF stimulation;
experiments with control internal solution (N = 6 cells) and with 25 mM
intracellular BAPTA (N = 6 cells); two-sample t-test (control and BAPTA
experiments): p,0.001.
doi:10.1371/journal.pone.0004011.g010
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the combination BAPTA+Alexa-488, electrodes were front-filled

with just the basic internal solution. In the case of BAPTA+Alexa-

488, the amount of front-filled solution was adjusted to delay the

diffusion of the back-filled solution into the tip of the pipette by

,10 minutes. Local stimulation of presynaptic fibers was carried

out with patch pipettes filled with extracellular solution positioned

using hydraulic manipulators (Narishige, Japan). Somatic electrical

signals were filtered at 4 kHz and acquired at 8 kHz or at 16 kHz

using the A/D board of the Redshirt imaging system.

Optical recordings
Experiments on sagittal slices were carried out by exciting

fluorescence with a 150 W xenon lamp (CAIRN Research Ltd.,

Faversham, UK) and by imaging with a 80680 pixels CCD

camera NeuroCCD-SM (RedShirtImaging LLC, Decatur, GA,

USA). The excitation light was directed to a water immersion

objective Olympus 60X/1.1 NA and the fluorescent image of the

cell projected via a 0.25X optical coupler onto the CCD camera.

The imaged field was ,125 mm6125 mm (80680 pixels). The

excitation light was directed either to a filter cube for the voltage

imaging (excitation: 525625 nm; dichroic mirror .570 nm;

emission filter .610 nm) or to another cube for calcium imaging

(excitation 38766 nm; dichroic mirror .470 nm; emission

510642 nm).

The procedure to achieve combined voltage and calcium

recordings has been previously described [37,5]. Voltage and

calcium fluorescence were sampled at 2000 frames/s and 500

frames/s respectively. Fractional changes of fluorescence were

converted into DVm using prolonged hyperpolarizing pulses as

described in another report [5]. We estimated D[Ca2+]i from the

equation:

D½Ca2z�i~Kd
:(F0{F )=F ð1Þ

where F is the fluorescence after auto-fluorescence subtraction and

the fluorescence at 0 and saturating Ca2+ were approximated with

the initial fluorescence (F0) and with the auto-fluorescence

respectively. We used Kd = 10 mM for Fura-FF [14]. In this

condition, the dye buffering capacity was negligible (only ,5%)

compared to the estimated equilibrium ECB of the PN [25].

For BF2 experiments, we estimated the amount of calcium

bound to the non-saturated high-affinity calcium indicator BF2,

(i.e. the integral of the calcium influx), using the fractional change

of BF2 fluorescence:

(BF2{DF=F0)~(F0{F )=F0 ð2Þ

Two-photon measurements of D[Ca2+]i signals in coronal slices

were done with a tunable, mode-locked titan sapphire laser

(MaiTai HP, Spectra Physics Germany) set to 800 nm and a

confocal laser scanning system (FV300, Olympus Switzerland) and

a high-aperture 20x water- immersion lens (Olympus LUMPLAN

20x) by scanning multiple sections to localize the dendritic site

where the largest calcium signal was observed. Areas of typically

80–150 by 8 pixels were scanned at 17–25 Hz to measure local

dendritic signals with minimal under-estimate of the signal

amplitude and distortion of its spatial distribution.

Data analysis
Images and electrophysiological recordings were analyzed with

dedicated software written in Matlab (The MathWorks Inc.,

Natick, MA, USA). To compare voltage and calcium measure-

ments, we routinely checked individual trials for consistency and

averaged several recordings to improve the signal-to-noise ratio.

All optical voltage or calcium traces reported in the figures are

averages of 4–9 recordings.

The amplitude of synaptic responses was tested by evoking

individual EPSPs every 15 s (4 EPSPs every minute). We routinely

recorded EPSPs for 5 minutes (20 recordings) before a condition-

ing protocol and for 10–20 minutes after the conditioning

protocol. For the analysis, 4 EPSPs (1 minute) or 20 EPSPs

(5 minutes) were averaged and the peak EPSP amplitude

normalized to that of the 20 averaged EPSPs before the

conditioning protocol.

Conditioning protocols with peak mean D[Ca2+]i signals .2 mM

were associated with EPSP bursts with the first EPSP generally

.8 mV that occasionally fired somatic action potentials. In those

cases, the estimate of the effect of the conditioning protocol, on the

EPSP evoked with the same intensity, was unreliable because the

occasional action potentials prevented the measurement of the

peak EPSP amplitude. Therefore, for the EPSP test before and

after the conditioning protocol, the stimulation was set to evoke an

EPSP of ,6 mV, using an intensity value lower than that used for

the conditioning protocol.

Results from two-sample or paired t-tests were considered

significantly different for p,0.01 and not significantly different for

p.0.1. In individual experiments, a conditioning protocol was

defined to induce LTP or LTD when the p value of the two-

sample t-test (N = 20 samples) on the EPSP amplitudes before and

after the conditioning protocol was ,0.01.

Computer simulations
Computer simulations of free calcium concentration ([Ca2+])

dynamics were done using the modified model described by

Schmidt et al [13], with a single cylinder compartment with

10 mm length and 1 mm radius (surface A and volume V). The

variables included the concentrations of the free calcium indicator

Fura-FF ([FF]), of the free ECBs calbindin D28k ([CB]) and

parvalbumin ([PB]), of the three buffers bound to calcium

([Ca2+FF], [Ca2+CB] and [Ca2+PV]), and of the parvalbumin bound

to magnesium ([Mg2+FF]). We took into account the 4 binding sites

of CB with faster and slower kinetics (ratio 2:2) and the 2 binding

sites of PV [13]. The constant magnesium concentration

[Mg2+] = 620 mM was calculated from 4 mM Mg-ATP in our

internal solution using WinMaxC (http://www.stanford.edu/

,cpatton/maxc.html). The model also incorporated a Michae-

lis-Menten extrusion mechanism

Ex~{nm
:(A=V ):½Ca2z�=(½Ca2z�zKm) ð3Þ

with maximal pump velocity nm = 300 pM?cm22?s21 and Michae-

lis-Menten constant Km = 3 mM and a leak current

Lk~{nm
:(A=V ):½Ca2z�rest=(½Ca2z�restzKm) ð4Þ

necessary to balance the clearance of calcium at its resting value

[Ca2+]rest = 45 nM [13]. Calcium influx (In) associated with calcium

spikes was calculated from the calcium current I, approximated

with windows of 100 pA amplitude and 3 ms duration, using the

expression

In~I=(2:F :V ) ð5Þ

where F is the Faraday’s constant. The change of free calcium

concentration in a time step Dt (1 ms in our simulations) due to the
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binding of calcium to the buffer binding site BS is given by

D½Ca2z�BS~Dt:({kon
BS:½BS�:½Ca2z�zkoff

BS:½Ca2zBS�) ð6Þ

where [BS] is the ‘‘concentration’’ of the binding site and kon
BS and

koff
BS are the on- and off- rates of BS for calcium.

The total change in free calcium concentration is therefore

given by:

D½Ca2z�

~Dt:(In{ExzLk)zD½Ca2z�BS1z . . . zD½Ca2z�BSN

ð7Þ

where N is the total number of binding sites. The change in

concentration of BS bound to calcium is given by

D½Ca2zBS�~{D½Ca2z�BS: ð8Þ

To account for the interaction between PV and magnesium, the

change in free PV is given by:

D½PV �~D½Ca2z�PV {D½Mg2zPV �PV ð9Þ

where the change in concentration of BS bound to magnesium is

D½Mg2zBS�BS

~Dt:(kon
BSMg:½BS�:½Mg2z�zkoff

BSMg:½Mg2zBS�)
ð10Þ

where kon
BSMg and koff

BSMg are the on- and off- rates of BS for

magnesium. For CB and FF, the change in free concentration is

D½CB�~D½Ca2z�CB ð11Þ

D½FF �~D½Ca2z�FF ð12Þ

For the kinetics of CB and PV binding to calcium, we used the

parameters reported by Nägerl et al. [17] and Lee et al. [18] and

doubled the on-rate (and the affinity) to account for the

temperature increase of ,10uC (kon
CBfast = 17.0?107 M21?s21;

koff
CBfast = 35.8 s21; kon

CBslow = 2.6?107 M21?s21; koff
CBslow = 2.6 s21;

kon
PV = 2?107 M21?s21; kon

PV = .0.95s21). For the kinetics of PV

binding to magnesium, we used the parameters reported by

Eberhard and Erne ([38]) (kon
PVMg = 1.6?107 M21?s21;

kon
PVMg = 25 s21). For PV concentration, we used the value of

40 mM used by Schmidt et al. ([13]). For CB concentration, we

used the value of 100 mM which is between what used by Schmidt

et al. ([13]) and what reported by Maeda et al. ([19]). Finally, for

FF, we set the concentration to 800 mM, Kon = 5?108 M21?s21 as

used by Xu-Friedman and Regehr ([39]) and Kd = 10 mM

(Kd = Koff/Kon). The set of parameters reported above were used

for the first simulation described in the Results. In the analysis of

ECB saturation, we aimed at establishing a role for faster ECB that

were not taken into account in the model. To this purpose, in the

second simulation described in the Results, we quadrupled the

value of faster on-rate of CB (kon
CBfast = 68.2?107 M21?s21).

Supporting Information

Data S1 Data not directly related to the main results of the

report, but supporting the principal experiements

Found at: doi:10.1371/journal.pone.0004011.s001 (0.41 MB

DOC)
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4. Wang SS, Denk W, Häusser M (2000) Coincidence detection in single dendritic

spines mediated by calcium release. Nat Neurosci 3: 1266–1273.

5. Canepari M, Vogt K, Zecevic D (2008) Combining voltage and calcium imaging

from neuronal dendrites. Cell Mol Neurobiol 28: 1079–1093.

6. Kuruma A, Inoue T, Mikoshiba K (2003) Dynamics of Ca2+ and Na+ in the

dendrites of mouse cerebellar Purkinje cells evoked by parallel fibre stimulation.

Eur J Neurosci 18: 2677–2689.
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