J. Powell and J. Gobburu, Pharmacometrics at FDA: Evolution and Impact on Decisions, Clinical Pharmacology & Therapeutics, vol.296, issue.1
DOI : 10.1038/sj.clpt.6100234

J. Wade, M. Edholm, and T. Salmonson, A guide for reporting the results of population pharmacokinetic analyses: A Swedish perspective, The AAPS Journal, vol.7, issue.2, p.45, 2005.
DOI : 10.1208/aapsj070245

M. Karlsson and N. Holford, A tutorial on visual predictive checks, PAGE, vol.17, 2008.

F. Mentre and S. Escolano, Prediction Discrepancies for the Evaluation of Nonlinear Mixed-Effects Models, Journal of Pharmacokinetics and Pharmacodynamics, vol.30, issue.3, pp.345-67, 2005.
DOI : 10.1007/s10928-005-0016-4

URL : https://hal.archives-ouvertes.fr/inserm-00156908

K. Brendel, E. Comets, C. Laffont, C. Laveille, and F. Mentre, Metrics for External Model Evaluation with an Application to the Population Pharmacokinetics of Gliclazide, Pharmaceutical Research, vol.91, issue.9, pp.2036-2085, 2006.
DOI : 10.1007/s11095-006-9067-5

URL : https://hal.archives-ouvertes.fr/inserm-00189557

N. Holford, The visual Predictive Check-Superiority to standard diagnostic (Rorschach) plots PAGE Abstr 738 [www.page-meeting, 2005.

J. Wilkins, M. Karlsson, and E. Jonsson, Patterns and power for the visual predictive check, PAGE, vol.15, 2006.

N. Frey, C. Laveille, M. Paraire, M. Francillard, N. Holford et al., Population PKPD modelling of the long-term hypoglycaemic effect of gliclazide given as a once-a-day modified release (MR) formulation, British Journal of Clinical Pharmacology, vol.22, issue.special issue, pp.147-57, 2003.
DOI : 10.1046/j.1365-2125.2003.01751.x

S. Beal, Ways to fit a PK model with some data below the quantification limit, J Pharmacokinet Pharmacodyn Beal SL, Sheiner LB. NONMEM users guides. NONMEM Project Group Ed. Karlsson MO, Savic RM. Diagnosing model diagnostics. Clin Pharmacol Ther, vol.2882, issue.121, pp.481-50417, 1992.

A. Hooker, C. Staatz, and M. Karlsson, Conditional Weighted Residuals (CWRES): A Model Diagnostic for the FOCE Method, Pharmaceutical Research, vol.26, issue.12, pp.2187-97, 2007.
DOI : 10.1007/s11095-007-9361-x

T. Post, J. Freijer, B. Ploeger, M. Danhof, A. Samson et al., Extensions to the visual predictive check to facilitate model performance evaluation Extension of the SAEM algorithm to left-censored data in nonlinearmixed-effects model: application to HIV dynamics model Normalized prediction distribution errors for the evaluation of a population pharmacodynamic model for gliclazide Computing normalised prediction distribution errors to evaluate nonlinear mixed-effect models: the npde add-on package for R, J Pharmacokinet Pharmacodyn. Comput. Stat. Data Anal. Comput Methods Programs Biomed, vol.3590, issue.162, pp.185-202, 2006.

M. Lavieille and . Monolix, Modèles NOn LInéaires à effets miXtes),MONOLIX group, 2005.