R. Jennings, K. Reimer, and C. Steenbergen, Effect of inhibition of the mitochondrial ATPase on net myocardial ATP in total ischemia, Journal of Molecular and Cellular Cardiology, vol.23, issue.12, pp.1383-1395, 1991.
DOI : 10.1016/0022-2828(91)90185-O

D. Lucas and L. Szweda, Declines in mitochondrial respiration during cardiac reperfusion: Age-dependent inactivation of ??-ketoglutarate dehydrogenase, Proceedings of the National Academy of Sciences, vol.96, issue.12, pp.6689-6693, 1999.
DOI : 10.1073/pnas.96.12.6689

H. Sadek, K. Humphries, P. Szweda, and L. Szweda, Selective inactivation of redox-sensitive mitochondrial enzymes during cardiac reperfusion, Archives of Biochemistry and Biophysics, vol.406, issue.2, pp.222-228, 2002.
DOI : 10.1016/S0003-9861(02)00446-0

R. Zini, A. Berdeaux, and D. Morin, The differential effects of superoxide anion, hydrogen peroxide and hydroxyl radical on cardiac mitochondrial oxidative phosphorylation, Free Radical Research, vol.108, issue.10
DOI : 10.1074/jbc.M208262200

G. Petrosillo, F. Ruggiero, D. Venosa, N. Paradies, and G. , Decreased complex III activity in mitochondria isolated from rat heart subjected to ischemia and reperfusion: role of reactive oxygen species and cardiolipin, The FASEB Journal, vol.17, pp.714-716, 2003.
DOI : 10.1096/fj.02-0729fje

G. Paradies, G. Petrosillo, M. Pistolese, D. Venosa, N. Federici et al., Decrease in Mitochondrial Complex I Activity in Ischemic/Reperfused Rat Heart: Involvement of Reactive Oxygen Species and Cardiolipin, Circulation Research, vol.94, issue.1, pp.53-59, 2004.
DOI : 10.1161/01.RES.0000109416.56608.64

M. Crompton, A. Costi, and L. Hayat, -dependent pore activated by oxidative stress in heart mitochondria, Biochemical Journal, vol.245, issue.3, pp.915-918, 1987.
DOI : 10.1042/bj2450915

URL : https://hal.archives-ouvertes.fr/hal-01159417

E. Griffiths and A. Halestrap, Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion, Biochemical Journal, vol.307, issue.1, pp.93-98, 1995.
DOI : 10.1042/bj3070093

V. Borutaite, A. Jekabsone, R. Morkuniene, and G. Brown, Inhibition of mitochondrial permeability transition prevents mitochondrial dysfunction, cytochrome c release and apoptosis induced by heart ischemia, Journal of Molecular and Cellular Cardiology, vol.35, issue.4, pp.357-366, 2003.
DOI : 10.1016/S0022-2828(03)00005-1

D. Green and G. Kroemer, The Pathophysiology of Mitochondrial Cell Death, Science, vol.305, issue.5684, pp.626-629, 2004.
DOI : 10.1126/science.1099320

K. Kinnally and B. Antonsson, A tale of two mitochondrial channels, MAC and PTP, in apoptosis, Apoptosis, vol.23, issue.Suppl 1, pp.857-868, 2007.
DOI : 10.1007/s10495-007-0722-z

A. Gustafsson and R. Gottlieb, Heart mitochondria: gates of life and death, Cardiovascular Research, vol.77, issue.2, pp.334-343, 2008.
DOI : 10.1093/cvr/cvm005

Y. Tsujimoto, T. Nakagawa, and S. Shimizu, Mitochondrial membrane permeability transition and cell death, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1757, issue.9-10, pp.1297-1300, 2006.
DOI : 10.1016/j.bbabio.2006.03.017

C. Baines, R. Kaiser, N. Purcell, N. Blair, H. Osinska et al., Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death, Nature, vol.65, issue.7033, pp.658-662, 2005.
DOI : 10.1038/sj.gt.3301048

T. Nakagawa, S. Shimizu, T. Watanabe, O. Yamaguchi, K. Otsu et al., Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death, Nature, vol.12, issue.7033, pp.652-658, 2005.
DOI : 10.1084/jem.189.11.1699

A. Schinzel, O. Takeuchi, Z. Huang, J. Fisher, Z. Zhou et al., Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia, Proceedings of the National Academy of Sciences, vol.102, issue.34, pp.12005-12010, 2005.
DOI : 10.1073/pnas.0505294102

J. Kokoszka, K. Waymire, S. Levy, J. Sligh, J. Cai et al., The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore, Nature, vol.427, issue.6973, pp.461-465, 2004.
DOI : 10.1038/nature02229

A. Leung and A. Halestrap, The cyclophilin-D binding protein of the mitochondrial permeability transition pore may not be the adenine nucleotide translocase, Journal of Molecular and Cellular Cardiology, vol.42, issue.6, p.117, 2007.
DOI : 10.1016/j.yjmcc.2007.03.269

M. Juhaszova, S. Wang, D. Zorov, H. Nuss, M. Gleichmann et al., The Identity and Regulation of the Mitochondrial Permeability Transition Pore, Annals of the New York Academy of Sciences, vol.2, issue.1, pp.197-212, 2008.
DOI : 10.1196/annals.1420.023

C. Baines, R. Kaiser, T. Sheiko, W. Craigen, and J. Molkentin, Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death, Nature Cell Biology, vol.336, issue.5, pp.550-555, 2007.
DOI : 10.1074/jbc.M313717200

D. Green, Apoptotic Pathways: Ten Minutes to Dead, Cell, vol.121, issue.5, pp.671-674, 2005.
DOI : 10.1016/j.cell.2005.05.019

G. Kroemer, B. Dallaporta, and M. Resche-rigon, THE MITOCHONDRIAL DEATH/LIFE REGULATOR IN APOPTOSIS AND NECROSIS, Annual Review of Physiology, vol.60, issue.1, pp.619-642, 1998.
DOI : 10.1146/annurev.physiol.60.1.619

J. Reed, J. Jurgensmeier, and S. Matsuyama, Bcl-2 family proteins and mitochondria, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1366, issue.1-2, pp.127-137, 1998.
DOI : 10.1016/S0005-2728(98)00108-X

S. Desagher and J. Martinou, Mitochondria as the central control point of apoptosis, Trends in Cell Biology, vol.10, issue.9, pp.369-377, 2000.
DOI : 10.1016/S0962-8924(00)01803-1

W. Nazareth, N. Yafei, and M. Crompton, Inhibition of anoxia-induced injury in heart myocytes by cyclosporin A, Journal of Molecular and Cellular Cardiology, vol.23, issue.12, pp.1351-1354, 1991.
DOI : 10.1016/0022-2828(91)90181-K

M. Xu, Y. Wang, K. Hirai, A. Ayub, and M. Ashraf, Calcium preconditioning inhibits mitochondrial permeability transition and apoptosis, Am J Physiol Heart Circ Physiol, vol.280, pp.899-908, 2001.

E. Griffiths and A. Halestrap, Protection by Cyclosporin A of Ischemia/Reperfusion-Induced Damage in Isolated Rat Hearts, Journal of Molecular and Cellular Cardiology, vol.25, issue.12, pp.1461-1469, 1993.
DOI : 10.1006/jmcc.1993.1162

L. Argaud, O. Gateau-roesch, L. Chalabreysse, L. Gomez, J. Loufouat et al., Preconditioning delays Ca2+-induced mitochondrial permeability transition, Cardiovascular Research, vol.61, issue.1, pp.115-122, 2004.
DOI : 10.1016/j.cardiores.2003.11.003

S. Shanmuganathan, D. Hausenloy, M. Duchen, and D. Yellon, Mitochondrial permeability transition pore as a target for cardioprotection in the human heart, AJP: Heart and Circulatory Physiology, vol.289, issue.1, pp.237-242, 2005.
DOI : 10.1152/ajpheart.01192.2004

D. Morin, T. Hauet, M. Spedding, and J. Tillement, Mitochondria as target for antiischemic drugs, Advanced Drug Delivery Reviews, vol.49, issue.1-2, pp.151-174, 2001.
DOI : 10.1016/S0169-409X(01)00132-6

A. Halestrap, S. Clarke, and S. Javadov, Mitochondrial permeability transition pore opening during myocardial reperfusion???a target for cardioprotection, Cardiovascular Research, vol.61, issue.3, pp.372-385, 2004.
DOI : 10.1016/S0008-6363(03)00533-9

C. Piot, P. Croisille, P. Staat, H. Thibault, G. Rioufol et al., Effect of Cyclosporine on Reperfusion Injury in Acute Myocardial Infarction, New England Journal of Medicine, vol.359, issue.5
DOI : 10.1056/NEJMoa071142

URL : https://hal.archives-ouvertes.fr/hal-00428144

L. Argaud, O. Gateau-roesch, O. Raisky, J. Loufouat, D. Robert et al., Postconditioning Inhibits Mitochondrial Permeability Transition, Circulation, vol.111, issue.2, pp.194-197, 2005.
DOI : 10.1161/01.CIR.0000151290.04952.3B

L. Gomez, H. Thibault, A. Gharib, J. Dumont, G. Vuagniaux et al., Inhibition of mitochondrial permeability transition improves functional recovery and reduces mortality following acute myocardial infarction in mice, AJP: Heart and Circulatory Physiology, vol.293, issue.3, pp.1654-1661, 2007.
DOI : 10.1152/ajpheart.01378.2006

S. Clarke, G. Mcstay, and A. Halestrap, Sanglifehrin A Acts as a Potent Inhibitor of the Mitochondrial Permeability Transition and Reperfusion Injury of the Heart by Binding to Cyclophilin-D at a Different Site from Cyclosporin A, Journal of Biological Chemistry, vol.277, issue.38, pp.34793-34799, 2002.
DOI : 10.1074/jbc.M202191200

D. Hausenloy, M. Duchen, and D. Yellon, Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischaemia???reperfusion injury, Cardiovascular Research, vol.60, issue.3
DOI : 10.1016/j.cardiores.2003.09.025

URL : http://cardiovascres.oxfordjournals.org/cgi/content/short/60/3/617

K. Rajesh, S. Sasaguri, S. Ryoko, and H. Maeda, Mitochondrial permeability transition-pore inhibition enhances functional recovery after long-time hypothermic heart preservation, Transplantation, vol.76, issue.9, pp.1314-1320, 2003.
DOI : 10.1097/01.TP.0000085660.93090.79

D. Morin, A. Elimadi, R. Sapena, A. Crevat, P. Carrupt et al., Evidence for the existence of 3H -trimetazidine binding sites involved in the regulation

I. Stavrovskaya, M. Narayanan, W. Zhang, B. Krasnikov, J. Heemskerk et al., Clinically Approved Heterocyclics Act on a Mitochondrial Target and Reduce Stroke-induced Pathology, The Journal of Experimental Medicine, vol.55, issue.2, pp.211-222, 2004.
DOI : 10.1016/S0014-2999(03)01303-7

K. Broekemeier and D. Pfeiffer, Inhibition of the mitochondrial permeability transition by cyclosporin A during long time frame experiments: relationship between pore opening and the activity of mitochondrial phospholipases, Biochemistry, vol.34, issue.50, pp.16440-16449, 1995.
DOI : 10.1021/bi00050a027

E. Fontaine, F. Ichas, and P. Bernardi, A Ubiquinone-binding Site Regulates the Mitochondrial Permeability Transition Pore, Journal of Biological Chemistry, vol.273, issue.40, pp.25734-25734, 1998.
DOI : 10.1074/jbc.273.40.25734

A. Cesura, E. Pinard, R. Schubenel, V. Goetschy, A. Friedlein et al., The Voltage-dependent Anion Channel Is the Target for a New Class of Inhibitors of the Mitochondrial Permeability Transition Pore, Journal of Biological Chemistry, vol.278, issue.50, pp.49812-49818, 2003.
DOI : 10.1074/jbc.M304748200

A. Krauskopf, O. Eriksson, W. Craigen, M. Forte, and P. Bernardi, Properties of the permeability transition in VDAC1???/??? mitochondria, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1757, issue.5-6, pp.590-595, 2006.
DOI : 10.1016/j.bbabio.2006.02.007

L. Walter, H. Miyoshi, X. Leverve, P. Bernard, and E. Fontaine, Regulation of the mitochondrial permeability transition pore by ubiquinone analogs. A progress report mitochondrial membrane permeability, a pharmacological target for cardioprotection, Free Radic Res . Curr Med Chem . Author manuscript Page, vol.36, issue.11, pp.405-412, 2002.
URL : https://hal.archives-ouvertes.fr/inserm-00389972

P. Langsjoen and A. Langsjoen, in cardiovascular disease, BioFactors, vol.120, issue.2, pp.273-284, 1999.
DOI : 10.1002/biof.5520090224

J. Armstrong, M. Whiteman, P. Rose, and D. Jones, The Coenzyme Q10 Analog Decylubiquinone Inhibits the Redox-activated Mitochondrial Permeability Transition: ROLE OF MITOCHONDRIAL RESPIRATORY COMPLEX III, Journal of Biological Chemistry, vol.278, issue.49, pp.49079-49084, 2003.
DOI : 10.1074/jbc.M307841200

B. Fuks, P. Talaga, C. Huart, J. Henichart, K. Bertrand et al., In vitro properties of 5-(benzylsulfonyl)-4-bromo-2-methyl-3(2H)-pyridazinone: A novel permeability transition pore inhibitor, European Journal of Pharmacology, vol.519, issue.1-2, pp.24-30, 2005.
DOI : 10.1016/j.ejphar.2005.06.046

D. Spierings, G. Mcstay, M. Saleh, C. Bender, J. Chipuk et al., Connected to Death: The (Unexpurgated) Mitochondrial Pathway of Apoptosis, Science, vol.310, issue.5745, pp.66-67, 2005.
DOI : 10.1126/science.1117105

E. Bossy-wetzel, D. Newmeyer, and D. Green, Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization, The EMBO Journal, vol.17, issue.1, pp.37-49, 1998.
DOI : 10.1093/emboj/17.1.37

L. Czerski, P. Szweda, and L. Szweda, Dissociation of Cytochrome c from the Inner Mitochondrial Membrane during Cardiac Ischemia, Journal of Biological Chemistry, vol.278, issue.36, pp.34499-34504, 2003.
DOI : 10.1074/jbc.M302021200

D. Morin, F. Pires, C. Plin, and J. Tillement, Role of the permeability transition pore in cytochrome C release from mitochondria during ischemia-reperfusion in rat liver, Biochemical Pharmacology, vol.68, issue.10
DOI : 10.1016/j.bcp.2004.07.006

K. Lundberg and L. Szweda, Preconditioning prevents loss in mitochondrial function and release of cytochrome c during prolonged cardiac ischemia/reperfusion, Archives of Biochemistry and Biophysics, vol.453, issue.1, pp.130-134, 2006.
DOI : 10.1016/j.abb.2006.02.007

A. Gustafsson and R. Gottlieb, Bcl-2 family members and apoptosis, taken to heart, AJP: Cell Physiology, vol.292, issue.1, pp.45-51, 2007.
DOI : 10.1152/ajpcell.00229.2006

E. Daugas, S. Susin, N. Zamzami, K. Ferri, T. Irinopoulou et al., Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis, FASEB J, vol.14, pp.729-739, 2000.
URL : https://hal.archives-ouvertes.fr/hal-00315088

L. Li, X. Luo, and X. Wang, Endonuclease G is an apoptotic DNase when released from mitochondria, Nature, vol.412, issue.6842, pp.95-99, 2001.
DOI : 10.1038/35083620

D. Granville and R. Gottlieb, The Mitochondrial Voltage-dependent Anion Channel (VDAC) as a Therapeutic Target for Initiating Cell Death, Current Medicinal Chemistry, vol.10, issue.16, pp.1527-1533, 2003.
DOI : 10.2174/0929867033457214

A. Letai, M. Bassik, L. Walensky, M. Sorcinelli, S. Weiler et al., Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics, Cancer Cell, vol.2, issue.3, pp.183-192, 2002.
DOI : 10.1016/S1535-6108(02)00127-7

V. Brocheriou, A. Hag-ge-È, A. Oubena-ssa-Ï, M. Lambert, V. Mallet et al., Cardiac functional improvement by a human Bcl-2 transgene in a mouse model of ischemia/reperfusion injury, The Journal of Gene Medicine, vol.269, issue.5, pp.326-333, 2000.
DOI : 10.1002/1521-2254(200009/10)2:5<326::AID-JGM133>3.0.CO;2-1

R. Hattori, T. Hernandez, L. Zhu, N. Maulik, H. Otani et al., An Essential Role of the Antioxidant Gene Bcl-2 in Myocardial Adaptation to Ischemia: An Insight with Antisense Bcl-2 Therapy, Antioxidants & Redox Signaling, vol.3, issue.3, pp.403-413, 2001.
DOI : 10.1089/15230860152409059

Z. Chen, C. Chua, Y. Ho, R. Hamdy, and B. Chua, Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice, Am J Physiol Heart Circ Physiol, vol.280, pp.2313-2320, 2001.

E. Hochhauser, S. Kivity, D. Offen, N. Maulik, H. Otani et al., Bax ablation protects against myocardial ischemia-reperfusion injury in transgenic mice, American Journal of Physiology - Heart and Circulatory Physiology, vol.284, issue.6, pp.2351-2359, 2003.
DOI : 10.1152/ajpheart.00783.2002

A. Gustafsson, J. Tsai, S. Logue, M. Crow, and R. Gottlieb, Apoptosis Repressor with Caspase Recruitment Domain Protects against Cell Death by Interfering with Bax Activation, Journal of Biological Chemistry, vol.279, issue.20, pp.21233-21238, 2004.
DOI : 10.1074/jbc.M400695200

J. Huang, K. Nakamura, Y. Ito, T. Uzuka, M. Morikawa et al., Bcl-xL Gene Transfer Inhibits Bax Translocation and Prolongs Cardiac Cold Preservation Time in Rats, Circulation, vol.112, issue.1, pp.76-83, 2005.
DOI : 10.1161/CIRCULATIONAHA.105.535740

J. Reed, Apoptosis-regulating proteins as targets for drug discovery, Trends in Molecular Medicine, vol.7, issue.7, pp.314-319, 2001.
DOI : 10.1016/S1471-4914(01)02026-3

B. Polster, G. Basanez, M. Young, M. Suzuki, and G. Fiskum, Inhibition of Bax-induced cytochrome c release from neural cell and brain mitochondria by dibucaine and propranolol, J Neurosci, vol.23, pp.2735-2743, 2003.

A. Bombrun, P. Gerber, C. G. Terradillos, O. Antonsson, B. Halazy et al., 6-dibromocarbazole piperazine derivatives of 2-propanol as first inhibitors of cytochrome c release via Bax channel modulation, J Med Chem, vol.3, issue.46, pp.4365-4368, 2003.

M. Sawada, P. Hayes, and S. Matsuyama, Cytoprotective membrane-permeable peptides designed from the Bax-binding domain of Ku70, Nature Cell Biology, vol.5, issue.4, pp.352-357, 2003.
DOI : 10.1038/ncb955

C. Hetz, P. Vitte, A. Bombrun, T. Rostovtseva, S. Montessuit et al., Bax Channel Inhibitors Prevent Mitochondrion-mediated Apoptosis and Protect Neurons in a Model of Global Brain Ischemia, Journal of Biological Chemistry, vol.280, issue.52, pp.42960-42970, 2005.
DOI : 10.1074/jbc.M505843200

M. Esposti, The roles of Bid, APOPTOSIS, vol.7, issue.5, pp.433-440, 2002.
DOI : 10.1023/A:1020035124855

M. Chen, H. He, S. Zhan, S. Krajewski, J. Reed et al., Bid Is Cleaved by Calpain to an Active Fragment in Vitro and during Myocardial Ischemia/Reperfusion, Journal of Biological Chemistry, vol.276, issue.33
DOI : 10.1074/jbc.M103701200

M. Chen, D. Won, S. Krajewski, and R. Gottlieb, Calpain and Mitochondria in Ischemia/Reperfusion Injury, Journal of Biological Chemistry, vol.277, issue.32, pp.29181-29186, 2002.
DOI : 10.1074/jbc.M204951200

M. Takahashi, K. Tanonaka, H. Yoshida, M. Koshimizu, T. Daicho et al., Possible involvement of calpain activation in pathogenesis of chronic heart failure after acute myocardial infarction, J Cardiovasc Pharmacol, vol.47, pp.413-421, 2006.

M. Saez, R. Ramirez-lorca, F. Moron, and A. Ruiz, The therapeutic potential of the calpain family: new aspects, Drug Discovery Today, vol.11, issue.19-20, pp.917-923, 2006.
DOI : 10.1016/j.drudis.2006.08.009

B. Becattini, C. Culmsee, M. Leone, D. Zhai, X. Zhang et al., Structure-activity relationships by interligand NOE-based design and synthesis of antiapoptotic compounds targeting Bid, Proceedings of the National Academy of Sciences, vol.103, issue.33, pp.12602-12606, 2006.
DOI : 10.1073/pnas.0603460103

K. Webster, R. Graham, J. Thompson, M. Spiga, D. Frazier et al., Redox Stress and the Contributions of BH3-Only Proteins to Infarction, Antioxidants & Redox Signaling, vol.8, issue.9-10
DOI : 10.1089/ars.2006.8.1667

K. Regula, K. Ens, and L. Kirshenbaum, Inducible Expression of BNIP3 Provokes Mitochondrial Defects and Hypoxia-Mediated Cell Death of Ventricular Myocytes, Circulation Research, vol.91, issue.3, pp.226-231, 2002.
DOI : 10.1161/01.RES.0000029232.42227.16

L. Kubasiak, O. Hernandez, N. Bishopric, and K. Webster, Hypoxia and acidosis activate cardiac myocyte death through the Bcl-2 family protein BNIP3, Proceedings of the National Academy of Sciences, vol.99, issue.20, pp.12825-12830, 2002.
DOI : 10.1073/pnas.202474099

D. Kubli, J. Ycaza, and A. Gustafsson, Bnip3 mediates mitochondrial dysfunction and cell death through Bax and Bak, Biochemical Journal, vol.405, issue.3, pp.407-415, 2007.
DOI : 10.1042/BJ20070319

A. Hamacher-brady, N. Brady, S. Logue, M. Sayen, M. Jinno et al., Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy, Cell Death and Differentiation, vol.185, issue.1, pp.146-157, 2007.
DOI : 10.1038/sj.cdd.4401936

A. Toth, J. Jeffers, P. Nickson, J. Min, J. Morgan et al., Targeted deletion of Puma attenuates cardiomyocyte death and improves cardiac function during ischemia-reperfusion, AJP: Heart and Circulatory Physiology, vol.291, issue.1, pp.52-60, 2006.
DOI : 10.1152/ajpheart.01046.2005

M. Colombini, VDAC: The channel at the interface between mitochondria and the cytosol, Molecular and Cellular Biochemistry, vol.256, issue.1/2, pp.107-115, 2004.
DOI : 10.1023/B:MCBI.0000009862.17396.8d

K. Anflous, O. Blondel, A. Bernard, M. Khrestchatisky, and R. Ventura-clapier, Characterization of rat porin isoforms: cloning of a cardiac type-3 variant encoding an additional methionine at its putative N-terminal region, Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, vol.1399, issue.1, pp.47-50, 1998.
DOI : 10.1016/S0167-4781(98)00088-8

C. Mde, C. Wilson, and J. , All three isoforms of the voltage-dependent anion channel (VDAC1, VDAC2, and VDAC3) are present in mitochondria from bovine, rabbit, and rat brain, Arch Biochem Biophys, vol.422, pp.191-196, 2004.

S. Shimizu, M. Narita, and Y. Tsujimoto, Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC, Nature, vol.399, pp.483-487, 1999.

E. Cheng, T. Sheiko, J. Fisher, W. Craigen, and S. Korsmeyer, VDAC2 Inhibits BAK Activation and Mitochondrial Apoptosis, Science, vol.301, issue.5632, pp.513-517, 2003.
DOI : 10.1126/science.1083995

M. Vander-heiden, N. Chandel, P. Schumacker, and C. Thompson, Bcl-xL Prevents Cell Death following Growth Factor Withdrawal by Facilitating Mitochondrial ATP/ADP Exchange, Molecular Cell, vol.3, issue.2, pp.159-167, 1999.
DOI : 10.1016/S1097-2765(00)80307-X

M. Madesh and G. Hajn-czky-Ó, VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release, J Cell Biol . Am J Physiol Heart Circ Physiol, vol.155, issue.280, pp.1003-1015, 2001.

C. Lawrence, B. Billups, G. Rodrigo, and N. Standen, channel opener diazoxide protects cardiac myocytes during metabolic inhibition without causing mitochondrial depolarization or flavoprotein oxidation, British Journal of Pharmacology, vol.28, issue.3, pp.535-542, 2001.
DOI : 10.1038/sj.bjp.0704289

O. Rourke-'b, Myocardial KATP Channels in Preconditioning, Circulation Research, vol.87, issue.10, pp.845-855, 2000.
DOI : 10.1161/01.RES.87.10.845

D. Hausenloy, A. Wynne, M. Duchen, and D. Yellon, Transient Mitochondrial Permeability Transition Pore Opening Mediates Preconditioning-Induced Protection, Circulation, vol.109, issue.14, pp.1714-1717, 2004.
DOI : 10.1161/01.CIR.0000126294.81407.7D

URL : http://discovery.ucl.ac.uk/7775/1/7775.pdf

A. Halestrap, Does the Mitochondrial Permeability Transition Have a Role in Preconditioning? * Response, Circulation, vol.110, issue.11, p.303, 2004.
DOI : 10.1161/01.CIR.0000141458.28925.D2

A. Costa, J. R. Costa, C. Andrukhiv, K. West, I. Garlid et al., The Mechanism by Which the Mitochondrial ATP-sensitive K+ Channel Opening and H2O2 Inhibit the Mitochondrial Permeability Transition, Journal of Biological Chemistry, vol.281, issue.30, pp.20801-20808, 2006.
DOI : 10.1074/jbc.M600959200

K. Garlid, J. Lemaster, C. Hackenbrock, R. Thurman, and H. Westerhoff, Integration of mitochondrial function, pp.257-276, 1998.

D. Santos, P. Kowaltowski, A. Laclau, M. Seetharaman, S. Paucek et al., channel protects the ischemic heart, American Journal of Physiology - Heart and Circulatory Physiology, vol.283, issue.1, pp.284-295, 2002.
DOI : 10.1152/ajpheart.00034.2002

K. Garlid, D. Santos, P. Xie, Z. Costa, A. Paucek et al., Mitochondrial potassium transport: the role of the mitochondrial ATP-sensitive K+ channel in cardiac function and cardioprotection, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1606, issue.1-3, pp.1-21, 2003.
DOI : 10.1016/S0005-2728(03)00109-9

H. Ono, T. Osanai, H. Ishizaka, H. Hanada, T. Kamada et al., Nicorandil improves cardiac function and clinical outcome in patients with acute myocardial infarction undergoing primary percutaneous coronary intervention: Role of inhibitory effect on reactive oxygen species formation, American Heart Journal, vol.148, issue.4, p.15, 2004.
DOI : 10.1016/j.ahj.2004.05.014

H. Ishii, S. Ichimiya, M. Kanashiro, T. Amano, K. Imai et al., Impact of a Single Intravenous Administration of Nicorandil Before Reperfusion in Patients With ST-Segment-Elevation Myocardial Infarction, Circulation, vol.112, issue.9, pp.1284-1288, 2005.
DOI : 10.1161/CIRCULATIONAHA.104.530329

M. Kitakaze, M. Asakura, J. Kim, Y. Shintani, H. Asanuma et al., Human atrial natriuretic peptide and nicorandil as adjuncts to reperfusion treatment for acute myocardial infarction (J-WIND): two randomised trials, The Lancet, vol.370, issue.9597, pp.1483-14936, 2007.
DOI : 10.1016/S0140-6736(07)61634-1

A. Halestrap, S. Clarke, and I. Khaliulin, The role of mitochondria in protection of the heart by preconditioning, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1767, issue.8, pp.1007-1031, 2007.
DOI : 10.1016/j.bbabio.2007.05.008

V. Papadopoulos, M. Baraldi, T. Guilarte, T. Knudsen, J. Lacap-re-È et al., Translocator protein (18kDa): new nomenclature for the peripheral-type benzodiazepine receptor based on its structure and molecular function, Trends in Pharmacological Sciences, vol.27, issue.8, pp.402-409, 2006.
DOI : 10.1016/j.tips.2006.06.005

M. Mcenery, The mitochondrial benzodiazepine receptor: Evidence for association with the voltage-dependent anion channel (VDAC), Journal of Bioenergetics and Biomembranes, vol.38, issue.1, pp.63-69, 1992.
DOI : 10.1007/BF00769532

T. Hirsch, D. Decaudin, S. Susin, P. Marchetti, N. Larochette et al., PK11195, a Ligand of the Mitochondrial Benzodiazepine Receptor, Facilitates the Induction of Apoptosis and Reverses Bcl-2-Mediated Cytoprotection, Experimental Cell Research, vol.241, issue.2, pp.426-434, 1998.
DOI : 10.1006/excr.1998.4084

J. Lacapere and V. Papadopoulos, Peripheral-type benzodiazepine receptor: structure and function of a cholesterol-binding protein in steroid and bile acid biosynthesis, Steroids, vol.68, issue.7-8
DOI : 10.1016/S0039-128X(03)00101-6

F. Bono, I. Lamarche, V. Prabonnaud, L. Fur, G. Herbert et al., Peripheral Benzodiazepine Receptor Agonists Exhibit Potent Antiapoptotic Activities, Biochemical and Biophysical Research Communications, vol.265, issue.2, pp.457-461, 1999.
DOI : 10.1006/bbrc.1999.1683

P. Carayon, M. Portier, D. Dussossoy, A. Bord, G. Petitpretre et al., nvolvement of peripheral benzodiazepine receptors in the protection of hematopoietic cells against oxygen radical damage, Blood, vol.87, pp.3170-3178, 1996.

T. Hauet, Z. Han, Y. Wang, F. Hameury, C. Jayle et al., odulation of peripheral-type benzodiazepine receptor levels in a reperfusion injury pig kidney-graft model mitochondrial membrane permeability, a pharmacological target for cardioprotection, Transplantation . Curr Med Chem . Author manuscript Page, vol.74, issue.13, pp.1507-1515, 2002.

N. Leducq, F. Bono, T. Sulpice, V. Vin, P. Janiak et al., Role of Peripheral Benzodiazepine Receptors in Mitochondrial, Cellular, and Cardiac Damage Induced by Oxidative Stress and Ischemia-Reperfusion, Journal of Pharmacology and Experimental Therapeutics, vol.306, issue.3, pp.828-837, 2003.
DOI : 10.1124/jpet.103.052068

F. Obame, R. Zini, R. Souktani, A. Berdeaux, and D. Morin, Peripheral Benzodiazepine Receptor-Induced Myocardial Protection is Mediated by Inhibition of Mitochondrial Membrane Permeabilization, Journal of Pharmacology and Experimental Therapeutics, vol.323, issue.1, pp.336-345, 2007.
DOI : 10.1124/jpet.107.124255

C. Murry, R. Jennings, and K. Reimer, Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium, Circulation, vol.74, issue.5, pp.1124-1136, 1986.
DOI : 10.1161/01.CIR.74.5.1124

D. Hausenloy and D. Yellon, New directions for protecting the heart against ischaemia???reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway, Cardiovascular Research, vol.61, issue.3, pp.448-460, 2004.
DOI : 10.1016/j.cardiores.2003.09.024

Z. Zhao, J. Corvera, M. Halkos, F. Kerendi, N. Wang et al., Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning, American Journal of Physiology - Heart and Circulatory Physiology, vol.285, issue.2, pp.579-588, 2003.
DOI : 10.1152/ajpheart.01064.2002

D. Hausenloy and D. Yellon, Preconditioning and postconditioning: United at reperfusion, Pharmacology & Therapeutics, vol.116, issue.2, pp.173-191, 2007.
DOI : 10.1016/j.pharmthera.2007.06.005

H. Thibault, C. Piot, P. Staat, L. Bontemps, C. Sportouch et al., Long-Term Benefit of Postconditioning, Circulation, vol.117, issue.8, pp.1037-1044, 2008.
DOI : 10.1161/CIRCULATIONAHA.107.729780

URL : https://hal.archives-ouvertes.fr/hal-00428123

M. Juhaszova, D. Zorov, S. Kim, S. Pepe, Q. Fu et al., Glycogen synthase kinase-3?? mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore, Journal of Clinical Investigation, vol.113, issue.11, pp.1535-1549, 2004.
DOI : 10.1172/JCI19906DS1

S. Davidson, D. Hausenloy, M. Duchen, and D. Yellon, Signalling via the reperfusion injury signalling kinase (RISK) pathway links closure of the mitochondrial permeability transition pore to cardioprotection, The International Journal of Biochemistry & Cell Biology, vol.38, issue.3, pp.414-419, 2006.
DOI : 10.1016/j.biocel.2005.09.017

J. Bopassa, R. Ferrera, O. Gateau-roesch, E. Couture-lepetit, and M. Ovize, PI 3-kinase regulates the mitochondrial transition pore in controlled reperfusion and postconditioning, Cardiovascular Research, vol.69, issue.1, pp.178-185, 2006.
DOI : 10.1016/j.cardiores.2005.07.014

F. Obame, C. Plin-mercier, R. Assaly, R. Zini, J. Dubois-rand-É et al., Cardioprotective Effect of Morphine and a Blocker of Glycogen Synthase Kinase 3??, SB216763 [3-(2,4-Dichlorophenyl)-4(1-methyl-1H-indol-3-yl)-1H-pyrrole-2,5-dione], via Inhibition of the Mitochondrial Permeability Transition Pore, Journal of Pharmacology and Experimental Therapeutics, vol.326, issue.1, pp.252-258, 2008.
DOI : 10.1124/jpet.108.138008

L. Burwell and P. Brookes, Mitochondria as a Target for the Cardioprotective Effects of Nitric Oxide in Ischemia???Reperfusion Injury, Antioxidants & Redox Signaling, vol.10, issue.3, pp.579-599, 2008.
DOI : 10.1089/ars.2007.1845

C. Baines, C. Song, Y. Zheng, G. Wang, J. Zhang et al., Protein Kinase Cepsilon Interacts With and Inhibits the Permeability Transition Pore in Cardiac Mitochondria, Circulation Research, vol.92, issue.8, pp.873-880, 2003.
DOI : 10.1161/01.RES.0000069215.36389.8D

J. Weiss, P. Korge, H. Honda, and P. Ping, Role of the Mitochondrial Permeability Transition in Myocardial Disease, Circulation Research, vol.93, issue.4, pp.292-301, 2003.
DOI : 10.1161/01.RES.0000087542.26971.D4

C. Murriel, E. Churchill, K. Inagaki, L. Szweda, and D. Mochly-rosen, Protein Kinase C?? Activation Induces Apoptosis in Response to Cardiac Ischemia and Reperfusion Damage: A MECHANISM INVOLVING BAD AND THE MITOCHONDRIA, Journal of Biological Chemistry, vol.279, issue.46, pp.47985-47991, 2004.
DOI : 10.1074/jbc.M405071200

M. Nishihara, T. Miura, T. Miki, M. Tanno, T. Yano et al., Modulation of the mitochondrial permeability transition pore complex in GSK-3??-mediated myocardial protection, Journal of Molecular and Cellular Cardiology, vol.43, issue.5, pp.564-570, 2007.
DOI : 10.1016/j.yjmcc.2007.08.010

F. Tsuruta, N. Masuyama, and Y. Gotoh, The Phosphatidylinositol 3-Kinase (PI3K)-Akt Pathway Suppresses Bax Translocation to Mitochondria, Journal of Biological Chemistry, vol.277, issue.16, pp.14040-14047, 2002.
DOI : 10.1074/jbc.M108975200

C. Zuurbier, O. Eerbeek, and A. Meijer, Ischemic preconditioning, insulin, and morphine all cause hexokinase redistribution, AJP: Heart and Circulatory Physiology, vol.289, issue.1, pp.496-499, 2005.
DOI : 10.1152/ajpheart.01182.2004

W. Laskey, Brief repetitive balloon occlusions enhance reperfusion during percutaneous coronary intervention for acute myocardial infarction: A pilot study, Catheterization and Cardiovascular Interventions, vol.39, issue.3, pp.361-367, 2005.
DOI : 10.1002/ccd.20397

X. Yang, Y. Liu, L. Wang, L. Cui, T. Wang et al., Reduction in myocardial infarct size by postconditioning in patients after percutaneous coronary intervention, J Invasive Cardiol, vol.19, pp.424-430, 2007.

M. Marzilli, E. Orsini, P. Marraccini, and R. Testa, Beneficial Effects of Intracoronary Adenosine as an Adjunct to Primary Angioplasty in Acute Myocardial Infarction, Circulation, vol.101, issue.18, pp.2154-2159, 2000.
DOI : 10.1161/01.CIR.101.18.2154

M. Quintana, P. Hjemdahl, A. Sollevi, T. Kahan, M. Edner et al., Left ventricular function and cardiovascular events following adjuvant therapy with adenosine in acute myocardial infarction treated with thrombolysis, European Journal of Clinical Pharmacology, vol.13, issue.1, pp.1-9, 2003.
DOI : 10.1016/S0735-1097(98)00604-4

K. Mahaffey, J. Puma, N. Barbagelata, M. Dicarli, M. Leesar et al., Adenosine as an adjunct to thrombolytic therapy for acute myocardial infarction, Journal of the American College of Cardiology, vol.34, issue.6, pp.1711-1720, 1999.
DOI : 10.1016/S0735-1097(99)00418-0

A. Ross, R. Gibbons, G. Stone, R. Kloner, and R. Alexander, A Randomized, Double-Blinded, Placebo-Controlled Multicenter Trial of Adenosine as an Adjunct to Reperfusion in the Treatment of Acute Myocardial Infarction (AMISTAD-II), Journal of the American College of Cardiology, vol.45, issue.11, pp.1775-1780, 2005.
DOI : 10.1016/j.jacc.2005.02.061

E. Gross, A. Hsu, and G. Gross, Opioid-Induced Cardioprotection Occurs via Glycogen Synthase Kinase ?? Inhibition During Reperfusion in Intact Rat Hearts, Circulation Research, vol.94, issue.7, pp.960-966, 2004.
DOI : 10.1161/01.RES.0000122392.33172.09

L. Gomez, M. Paillard, H. Thibault, G. Derumeaux, and M. Ovize, Inhibition of GSK3?? by Postconditioning Is Required to Prevent Opening of the Mitochondrial Permeability Transition Pore During Reperfusion, Circulation, vol.117, issue.21, pp.2761-2768, 2008.
DOI : 10.1161/CIRCULATIONAHA.107.755066

W. Pan, T. Pintar, A. J. Lee, V. Vaughn, W. Collard et al., Statins are associated with a reduced incidence of perioperative mortality after coronary artery bypass graft surgery, Circulation, vol.110, issue.11, pp.45-49, 2004.

C. Efthymiou, M. Mocanu, and D. Yellon, Atorvastatin and Myocardial Reperfusion Injury, Journal of Cardiovascular Pharmacology, vol.45, issue.3, pp.247-252, 2005.
DOI : 10.1097/01.fjc.0000154376.82445.06

S. Jones, Y. Teshima, M. Akao, and E. Marb-n-Á, Simvastatin Attenuates Oxidant-Induced Mitochondrial Dysfunction in Cardiac Myocytes, Circulation Research, vol.93, issue.8, pp.697-699, 2003.
DOI : 10.1161/01.RES.0000097262.21507.DF

A. Andreyev, Y. Kushnareva, and A. Starkov, Mitochondrial metabolism of reactive oxygen species, Biochemistry (Moscow), vol.1058, issue.13, pp.200-214, 2005.
DOI : 10.1007/s10541-005-0102-7

J. Zweier, Measurement of superoxide-derived free radicals in the reperfused heart. Evidence for a free radical mechanism of reperfusion injury, J Biol Chem, vol.263, pp.1353-1357, 1988.

A. Maurel, C. Hernandez, O. Kunduzova, G. Bompart, C. Cambon et al., Age-dependent increase in hydrogen peroxide production by cardiac monoamine oxidase A in rats, American Journal of Physiology - Heart and Circulatory Physiology, vol.284, issue.4, pp.1460-1467, 2003.
DOI : 10.1152/ajpheart.00700.2002

J. Kim, Y. Jin, and J. Lemasters, Reactive oxygen species, but not Ca2+ overloading, trigger pH- and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia-reperfusion, AJP: Heart and Circulatory Physiology, vol.290, issue.5, pp.2024-2034, 2006.
DOI : 10.1152/ajpheart.00683.2005

S. Clarke, I. Khaliulin, M. Das, J. Parker, K. Heesom et al., Inhibition of Mitochondrial Permeability Transition Pore Opening by Ischemic Preconditioning Is Probably Mediated by Reduction of Oxidative Stress Rather Than Mitochondrial Protein Phosphorylation, Circulation Research, vol.102, issue.9, pp.1082-1090, 2008.
DOI : 10.1161/CIRCRESAHA.107.167072

P. Dobsak, C. Courderot-masuyer, M. Zeller, C. Vergely, A. Laubriet et al., Antioxidative properties of pyruvate and protection of the ischemic rat heart during cardioplegia mitochondrial membrane permeability, a pharmacological target for cardioprotection, J Cardiovasc Pharmacol . Curr Med Chem . Author manuscript Page, vol.34, issue.14, pp.651-659, 1999.

P. Oliveira, L. Gon-alves-Ç, P. Monteiro, L. Providencia, and A. Moreno, Are the Antioxidant Properties of Carvedilol Important for the Protection of Cardiac Mitochondria?, Current Vascular Pharmacology, vol.3, issue.2, pp.147-158, 2005.
DOI : 10.2174/1570161053586903

S. Javadov, K. Lim, P. Kerr, M. Suleiman, G. Angelini et al., Protection of hearts from reperfusion injury by propofol is associated with inhibition of the mitochondrial permeability transition, Cardiovascular Research, vol.45, issue.2, pp.360-369, 2000.
DOI : 10.1016/S0008-6363(99)00365-X

D. Morin, V. Papadopoulos, and J. Tillement, Prevention of cell damage in ischaemia: novel molecular targets in mitochondria, Expert Opinion on Therapeutic Targets, vol.41, issue.2, pp.315-334, 2002.
DOI : 10.1038/415096a

Z. Bognar, T. Kalai, A. Palfi, K. Hanto, B. Bognar et al., A novel SOD-mimetic permeability transition inhibitor agent protects ischemic heart by inhibiting both apoptotic and necrotic cell death, Free Radical Biology and Medicine, vol.41, issue.5, pp.835-848, 2006.
DOI : 10.1016/j.freeradbiomed.2006.06.004

K. Rajesh, S. Sasaguri, R. Suzuki, and H. Maeda, Antioxidant MCI-186 inhibits mitochondrial permeability transition pore and upregulates Bcl-2 expression, American Journal of Physiology - Heart and Circulatory Physiology, vol.285, issue.5, pp.2171-2178, 2003.
DOI : 10.1152/ajpheart.00143.2003

K. Griendling and G. Fitzgerald, Oxidative Stress and Cardiovascular Injury: Part II: Animal and Human Studies, Circulation, vol.108, issue.17, pp.2034-2040, 2003.
DOI : 10.1161/01.CIR.0000093661.90582.c4

M. Murphy, Targeting lipophilic cations to mitochondria, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1777, issue.7-8, pp.1028-1031
DOI : 10.1016/j.bbabio.2008.03.029

V. Adlam, J. Harrison, C. Porteous, A. James, R. Smith et al., Targeting an antioxidant to mitochondria decreases cardiac ischemia-reperfusion injury, The FASEB Journal, vol.19, issue.9, pp.1088-1095, 2005.
DOI : 10.1096/fj.05-3718com

K. Zhao, G. Zhao, D. Wu, Y. Soong, A. Birk et al., Cell-permeable Peptide Antioxidants Targeted to Inner Mitochondrial Membrane inhibit Mitochondrial Swelling, Oxidative Cell Death, and Reperfusion Injury, Journal of Biological Chemistry, vol.279, issue.33, pp.34682-34690, 2004.
DOI : 10.1074/jbc.M402999200

H. Szeto, Mitochondria-Targeted Cytoprotective Peptides for Ischemia???Reperfusion Injury, Antioxidants & Redox Signaling, vol.10, issue.3, pp.601-619, 2008.
DOI : 10.1089/ars.2007.1892

P. Bianchi, O. Kunduzova, E. Masini, C. Cambon, D. Bani et al., Oxidative Stress by Monoamine Oxidase Mediates Receptor-Independent Cardiomyocyte Apoptosis by Serotonin and Postischemic Myocardial Injury, Circulation, vol.112, issue.21, pp.3297-3305, 2005.
DOI : 10.1161/CIRCULATIONAHA.104.528133

V. Skulachev, Uncoupling: new approaches to an old problem of bioenergetics, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1363, issue.2, pp.100-124, 1998.
DOI : 10.1016/S0005-2728(97)00091-1

C. Ganote and S. Armstrong, Effects of CCCP-induced mitochondrial uncoupling and cyclosporin A on cell volume, cell injury and preconditioning protection of isolated rabbit cardiomyocytes, Journal of Molecular and Cellular Cardiology, vol.35, issue.7, pp.749-759, 2003.
DOI : 10.1016/S0022-2828(03)00114-7

J. Brennan, R. Southworth, R. Medina, S. Davidson, M. Duchen et al., Mitochondrial uncoupling, with low concentration FCCP, induces ROS-dependent cardioprotection independent of KATP channel activation, Cardiovascular Research, vol.72, issue.2, pp.313-321, 2006.
DOI : 10.1016/j.cardiores.2006.07.019

M. Bienengraeber, C. Ozcan, and A. Terzic, Stable transfection of UCP1 confers resistance to hypoxia/reoxygenation in a heart-derived cell line, Journal of Molecular and Cellular Cardiology, vol.35, issue.7, pp.861-865, 2003.
DOI : 10.1016/S0022-2828(03)00147-0

Y. Teshima, M. Akao, and S. Jones, Uncoupling Protein-2 Overexpression Inhibits Mitochondrial Death Pathway in Cardiomyocytes, Circulation Research, vol.93, issue.3, pp.192-200, 2003.
DOI : 10.1161/01.RES.0000085581.60197.4D

C. Mcleod, A. Aziz, R. Hoyt, . Jr, J. Mccoy et al., Uncoupling Proteins 2 and 3 Function in Concert to Augment Tolerance to Cardiac Ischemia, Journal of Biological Chemistry, vol.280, issue.39, pp.33470-33476, 2005.
DOI : 10.1074/jbc.M505258200