A. Falcao, J. Udupa, S. Samarasekera, and S. Sharma, User-Steered Image Segmentation Paradigms: Live Wire and Live Lane, Graphical Models and Image Processing, vol.60, issue.4, pp.233-260, 1998.
DOI : 10.1006/gmip.1998.0475

T. Mcinerney and D. Terzopoulos, Deformable models in medical image analysis: a survey, Medical Image Analysis, vol.1, issue.2, 1996.
DOI : 10.1016/S1361-8415(96)80007-7

M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active contour models, International Journal of Computer Vision, vol.5, issue.6035, pp.321-331, 1988.
DOI : 10.1007/BF00133570

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.124.5318

L. D. Cohen and I. Cohen, Finite-element methods for active contour models and balloons for 2-D and 3-D images, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.15, issue.11, pp.1131-1147, 1993.
DOI : 10.1109/34.244675

C. Xu and J. L. Prince, Snakes, Shapes, and Gradient Vector Flow, IEEE Trans. on Image Processing, vol.7, issue.3, pp.359-369, 1998.

R. Berbari, F. Frouin, A. B. Redheuil, E. D. Angelini, E. Mousseaux et al., D??veloppement et ??valuation d???une m??thode de segmentation automatique de l???endocarde sur des images acquises par r??sonance magn??tique, IRBM, vol.28, issue.3-4, pp.3-4, 2007.
DOI : 10.1016/j.rbmret.2007.07.001

S. C. Zhu and A. Yuille, Region competition: unifying snakes, region growing, energy/Bayes/MDL for multi-band image segmentation, Proceedings of IEEE International Conference on Computer Vision, pp.884-900, 1996.
DOI : 10.1109/ICCV.1995.466909

J. Montagnat and H. Delingette, 4D deformable models with temporal constraints: application to 4D cardiac image segmentation, Medical Image Analysis, vol.9, issue.1, pp.87-100, 2005.
DOI : 10.1016/j.media.2004.06.025

URL : https://hal.archives-ouvertes.fr/hal-00443361

S. Osher and J. A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, Journal of Computational Physics, vol.79, issue.1, pp.12-49, 1988.
DOI : 10.1016/0021-9991(88)90002-2

N. Paragios, A level set approach for shape-driven segmentation and tracking of the left ventricle, IEEE Transactions on Medical Imaging, vol.22, issue.6, pp.773-776, 2006.
DOI : 10.1109/TMI.2003.814785

A. F. Frangi, W. J. Niessen, and M. A. Viergever, Three-dimensional modeling for functional analysis of cardiac images, a review, IEEE Transactions on Medical Imaging, vol.20, issue.1, pp.2-25, 2001.
DOI : 10.1109/42.906421

M. Lorenzo-valdes, G. I. Sanchez-ortiz, A. G. Elkinton, R. H. Mohiaddin, and D. Rueckert, Segmentation of 4D Cardiac MR Images Using a Probabilistic Atlas and the EM Algorithm, Medical Image Analysis, vol.8, issue.3, pp.255-265, 2004.
DOI : 10.1007/978-3-540-39899-8_55

K. Olszewski, G. Subramanyan, J. Lavi, and . Weese, Automatic model-based segmentation of the heart in CT images, IEEE Trans. Med. Imaging, vol.27, issue.9, pp.1189-1201, 2008.

M. Sermesant, C. Forest, X. Pennec, H. Delingette, and N. Ayache, Deformable biomechanical models: Application to 4D cardiac image analysis, Medical Image Analysis, vol.7, issue.4, pp.475-488, 2003.
DOI : 10.1016/S1361-8415(03)00068-9

URL : https://hal.archives-ouvertes.fr/inria-00615637

A. F. Frangi, D. Rueckert, J. A. Schnabel, and W. J. Niessen, Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling, IEEE Transactions on Medical Imaging, vol.21, issue.9, pp.1151-1166, 2006.
DOI : 10.1109/TMI.2002.804426

J. K. Udupa, Relative fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.11, pp.1485-1500, 2002.
DOI : 10.1109/TPAMI.2002.1046162

J. Fleureau, M. Garreau, A. Simon, R. Hachemani, and D. Boulmier, Assessment of global cardiac function in MSCT imaging using fuzzy connectedness segmentation, 2008 Computers in Cardiology, 2008.
DOI : 10.1109/CIC.2008.4749144

URL : https://hal.archives-ouvertes.fr/inserm-00530946

Y. Boykov and V. Kolmogorov, An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.26, issue.9, pp.1124-1137, 2004.
DOI : 10.1109/TPAMI.2004.60

M. P. Jolly, Automatic Segmentation of the Left Ventricle in Cardiac MR and CT Images, International Journal of Computer Vision, vol.16, issue.4, pp.151-163, 2006.
DOI : 10.1007/s11263-006-7936-3

G. Kedenburg, C. Cososco, U. Köthe, W. J. Niessen, E. J. Vonken et al., Automatic cardiac MRI myocardium segmentation using graphcut, Medical Imaging 2006: Image Processing, p.30, 2006.
DOI : 10.1117/12.653583

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.218.1186

N. Richard, M. Dojat, and C. Garbay, Automated segmentation of human brain MR images using a multi-agent approach, Artificial Intelligence in Medicine, vol.30, issue.2, pp.153-176, 2004.
DOI : 10.1016/j.artmed.2003.11.006

URL : https://hal.archives-ouvertes.fr/inserm-00402306

E. William, H. E. Lorensen, and . Cline, Marching cubes : A high resolution 3d surface construction algorithm

I. Tableau, Comparaisons des résultats de la segmentation 3D du ventricule gauche (sans l'oreillette) obtenu par le système SMA avec ceux obtenus aux moyen d'une segmentation manuelle réalisée sur 10 coupes par base : évaluation Figure 5 : Segmentation du Myocarde sans (haut) et avec (bas) des agents « inhibiteurs » : sur la gauche, une coupe originale extraite du volume à segmenter (avec les points germes) et sur la droite les résultats de segmentation associés aux MY (en vert, VG (en bleu), VD (en rouge), OC (en cyan)