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Summary

We address the problem of design optimisation using cost functions in nonlinear mixed

effects models with multiple responses. We focus on the relative feasibility of the optimised

designs, in term of sampling times and of number of subjects. To do that, we extend the

Fedorov-Wynn algorithm, a dedicated design optimisation algorithm, to include a cost

function that penalizes less feasible designs as well as to take into account multiple responses.

We apply this extension to the design optimisation of a joint pharmacokinetic model of

infliximab and methotrexate administered in rheumatoid arthritis. We show the benefit of

such an approach when substantial constraints on the design are imposed.

Keywords: Design optimisation; nonlinear mixed effects model; cost function; Fedorov-

Wynn algorithm; Fisher information matrix, PFIM.



3

1. Introduction

Nonlinear mixed effects models (NLMEM) are increasingly used in biological studies to

analyse longitudinal data. Use of those models has been initiated by Sheiner et al. (1972) for

pharmacokinetic (PK) analyses, which study the time course of the drug concentrations in the

body after the drug administration. It has been extended for pharmacodynamic (PD) analyses

to study the relationship of drug concentrations to pharmacologic effects and it is now very

popular in other kinds of longitudinal studies. NLMEM are now also used for the joint

modelling of several biological responses such as the PK and the PD of a drug or the PK of

parent drugs and of their active metabolite (Panhard et al. (2005)). The purpose of NLMEM

approach, also called the population approach, is to estimate the mean value of the parameters

and their interindividual variability in the studied population. Influence of covariates on the

parameters can also be determined and quantified, which can help to define groups of

population with different levels of response. This methodology can deal with sparse

individual data, without any need of individual parameter estimates. This allows studies in

populations like children for which rich individual data cannot be obtained due to ethical or

physiopathological reasons.

As in all experiments, a design has first to be defined to collect the data. Estimation is then

performed, usually using maximum likelihood procedures; several estimation methods are

available, either based on linearisation of the likelihood function (Beal and Sheiner (1992)) or

stochastic approximations (Pinheiro and Bates (1995), Kuhn and Lavielle (2005)). A review

of recent advances in this field can be found in Pillai et al. (2005). The choice of the design is

important because it largely influences the precision of the parameter estimates. In NLMEM,

designs, also called “population designs”, are defined by several groups of subjects; each

group is composed of a number of samples to be performed on a number of subjects at given
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times. Simulation studies have shown that the precision of parameter estimates depends on the

balance between the design variables in the group structure (number of groups to include,

number of subjects per group and number of samples per group) and the allocation of the

sampling times (Al-Banna et al. (1990); Jonsson et al. (1996)). The general theory of design

determination used for classical nonlinear models (Atkinson and Donev (1992); Walter and

Pronzato (1997)) has been extended to NLMEM. It relies on the Cramer-Rao inequality which

states that the inverse of the Fisher information matrix (MF) is the lower bound of the

variance–covariance matrix of any unbiased maximum likelihood parameter estimator.

However exact analytical expression of MF cannot be derived in NLMEM due to the lack of

analytical expression of the likelihood. To circumvent this problem, Mentré et al. (1997) have

proposed, for single response models, an approximation of the matrix based on first order

Taylor expansion of the model around the expectation of the random effects. This expression

has been extended for more complex models including fixed effects for the influence of

covariates on the response and for an additional variability of the parameters of a given

individual between several periods of treatment (Retout and Mentré (2003a)). Evaluation of

MF using a first order expansion is also performed in Fedorov et al. (2002) and Gagnon and

Leonov (2005). Recently, an approximate MF has been proposed for multiple response models

by Hooker and Vicini (2005) and Gueorguieva et al. (2006) using the same first order

linearisation of the model. Simulations have shown the approximate MF to be appropriate for

single response models (Retout and Mentré (2003a); Retout et al. (2002); Retout et al. (2007))

and for multiple response models (Bazzoli et al. (2007)); it has been implemented in PFIM, a

R function for design evaluation and optimisation freely available online (Retout et al. (2001);

Retout and Mentré (2003b); www.pfim.biostat.fr ).

Design optimisation can either be restricted to optimising the sampling times for a given

group structure (exact designs), or optimise both the group structure and the sampling times
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(called statistical or approximate designs) (Atkinson and Donev (1992)). We consider the

latter approach in this paper. The Fedorov-Wynn algorithm, a design-specific optimisation

algorithm converging towards the D-optimal design (Fedorov (1972); Wynn (1972)), has been

implemented for this purpose in PFIM. Its effectiveness to optimise designs in NLMEM,

which often involve large number of design variables, has been shown for instance in Retout

et al. (2007), by comparison to the Simplex algorithm. The implementation assumes that the

acceptable sampling times are given and constitute a finite set for optimisation, which can be

a great advantage in clinical practice to avoid unfeasible sampling times.

However, optimisation is performed for a fixed total number of samples without any

consideration on the relative feasibility of the sampling times or of the group structure. In

practice, however, it may be difficult to keep a patient at the hospital for a long time after its

drug administration for no other medical reason than to obtain a blood sample for the study.

Recruiting a large number of patients can also be problematic for financial and /or recruitment

reasons. This problem has been introduced for single response models through the use of cost

functions by Mentré et al. (1997); Gagnon and Leonov (2005) illustrate and highlight the

benefits of such an approach on a clinical PK study.

In this work, our objectives are first to extend the Fedorov-Wynn algorithm for design

optimisation with cost functions in NLMEM with multiple responses and second, to apply this

approach to design optimisation for a joint model of infliximab and methotrexate PK

administered in rheumatoid arthritis.

We describe the case study in Section 2. The statistical methods are given in Section 3. We

first present NLMEM; we then describe the computation of the Fisher matrix in this context;

last, we explain the designs optimisation with cost functions using the Fedorov-Wynn

algorithm. Section 3 is dedicated to the application to our case study.
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2. Case study: joint model of infliximab and methotrexate

pharmacokinetics

Infliximab is a high-molecular-weight chimeric monoclonal IgG1 antibody against human

tumour necrosis factor-α (TNFα). It is given in rheumatoid arthritis to stop the inflammatory

process in the synovial joints, in combination with methotrexate, an antimetabolite of folic

acid; methotrexate attenuates the formation of antibodies which can inactivate infliximab

(Klotz et al. (2007)). To our knowledge, no study has been performed to simultaneously

model the population PK of infliximab and methotrexate. However, this modelling is

important since many patients receive an association of these two drugs in treatment and

because methotrexate has an effect on the PK of infliximab (Klotz et al. (2007)).

2.1. Pharmacokinetics of infliximab

Infliximab is given as a long-term treatment in rheumatoid arthritis since it is a chronic

disease. Treatment is usually initiated with 3 infusions at week 0, 2 and 6, and a maintenance

dose is given every 8 weeks thereafter. The recommended dose is given as a 2 or 3 hours

infusion of 3 mg/kg. The PK of infliximab has been described in patients with rheumatoid

arthritis in several papers (Kavanaugh et al. (2000); Klotz et al. (2007); Maini et al. (1998); St

Clair et al. (2002)). It is best described by a one compartment model with first order

elimination and zero order infusion. It can be parameterized in clearance (Cl ) and volume of

distribution (V ). An exponential model is used to relate individual parameters and random

effects, eg for clearance:

)exp( ,Clii bClCl =

where Cl is the mean population value and iCl and Clib , are respectively the individual

clearance parameter and random effect for individual i. The plasma concentration Inflif at time

t after dose at steady state can be written as follows:
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where D is the dose, InfT is the duration of the infusion and τ is the interval between two

infusions. Population parameter values are given in Table 1 (Kavanaugh et al. (2000)).

2.2. Pharmacokinetics of methotrexate

The usual dose of methotrexate in rheumatoid arthritis is within a range of 5 – 7.5 mg/week.

The PK profile of methotrexate has been described in many papers, including modelling

through population approaches. It is best described by a two-compartment first order oral

absorption model (Godfrey et al. (1998)). It is parameterized in rate constant of absorption

( ak ), clearance (Cl ), central compartment volume ( CV ), peripheral compartment volume

( pV ), intercompartmental clearance (Q ), with an exponential modelling of the random

effects. To simplify the model, we neglect the oral absorption lag of 0.23h and assume a

bioavailability of 100%. Therefore, the plasma concentration Methof at time t after dose at

steady-state can be written:
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(1998)).

2.3. Design for a joint PK modelling

We aim at determining a design for a joint population analysis of infliximab and methotrexate

PK at steady state. The mean kinetic profiles of both drugs are represented on Figure 1,

assuming, as we will in the rest of this paper, a 3 hours infusion dose of infliximab of 210 mg

every 8 weeks, corresponding to a dose of 3 mg/kg for a mean weight of 70 kg, and a weekly

dose of methotrexate of 7.5 mg.

We assume a proportional error model for the infliximab concentrations: )²2.0()( InflifVar =ε

and a combined error model for methotrexate: )²2.001.0()( MethofVar +=ε .

Our motivation in this paper is to develop optimal designs under different constraints, taking

into account different relative feasibilities in clinical practice, such as the inconvenience for

patients to be kept a long time at the hospital after its dose administration or the increase of

cost induced by the inclusion of a new patient compared to additional samples in a patient

already included.

We compare the optimal designs to a design established empirically, by taking into account

the very different time scales of the PK course of each drug (Figure 1). This design involves

one group of 50 subjects in whom 12 samples are taken. At each sampling time, both

infliximab and methotrexate concentrations are measured, yielding a total number of samples

of 1200. Six samples are taken on Day 1 of Week 1, after the beginning of the infusion of

infliximab at 30 minutes, 1, 3, 6, 8 and 24 hours; the same six samples are repeated at Day 1

of Week 8, the day of the last dose of methotrexate before the next infusion of infliximab.

Both periods correspond to a 24 hour period after the administration of a dose of
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methotrexate, and should also be informative for infliximab since they are set respectively at

the beginning and end of the dosing interval for this drug. We call this design the “empirical

design”. The sampling times of this design are reported on the kinetic profiles of infliximab

and methotrexate for the mean parameters at steady state on Figure 1.

3. Statistical Methods

3.1. Notations

We define an elementary design as a set of sampling times. A population design is then

composed of N individuals each with an associated elementary design iξ ( 1, ,= �i N ), Let
i

n

denote the number of sampling times in iξ . We write the population design { }1, ,Ξ = � Nξ ξ ,

and �
=

=
N

i

inn
1

the total number of observations.

For multiple response model, an elementary design iξ is composed of several sub-designs

( )iKiii ξξξξ ,,, 21 �= with ikξ , 1, ,k K= � , being the design associated with the th
k response.

ikξ is defined by ( ),,,, 21 ikiknikik ttt � the vector of the ikn sampling times for the observations of

the th
k response, so that �

=

=
K

k

iki nn
1

. This notation accounts for different number of samples

and different sampling times across the different responses, to accommodate different

response profiles.

Usually, population designs are composed of a limited number Q of groups of different

elementary designs qξ , 1, ,= �q Q , to be performed in a number qN of individuals with

�
=

=
Q

q

q NN
1

. The population design can then be noted:

( )[ ] ( )[ ] ( )[ ]{ }QQKQQKK NNN ,,,,;;,,,,;,,,, 21222221111211 ξξξξξξξξξ ����=Ξ
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A nonlinear mixed effects multiple response model or a multiple response population model

is defined as follows. The vector of observations
i

Y for the i
th

individual is defined as the in -

vector of the K different responses [ ]TT

iK

T

i

T

ii yyyY ,,, 21 �= , where iky , 1, ,k K= � , is the ikn -

vector of observations for the k
th

response. Each of these responses is associated with a

known function kf , such that ( ) ( ) ( ) ( )[ ]Tiknikikikikikikik ik
tftftff ,,,,,,, 21 θθθξθ �= is a ikn -vector

which describes the nonlinear model. The K functions fk can be grouped in a vector of

multiple response models F, such as ( ) ( ) ( )[ ]T

iKiK

T

ii

T

iiii fffF ξθξθξθξθ ,,,,,,),( 2211 �= . iθ

denotes the vector of individual parameters in individual i; some parameters may be shared

across different model functions (eg parent/metabolite model or PK/PD model).
i

θ is defined

by ( ),
i i

g bθ β= where � is the vector of the fixed effects parameters,
i

b the vector of the

random effects for individual i and g, a known function. It is assumed that
i

b ∼ ( )0,N Ω . The

function g usually assumes an additive relation between the fixed effect and the random effect

of each
i

θ , which are thus normally distributed. We consider here a more general g function,

which allows us to consider
i

θ as the PK parameters, and not as some transformed

parameters.

In condensed form, we thus write the statistical model for the nonlinear multiple response

mixed-effect model:

( )( ), ,
i i i i

Y F g bβ ξ ε= +

where iε is the vector composed of the K vectors of residual errors ikε , 1, ,k K= � ,

associated with the K responses. Conditionally on the value of bi, we assume that the errors iε

are independently distributed and that ( )( )
ikkiikik bN ξσβε ,,,,0~ Σ , with kσ the vector of

parameters characterising the k
th

variance error model. We then note ( )
iiii b ξσβ ,,,Σ=Σ the
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block diagonal variance matrix of
i

ε over the K responses; iΣ is composed of the elements of

ikΣ and σ the vector of the K components kσ .

Let � be the P-vector of population parameters to be estimated )),(,( TTT v σβ Ω=Ψ , where

)(Ωv denotes the distinct elements of Ω . We also note � be the vector of variance

terms )),(( TT
v σλ Ω= , so that T T T� (� ,� )= .

3.2. Fisher information matrix for NLME multiple response models

The population Fisher information matrix ( ),
F

M ξΨ for multiple response model for one

individual with design � is given by ( )
( )2 ;

,
F T

l Y
M Eξ

� ∂ Ψ
Ψ = −� �� �∂Ψ ∂Ψ� �

, where ( );l YΨ is the log

likelihood of the vector of observations Y of that individual for the population parameters Ψ .

Note that for sake of simplicity, we omit the index i for the individual in this section. Because

F is nonlinear, there is no analytical expression for the log-likelihood ( );l YΨ . As in Mentré

et al. (1997), a first-order Taylor expansion of the structural model ( ) ( )( ), , ,F F g bθ ξ β ξ=

around the (zero) expectation of b is used:

( )( ) ( ( ,0), )
, , ( ( ,0), )

T
F g

F g b F g b
b

β ξ
β ξ β ξ

� ∂
≅ + � �

∂� �

Assuming the individual parameters θ are normally distributed, this expansion is equivalent

to the one around β as in Gagnon and Leonov (2005). The statistical model can then be

written as:
( ( ,0), )

( ( ,0), )
T

F g
Y F g b

b

β ξ
β ξ ε

� ∂
≅ + +� �

∂� �
.

For sake of simplicity, we further assume that the variance of the error model does not depend

on the random effects of the individual but only on the mean parameters, so that

( )ξσβε ,,0,)( Σ=Var . The log-likelihood l is then approximated by:
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( ) ( ) ( ) ( ) ( )12 ; ln 2 ln
T

l Y n V Y E V Y Eπ −− Ψ ≅ + + − −

where E and V are the approximated marginal expectation and variance of Y given by:

( ) ( ( ,0), )E Y E F g β ξ≅ =

( )ξσβ
ξβξβ

,,0,
)),0,(()),0,((

)( Σ+�
�


�
�

�

∂

∂
Ω��
�


��
�

�

∂

∂
=≅

T

T

b

gF

b

gF
VYVar

Based on this expression of the log-likelihood l , the expression of an elementary Fisher

information matrix for multiple response model can be derived. It is a block matrix depending

on the approximated marginal expectation E and variance V of the observations:

��
�


��
�

�
≅Ψ

),(),(

),(),(

2

1
),(

VEBVEC

VECVEA
M

TF ξ

where 1 1 1( ( , )) 2 ( )− − −∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂

T

mn

m n n m

E E V V
A E V V tr V V

β β β β
with m and )dim(,,1 β�=n

)()),(( 11 −−

∂

∂

∂

∂
= V

V
V

V
trVEB

nm

mn
λλ

with m and ( )1, ,dimn λ= �

1 1( ( , )) ( )
mn

n m

V V
C E V tr V V

λ β
− −∂ ∂

=
∂ ∂

with ( )1, ,dimn λ= � and )dim(,,1 β�=m

The population Fisher information matrix for a population design Ξ , is thus derived as the

sum of the N elementary Fisher information matrices with
i

ξ for each individual i:

( ) ( )
1

, ,
=

Ψ Ξ = Ψ�
N

F F i

i

M M ξ . In the case of a limited number Q of groups, this matrix is

expressed as ( ) ( )
1

, ,
Q

F q F q

q

M N M ξ
=

Ψ Ξ = Ψ� .
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3.3. Fedorov-Wynn algorithm for design optimisation using cost functions

Design optimisation with cost functions

We consider design optimisation within a finite set of possible designs S. The objective is to

maximise in some sense the information matrix of the population design, ),( ΞΨFM , since

the variance of the estimate is asymptotically proportional to ),(1 ΞΨ−

F
M . Here, we use the D-

optimality criterion, which consists in maximising ( )),(det 0 ΞΨFM , where det denotes the

determinant and 0Ψ a given a priori value of the population parameters. In the following, we

will drop the explicit dependency on 0Ψ in the notation, and write ),()( 0 ΞΨ=Ξ FF MM for

simplicity. We also consider the normalised information matrix, defined by

( ) ( ) ( )�
=

=
Ξ

=Ξ
Q

q

qF

qF
F M

N

N

N

M
I

1

ξ (Gagnon and Leonov (2005)). This matrix represents the

average information matrix for one individual in design Ξ.

For a given maximal number of subjects to be included, N, which will be attained for the

optimal design, and in the absence of other constraints, the maximisation problem is to find

*Ξ such that:

( )( ) ( )��
�


�
�
�

�
=Ξ=Ξ �

=
ΞΞ qF

Q

q

qF MNM ξα
1

* detmaxargdetmaxarg (1)

where Ξ  is defined by a set of Q elementary designs and their associated frequencies

�
�
�

�
�
�

=��
�


��
�

�
= Qq

N

N
q

q

q ,,1,, �ξα , where Qξξ ,,1� are in S, and the frequencies satisfy 10 ≤≤ qα

and �
=

=
Q

q

q

1

1α . 

Note that (1) is equivalent with N fixed to solving ( )( )Ξ=Ξ Ξ FIdetmaxarg* . Even though the

Nq should technically be integers, the problem is usually solved assuming that qα is
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continuous and rounding off the resulting qq NN α= under the constraint NN
Q

q

q =�
=1

. The

optimisation problem is therefore a maximisation problem on a convex compact surface given

by �
=

=
Q

q

q

1

1α (Atkinson and Donev (1992)).

We now assume, following Mentré et al. (1997) and Gagnon and Leonov (2005), that there is

a cost incurred by each elementary design, which we denote ( )ξC . Instead of a maximum

number of subjects, we set a maximal cost totC , such that ( )�
=

≤
Q

q

totqq CCN
1

ξα . The optimal

population design again satisfies the equality. Introducing totC and ( )ξC , the criterion to be

maximised in (1) can be rewritten as:

( )( ) ( ) ( )
( ) �

�

�



�
�

�

�

�
�

�



�
�

�

�
=�

�
�


�
�
�

�
=Ξ ��

== q

tot
qF

Q

q

qqF

Q

q

qF
C

C
MwMNM

ξ
ξξα

11

detdetdet

where
tot

qq

q
C

CN
w

)(ξα
= and corresponds to the proportion of the total cost totC attributed to

each group q. By construction, �
=

=
Q

q

qw
1

1 so that problem (1) is equivalent to:

( )��
�


�
�
�

�
=Ξ �

=
Ξ qF

Q

q

qtot HwC ξ
1

* detmaxarg  (2)

where Ξ is defined by a set of Q elementary designs and their associated frequency

( ){ }Qqw qq ,,1,, �=ξ , where Qξξ ,,1� are in S, the frequencies verify 10 ≤≤ qw and

�
=

=
Q

q

qw
1

1; )( qFH ξ corresponds to the information per unit cost and is defined as

)(

)(
)(

q

qF

qF
C

M
H

ξ

ξ
ξ = .
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The numbers of subjects per group are derived from the proportions of cost qw using

( )q

totq

q
C

Cw
N

ξ
= and rounded to integers, for a total cost of �

=

Q

q

qqCN
1

)(ξ .

Fedorov-Wynn algorithm

We use the Fedorov-Wynn algorithm, as in Mentré et al. (1997), to optimise designs with cost

functions, as formalised in equation (2). Design optimisation problems formalised in equation

(1) can also be solved by the same algorithm as it is a special case with constant costs. We

provide a brief description of the algorithm here, referring interested readers to the book by

Walter and Pronzato (1997) for details.

The Fedorov-Wynn algorithm relies on the Kiefer-Wolfowitz equivalence theorem, which

states that the three following proposals are equivalent:

(i) Ξ  is D-optimal, i.e. ( ))(det ΞFM is maximal within the set of population designs

generated by S

(ii) PdS =Ξ∈ ),(max ξξ

(iii) Ξ  minimises ),(max ξξ Ξ∈ dS

where ),( ξΞd is a function of a population design Ξ and an elementary design ξ , defined

below. Given a population design ( ){ }Qqw qq ,,1,, �==Ξ ξ , an elementary design ξ in S, and

any w between 0 and 1, we can define a new design Ξ′ by adding to Ξ an elementary design

ξ with weight w and by multiplying Qwww ,,, 21 � by ( )w−1 . For simplicity, we write this

as ξww +Ξ−=Ξ′ )1( , confounding the elementary design ξ with the population design

where all individuals have elementary design ξ . The information matrix of this design is

( )ξwwM F +Ξ− )1( . The function ),( ξΞd is then defined as the derivative of

( )( ))(detlog Ξ′
FM taken at 0=w .
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The equivalence theorem provides a way to construct the optimal design iteratively:

1. start with an initial guess 0Ξ

2. at step k, with the current design being kΞ ,

- find ),(maxarg* ξξ ξ kS d Ξ= ∈

- stop if ρξξ +≤Ξ∈ Pd kS ),(max where 1<<ρ  is a predetermined tolerance

3. otherwise, update the design to *** )1( ξww kk +Ξ−=Ξ′ , where *
w is chosen over ( )1,0

such that
( )( )

( )1),(

,
*

*
*

−Ξ

−Ξ
=

ξ

ξ

k

k

dP

Pd
w

4. optimise the weights using an active set method with a projected gradient method for

the selection of the direction, as in Mallet (1986), leading to design 1+Ξk .

Steps 1-4 never remove an elementary design from kΞ . However, we know that, following

the Caratheodory’s theorem, there exists an optimal design which includes at most

( ) 2/1+PP different elementary designs (Fedorov (1972)). To control the number of

elementary designs, an additional step is included in the algorithm after the optimisation of

the weights to remove elementary designs with a weight lower than a predetermined δ  (we

chose 810−=δ ).

4. Design optimisation for the joint model of infliximab and methotrexate

pharmacokinetics

In this section, we apply the Fedorov-Wynn algorithm with cost functions to design

optimisation for a joint PK modelling of infliximab and methotrexate. The a priori values of

the population parameters are fixed to those estimated previously in the litterature (Table I).



17

4.1. Design and cost function specifications

To allow comparison with the empirical design defined in Section 2.3, we use the same set of

12 possible times as for the empirical design. We only consider designs with the same

sampling times for both drugs. The total cost totC is fixed to 1200 and the number of samples

per patient is allowed to vary from 2 to 12.

To take into account different relative feasibilities in clinical practice, we define four different

cost functions. The first cost function is a classical one, i.e. the cost of an elementary design is

equal to its number of samples. For multiple responses, we define the number of samples for

one elementary design as the sum of the number of samples for each response, even if several

responses are measured from only one actual blood sample, reflecting the cost of the analysis

rather than the cost of the act of sampling itself. We therefore define this cost function as

simply iisamples nC =)(ξ .

The second cost function, denoted inconvC measures the inconvenience for the patient by

penalizing late samples during the dose interval. Patients are kept in the hospital for 3 hours

during the infusion of infliximab, therefore samples taken during the initial 3 hours of Day 1

of Week 1 are attributed an unitary cost of 1. During the same day, samples taken at 6 or 8

hours required the patient to stay for a further 3 or 5 hours and are given a cost of 2. The 24

hours sampling time requires the patient to return to the hospital the next day; it incurs a cost

of 4. For times within Day 1 of Week 8, as patients also need to return to the hospital, we

assume a cost of 3 for the visit, in addition to the cost of the samples themselves, which are

set to those of Day 1 of Week 1. For each response, the second cost function is therefore

computed as: )()()(
,

ivisit

kj

ikjtimeiinconv CtCC ξξ +=�

where 1)( =tCtime if t = 0.5, 1 or 3; 2)( =tCtime if t = 6 or 8; 4)( =tCtime if t = 24
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3)( =ivisitC ξ if iξ contains at least one of the times (0.5, 1, 3, 6, 8) of the second period, 0

otherwise.

The third cost function considers the inclusion of a new patient in the design as more costly

than additional blood samples in patients already in the study. In this case, the cost of an

elementary design is given by the number of sampling times penalised by a constant:

( ) 12+= iipatient nC ξ . Choosing 12 for the cost of adding a new patient is equivalent to taking 6

additional blood samples in one patient since there are 2 responses.

Finally, the fourth cost function denoted patientinconvC − combines both the inconvenience of each

sample with the cost of additional patients in the study:

12)()()(
,

++=�− ivisit

kj

ikjtimeipatientinconv CtCC ξξ .

4.2.Numerical implementation

The expression of MF for a multiple response model with the first order approximation is

implemented in PFIM 3.0, an extension of PFIM. The implementation considers only cases

with diagonal variance matrix of the random effects and specific variance error models given

as: ( )( )2

21 ),,()( kkkkk bgfdiagVar ξβσσε += , where k1σ and k2σ qualify the model for the

variance of the residual error of the th
k model. Furthermore, the implementation assumes that

the variance of the observations with respect to the mean parameters is constant, which results

in a block diagonal MF, i.e., ( )( ) 0, =mnVEC with ( )1, ,dimn λ= � and )dim(,,1 β�=m .

The Fedorov-Wynn algorithm is implemented in PFIM using a C code, and linked with R via

a dynamic link library. Note that the current implementation for multiple response models as

implemented in PFIM 3.0 does not require the same sampling times for the different

responses, but runtimes may become prohibitively high for complex designs
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4.3. Designs comparison

We then perform comparisons between the optimal population designs for the different cost

functions. We compare the efficiency of the empirical design to the design optimised with the

classical cost function on the total number of samples. To do that, we use the information

function Φ classically used to compare efficiency between designs. Φ is defined as the

determinant standardized by P, the dimension of the parameters vector 0Ψ ,

( ) ( )( ) P

FM
/10 ,det ΞΨ=ΞΦ . The relative efficiency of a population design 1Ξ with respect to a

population design 2Ξ is given by ( ) ( )21 / ΞΦΞΦ . This ratio can then be considered as the

geometric mean of variance decrease using 1Ξ instead of 2Ξ .

Moreover, for each cost function, we compare the total cost of the four optimised designs and

we investigate the cost-efficiency relation between the designs.

4.4. Results

The optimal designs are given in Table 2, with sampling times corresponding to

measurements of the two drugs in the study. They are called samplesOpt , inconvOpt , patientOpt and

patientinconvOpt − corresponding to the four cost functions samplesC , inconvC , patientC and patientinconvC − ,

respectively. The optimal designs are different according to the cost functions used; they have

different sampling times but also different group structures, with, for example a total number

of patients ranging from 36 for patientinconvOpt − to 194 for samplesOpt .

samplesOpt involves four elementary designs with an unequal repartition of the number of

patients and of the number of samples per group; nearly 70% of the patients have only two

samples compared to the empirical design with 12 samples to be performed in all the patients.

The relative standard errors (RSE) for the empirical design and the design samplesOpt are

reported in Table 3; these RSE are defined as the standard error divided by the true value of
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the parameter, expressed in %. Both designs allow good parameter estimate precisions for the

infliximab parameters and the methotrexate fixed effects parameters (about or lower than

20%), with higher precision for samplesOpt . Some variance parameters of methotrexate cannot

be accurately estimated with either design, but the expected RSE are in the same range for

both designs.

Design inconvOpt involves five elementary designs with 2 groups of only one patient. More

than 60% of the subjects have samples only during the first three hours of Week 1, reflecting

the penalties on the cost of the late samples. Only one group of 11 patients are scheduled for

one sample at an additional visit (Week 8). Note that removing the two groups with only 1

patient would simplify the group structure of this design and would not involve any major

loss of information with an information value of 134.3 instead of 135.2.

The optimisation taking into account of the difficulty of adding new patients provides an

optimal design patientOpt with one group of only 37 patients, but with 5 sampling times at

Week 1 to be repeated at Week 8.

Last, the optimisation taking into account both constraints of times allocation and patients

provides a design with the smallest number of patients, and varying number of samples per

patient from 4 to 7, mainly performed at Week 1.

Comparing designs using the information function Φ , we find the largest value for

samplesOpt (210.8) and the smallest for patientinconvOpt − (68.4), as expected because of its

substantial cost constraints. Design patientinconvOpt − involves higher standard errors; they are

still acceptable on the fixed effects, with values around or lower 20% except for the rate

constant of absorption and the peripheral compartment volume with values around 25% and

35% respectively.
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The comparison of the cost of each optimised designs using the different cost functions are

reported on Figure 2. The design samplesOpt in which no cost other than the number of samples

is assumed, always incurs the highest cost of the four designs, whatever the cost function,

with a cost of nearly 5500 for the cost function patientinconvC − . Logically, the most constrained

design patientinconvOpt − always incurs the lowest cost, with a cost of 440 for the cost function

samplesC . The cost-efficiency relationship is represented on Figure 3 for the cost function

patientinconvC − , which is the most clinically realistic. Although the cost of a design can largely

exceed the allowed total cost, the corresponding efficiency does not increase proportionally,

which signals a waste of resources.

5. Discussion

In this paper, we find optimal designs for NLMEM with multiple responses using the

Fedorov-Wynn algorithm with cost functions. The application to a joint PK model of

infliximab and methotrexate, with very different time scales, nicely shows the benefit of

design optimisation using cost functions, especially when substantial constraints on the design

are imposed. Indeed, the optimal designs obtained with the four different cost functions are

very different and reflect the penalties imposed on the times allocation and/or the group

structure. Our work here shows that by combining a cost function with a user-specified set of

possible sampling times, the Fedorov-Wynn algorithm is a powerful tool for finding optimal

designs suitable to clinical applications.

The expression of MF used to optimise design is based on a linearisation of the model.

Moreover, in our application, we use the block diagonal version of the approximated

expression of MF, assuming that the variance of the observations with respect to the mean

parameters is constant. Although those are approximations, it has been shown for single

response models (Retout et al. (2007)) and for multiple response models (Bazzoli et al.
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(2007)) that the approximated MF is very close to that computed by more exact methods, such

as the Fisher matrix based on the Stochastic Approximation Expectation Maximisation

(SAEM) algorithm implemented in MONOLIX (Kuhn et Lavielle (2005); Samson et al.

(2006)). Indeed, using this software, evaluation of the expected SE can be performed under

asymptotic convergence assumption. To do that, a data set with a large number of subjects is

simulated, the parameters are then estimated as well as the observed Fisher information

matrix on the simulated data set using the Louis’s principle (Louis (1982)). Expected SE are

then obtained by rescaling of the observed SE to the true number of subjects. Although this

exact method does not involve any linearization, it is time consuming, and it cannot then be

applied to design optimisation. The linearisation is thus a great advantage for optimisation

process where a large number of designs have to be evaluated in a reasonable time-frame.

In our application, we consider computation of MF only for a diagonal variance of the random

effects; however, in practice, one may want to allow correlation between the random effects.

Although the proposed expression of MF allows those correlations, it has not been yet

implemented in PFIM. In our example the models for infliximab and methotrexate PK do not

share any parameter, but the expression of MF for multiple response models can be used for

more complex modelling, including models with common parameters, such as models for the

PK of a parent drug and of its metabolites, drug interactions or PK/PD models. Here, for

simplicity, we assumed the same sampling times for the two drugs. In some cases, different

sampling times for the two responses may be required; the Fedorov-Wynn algorithm can be

used under this assumption but the number of possible elementary designs will quickly

become prohibitively large and can considerably increase the computation time and memory

requirement can become a problem.

This Fedorov-Wynn algorithm has been implemented to find the optimal design with a

number of groups lower than the bound of the Caratheodory’s theorem. Other optimal designs
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with higher number of groups, although possible, are not considered here because they would

be very difficult to implement in clinical settings.

In our application, most of the optimised designs lead to several groups of subjects with

different number of subjects for the different groups. In addition to the influence of the cost

functions, this may also be related to the small intra-individual correlation, which has been

shown to lead to imbalance (van Breukelen et al. (2008)).

The numbers of subjects per group has been rounded to the nearest integer. This was mainly

to keep the total cost as close to 1200 as possible, in order to achieve comparable designs with

same total cost, but it is obvious that, in clinical practice, this number should be rounded to

the nearest five or even to the nearest ten. Depending on the cost function used, this could

change the total cost of the design and care should be taken to avoid a substantial cost over-

run.

We conclude by noting that attention has to be given to the cost function used. Indeed, a too

strict cost function with high penalisation may considerably decrease the efficiency of a

design, as illustrated by the design patientinconvOpt − compared to the design samplesOpt . It is then

important to strike a proper balance between the clinical constraints and the information that

really needs to be collected from the study to obtain reliable results. From a decision-making

point of view, design optimisation including costs can be a very valuable tool to assess both

the clinical consequences and the cost-effectiveness of a candidate design: we can show the

efficiency of a design optimised under given constraints, and also immediately compute the

cost of adding more patients or redesigning the study. This is useful because the trade-off

between total cost and efficiency is now clear. Consequently, a go or no-go decision can be

made with confidence.

The Fedorov-Wynn algorithm with the usual cost function, equal to the total number of

samples, is available in PFIM 3.0 for single and multiple response models. The version
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including the possibility to specify user-defined cost-functions will be available in version 3.1

of the PFIM software, and in the meantime, can be obtained from the authors on request.
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Legends for figures

Figure 1. Kinetic profile of infliximab and methotrexate at steady state for the mean

parameters described in Table 1. The sampling times at Week 1 and Week 8 of the empirical

design are shown as *.

Figure 2. Cost of the four optimised designs under each cost function. The dotted line

represents the reference cost of 1200.

Figure 3. Relative cost versus relative efficiency for the four optimised designs considering

the cost function patientinconvC − . Efficiencies and costs are given relatively to the efficiency and

cost of the most constrained design patientinconvOpt − . The optimised designs samplesOpt , inconvOpt ,

patientOpt and patientinconvOpt − are represented by ×,∗ , �, and � respectively. The full line

represents the unity line.
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Table 1. Mean values and interpatient variability for infliximab (Kavanaugh et al. (2000))and

methotrexate parameters (Godfrey et al. (1998)).

Parameter Mean

Interpatient

variability (CV%)

infliximab Cl (l/h) 0.01 63.0

V (l) 4.3 58.0

methotrexate ka (h
-1

) 3.67 76.7

Cl (l/h) 7.34 27.2

Vc (l) 23.5 27.9

Vp (l) 25.3 31.2

Q (l/h) 4.25 40.5
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Table 2. Optimal population designs for the joint model of infliximab and methotrexate

according to different cost functions (for each design, Q is the number of elementary designs

and qN the rounded number of subjects with the elementary design qξ ). Elementary designs

are shown only once, but correspond to samples taken for both drugs.

Design Q Elementary designs Information value

)(ΞΦ

qξ (hr) qN

Week 1 Week 8

Empirical 0.5, 1, 3, 6, 8, 24 0.5, 1, 3, 6, 8, 24 50 157.8

samplesOpt 4 1

3

6, 24

0.5, 1, 3, 8, 24

0.5

8

24

3, 8, 24

92

42

30

30

210.8

inconvOpt 5 0.5, 1, 3

0.5, 1, 3, 8

0.5, 1, 3, 6, 8, 24

0.5, 1

0.5, 3

-

-

24

-

-

85

35

11

1

1

135.2

patientOpt 1 0.5, 1, 3, 8, 24 0.5, 1, 3, 8, 24 37 107.0

patientinconvOpt −
5 0.5, 1, 3, 8

0.5, 1, 3, 6, 8

0.5, 1, 3, 6, 8, 24

0.5, 1, 3, 8

0.5, 1, 3, 8

0.5, 1, 3

24

24

-

24

11

9

8

7

1

68.4
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Table 3. Relative standard errors (RSE) evaluated from the Fisher information matrix for the

empirical design and the design samplesOpt .

RSE (%)

Parameters Empirical
samplesOpt

infliximab Cl 9.0 4.6

V 8.3 4.4

2

Clω 20.2 10.6

2

Vω 20.5 11.3

2σ 3.2 4.9

methotrexate ka 18.5 16.0

Cl 5.3 4.5

Vc 6.5 5.6

Vp 17.5 16.7

Q 14.8 14.8

2

akω 39.3 38.6

2

Clω 27.4 28.0

2

cVω 32.5 28.5

2

pVω 222.4 273.6

2

Qω 87.6 103.2

1σ 7.6 8.2

2σ 7.4 10.2
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