D. Cesare, P. Frenkel, S. Carlson, C. Fang, C. Liu et al., Regional gene therapy for full-thickness articular cartilage lesions using naked DNA with a collagen matrix, Journal of Orthopaedic Research, vol.10, issue.Suppl 1, pp.1118-1145, 2006.
DOI : 10.1002/jor.20143

H. Glansbeek, H. Van-beuningen, E. Vitters, P. Van-der-kraan, . Van-den et al., Stimulation of articular cartilage repair in established arthritis by local administration of transforming growth factor-beta into murine knee joints, Lab Invest, vol.78, pp.133-175, 1998.

H. Van-beuningen, P. Van-der-kraan, O. Arntz, . Van-den, and W. Berg, Transforming growth factor-beta 1 stimulates articular chondrocyte proteoglycan synthesis and induces osteophyte formation in the murine knee joint, Lab Invest, vol.71, pp.279-90, 1994.

B. Davidson, E. Vitters, E. Van-beuningen, H. Van-de-loo, F. Van-den-berg et al., Resemblance of osteophytes in experimental osteoarthritis to transforming growth factor ??-induced osteophytes: Limited role of bone morphogenetic protein in early osteoarthritic osteophyte formation, Arthritis & Rheumatism, vol.52, issue.12, pp.4065-73, 2007.
DOI : 10.1002/art.23034

D. Chen, M. Zhao, and G. Mundy, Bone Morphogenetic Proteins, Growth Factors, vol.22, issue.4, pp.233-274, 2004.
DOI : 10.1080/08977190412331279890

M. Majumdar, E. Wang, and E. Morris, BMP-2 and BMP-9 promotes chondrogenic differentiation of human multipotential mesenchymal cells and overcomes the inhibitory effect of IL-1, Journal of Cellular Physiology, vol.273, issue.3, pp.275-84, 2001.
DOI : 10.1002/jcp.10025

R. Gruber, C. Mayer, and K. Bobacz, Effects of cartilage-derived morphogenetic proteins and osteogenic protein-1 on osteochondrogenic differentiation of periosteum-derived cells, Endocrinology, vol.142, pp.2087-94, 2001.

C. Jorgensen, J. Gordeladze, and D. Noel, Tissue engineering through autologous mesenchymal stem cells, Current Opinion in Biotechnology, vol.15, issue.5, pp.406-416, 2004.
DOI : 10.1016/j.copbio.2004.08.003

I. Sekiya, B. Larson, J. Vuoristo, R. Reger, and D. Prockop, Comparison of effect of BMP-2, -4, and -6 on in vitro cartilage formation of human adult stem cells from bone marrow stroma, Cell and Tissue Research, vol.122, issue.Suppl A, pp.269-76, 2005.
DOI : 10.1007/s00441-004-1075-3

T. Grunder, C. Gaissmaier, and J. Fritz, Bone morphogenetic protein (BMP)-2 enhances the expression of type II collagen and aggrecan in chondrocytes embedded in alginate beads . Osteoarthritis Cartilage, pp.559-67, 2004.

A. Kuo, J. Rodrigo, A. Reddi, S. Curtiss, E. Grotkopp et al., Microfracture and bone morphogenetic protein 7 (BMP-7) synergistically stimulate articular cartilage repair, Osteoarthritis and Cartilage, vol.14, issue.11, pp.1126-1161, 2006.
DOI : 10.1016/j.joca.2006.04.004

R. Kuroda, A. Usas, and S. Kubo, Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells, Arthritis & Rheumatism, vol.105, issue.2, pp.433-475, 2006.
DOI : 10.1002/art.21632

K. Gelse, C. Muhle, and O. Franke, Cell-based resurfacing of large cartilage defects: Long-term evaluation of grafts from autologous transgene-activated periosteal cells in a porcine model of osteoarthritis, Arthritis & Rheumatism, vol.78, issue.2, pp.475-88, 2008.
DOI : 10.1002/art.23124

D. Noel, D. Gazit, and C. Bouquet, Short-Term BMP-2 Expression Is Sufficient for In Vivo Osteochondral Differentiation of Mesenchymal Stem Cells, Stem Cells, vol.22, issue.1, pp.74-85, 2004.
DOI : 10.1634/stemcells.22-1-74

D. Hannallah, H. Peng, B. Young, A. Usas, B. Gearhart et al., RETROVIRAL DELIVERY OF NOGGIN INHIBITS THE FORMATION OF HETEROTOPIC OSSIFICATION INDUCED BY BMP-4, DEMINERALIZED BONE MATRIX, AND TRAUMA IN AN ANIMAL MODEL, The Journal of Bone and Joint Surgery-American Volume, vol.86, issue.1, pp.80-91, 2004.
DOI : 10.2106/00004623-200401000-00013

H. Jonsson, P. Allen, and S. Peng, Inflammatory arthritis requires Foxo3a to prevent Fas ligand???induced neutrophil apoptosis, Nature Medicine, vol.1, issue.6, pp.666-71, 2005.
DOI : 10.1093/nar/gng154

A. Kikuchi, H. Yamamoto, and S. Kishida, Multiplicity of the interactions of Wnt proteins and their receptors, Cellular Signalling, vol.19, issue.4, pp.659-71, 2007.
DOI : 10.1016/j.cellsig.2006.11.001

C. Macsai, B. Foster, and C. Xian, Roles of Wnt signalling in bone growth, remodelling, skeletal disorders and fracture repair, Journal of Cellular Physiology, vol.40, issue.3, pp.578-87, 2008.
DOI : 10.1002/jcp.21342

V. Church, T. Nohno, C. Linker, C. Marcelle, and P. Francis-west, Wnt regulation of chondrocyte differentiation, Journal of Cell Science, vol.115, issue.24, pp.4809-4827, 2002.
DOI : 10.1242/jcs.00152

URL : https://hal.archives-ouvertes.fr/hal-00311346

J. Rudnicki and A. Brown, Inhibition of Chondrogenesis byWntGene Expressionin Vivoandin Vitro, Developmental Biology, vol.185, issue.1, pp.104-122, 1997.
DOI : 10.1006/dbio.1997.8536

A. Andrade, O. Nilsson, K. Barnes, and J. Baron, Wnt gene expression in the post-natal growth plate: Regulation with chondrocyte differentiation, Bone, vol.40, issue.5, pp.1361-1370, 2007.
DOI : 10.1016/j.bone.2007.01.005

T. Day, X. Guo, L. Garrett-beal, and Y. Yang, Wnt/??-Catenin Signaling in Mesenchymal Progenitors Controls Osteoblast and Chondrocyte Differentiation during Vertebrate Skeletogenesis, Developmental Cell, vol.8, issue.5, pp.739-50, 2005.
DOI : 10.1016/j.devcel.2005.03.016

T. Hill, D. Spater, M. Taketo, W. Birchmeier, and C. Hartmann, Canonical Wnt/??-Catenin Signaling Prevents Osteoblasts from Differentiating into Chondrocytes, Developmental Cell, vol.8, issue.5, pp.727-765, 2005.
DOI : 10.1016/j.devcel.2005.02.013

Y. Chen, H. Whetstone, and A. Youn, beta-Catenin Signaling Pathway Is Crucial for Bone Morphogenetic Protein 2 to Induce New Bone Formation, Journal of Biological Chemistry, vol.282, issue.1, pp.526-559, 2007.
DOI : 10.1074/jbc.M602700200

D. Ornitz and N. Itoh, FIBROBLAST GROWTH FACTORS, Genome Biol, vol.2, p.3005, 2001.
DOI : 10.1016/B0-12-370879-6/00155-1

Z. Liu, J. Xu, J. Colvin, and D. Ornitz, Coordination of chondrogenesis and osteogenesis by fibroblast growth factor 18, Genes & Development, vol.16, issue.7, pp.859-69, 2002.
DOI : 10.1101/gad.965602

D. Ornitz, FGF signaling in the developing endochondral skeleton, Cytokine & Growth Factor Reviews, vol.16, issue.2, pp.205-218, 2005.
DOI : 10.1016/j.cytogfr.2005.02.003

A. Hoffmann, S. Czichos, and C. Kaps, The T-box transcription factor Brachyury mediates cartilage development in mesenchymal stem cell line C3H10T1/2, J Cell Sci, vol.115, pp.769-81, 2002.

D. Davidson, A. Blanc, and D. Filion, Fibroblast Growth Factor (FGF) 18 Signals through FGF Receptor 3 to Promote Chondrogenesis, Journal of Biological Chemistry, vol.280, issue.21, pp.20509-20524, 2005.
DOI : 10.1074/jbc.M410148200

S. Weizmann, A. Tong, A. Reich, O. Genina, A. Yayon et al., FGF upregulates osteopontin in epiphyseal growth plate chondrocytes: Implications for endochondral ossification, Matrix Biology, vol.24, issue.8, pp.520-529, 2005.
DOI : 10.1016/j.matbio.2005.07.003

L. Solchaga, K. Penick, J. Porter, V. Goldberg, A. Caplan et al., FGF-2 enhances the mitotic and chondrogenic potentials of human adult bone marrow-derived mesenchymal stem cells, Journal of Cellular Physiology, vol.19, issue.2, pp.398-409, 2005.
DOI : 10.1002/jcp.20238

A. Stewart, C. Byron, H. Pondenis, and M. Stewart, Effect of fibroblast growth factor-2 on equine mesenchymal stem cell monolayer expansion and chondrogenesis, American Journal of Veterinary Research, vol.68, issue.9, pp.941-946, 2007.
DOI : 10.2460/ajvr.68.9.941

H. Takafuji, T. Suzuki, Y. Okubo, K. Fujimura, and K. Bessho, Regeneration of articular cartilage defects in the temporomandibular joint of rabbits by fibroblast growth factor-2: a pilot study, International Journal of Oral and Maxillofacial Surgery, vol.36, issue.10, pp.934-941, 2007.
DOI : 10.1016/j.ijom.2007.06.007

I. Ishii, H. Mizuta, A. Sei, J. Hirose, S. Kudo et al., Healing of full-thickness defects of the articular cartilage in rabbits using fibroblast growth factor-2 and a fibrin sealant, Journal of Bone and Joint Surgery - British Volume, vol.89, issue.5, pp.693-700, 2007.
DOI : 10.1302/0301-620X.89B5.18450

E. Moore, A. Bendele, and D. Thompson, Fibroblast growth factor-18 stimulates chondrogenesis and cartilage repair in a rat model of injury-induced osteoarthritis, Osteoarthritis and Cartilage, vol.13, issue.7
DOI : 10.1016/j.joca.2005.03.003

J. Dupont and M. Holzenberger, Biology of insulin-like growth factors in development, Birth Defects Research Part C: Embryo Today: Reviews, vol.11, issue.4, pp.257-71, 2003.
DOI : 10.1002/bdrc.10022

K. Woods, C. Camacho-hubner, M. Savage, and A. Clark, Intrauterine Growth Retardation and Postnatal Growth Failure Associated with Deletion of the Insulin-Like Growth Factor I Gene, New England Journal of Medicine, vol.335, issue.18, pp.1363-1370, 1996.
DOI : 10.1056/NEJM199610313351805

L. Davies, E. Blain, S. Gilbert, B. Caterson, and V. Duance, The Potential of IGF-1 and TGFbeta1 for Promoting Adult Articular Cartilage Repair: An In Vitro Study

D. Yoon and J. Fisher, Effects of Exogenous IGF-1 Delivery on the Early Expression of IGF-1 Signaling Molecules by Alginate Embedded Chondrocytes, Tissue Engineering Part A, vol.14, issue.7, pp.1263-73, 2008.
DOI : 10.1089/ten.tea.2007.0172

L. Uebersax, H. Merkle, and L. Meinel, Insulin-like growth factor I releasing silk fibroin scaffolds induce chondrogenic differentiation of human mesenchymal stem cells, Journal of Controlled Release, vol.127, issue.1, pp.12-21, 2008.
DOI : 10.1016/j.jconrel.2007.11.006

M. Schmidt, E. Chen, and S. Lynch, A review of the effects of insulin-like growth factor and platelet derived growth factor on in vivo cartilage healing and repair, Osteoarthritis and Cartilage, vol.14, issue.5
DOI : 10.1016/j.joca.2005.10.011

P. Bianco, M. Riminucci, S. Gronthos, and P. Robey, Bone Marrow Stromal Stem Cells: Nature, Biology, and Potential Applications, Stem Cells, vol.28, issue.3, pp.180-92, 2001.
DOI : 10.1634/stemcells.19-3-180

H. Ehlen, L. Buelens, and A. Vortkamp, Hedgehog signaling in skeletal development, Birth Defects Research Part C: Embryo Today: Reviews, vol.11, issue.3, pp.267-79, 2006.
DOI : 10.1002/bdrc.20076

J. Warzecha, S. Gottig, C. Bruning, E. Lindhorst, M. Arabmothlagh et al., Sonic hedgehog protein promotes proliferation and chondrogenic differentiation of bone marrow-derived mesenchymal stem cells in vitro, Journal of Orthopaedic Science, vol.11, issue.5, pp.491-497, 2006.
DOI : 10.1007/s00776-006-1058-1

P. Edwards, S. Ruggiero, and J. Fantasia, Sonic hedgehog gene-enhanced tissue engineering for bone regeneration, Gene Therapy, vol.12, issue.1, pp.75-86, 2005.
DOI : 10.1038/sj.gt.3302386

D. Nesic, R. Whiteside, M. Brittberg, D. Wendt, I. Martin et al., Cartilage tissue engineering for degenerative joint disease???, Advanced Drug Delivery Reviews, vol.58, issue.2, pp.300-322, 2006.
DOI : 10.1016/j.addr.2006.01.012

J. Drury and D. Mooney, Hydrogels for tissue engineering: scaffold design variables and applications, Biomaterials, vol.24, issue.24, pp.4337-51, 2003.
DOI : 10.1016/S0142-9612(03)00340-5

P. Lubiatowski, J. Kruczynski, A. Gradys, T. Trzeciak, and J. Jaroszewski, Articular Cartilage Repair by Means of Biodegradable Scaffolds, Transplantation Proceedings, vol.38, issue.1, pp.320-322, 2006.
DOI : 10.1016/j.transproceed.2005.12.012

S. Wakitani, T. Goto, R. Young, J. Mansour, V. Goldberg et al., Repair of Large Full-Thickness Articular Cartilage Defects with Allograft Articular Chondrocytes Embedded in a Collagen Gel, Tissue Engineering, vol.4, issue.4, pp.429-473, 1998.
DOI : 10.1089/ten.1998.4.429

C. Lee, A. Grodzinsky, H. Hsu, and M. Spector, Effects of a cultured autologous chondrocyte-seeded type II collagen scaffold on the healing of a chondral defect in a canine model, Journal of Orthopaedic Research, vol.9, issue.2, pp.272-81, 2003.
DOI : 10.1016/S0736-0266(02)00153-5

S. Wakitani, T. Goto, and S. Pineda, Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage., The Journal of Bone & Joint Surgery, vol.76, issue.4, pp.579-92, 1994.
DOI : 10.2106/00004623-199404000-00013

M. Ochi, Y. Uchio, K. Kawasaki, S. Wakitani, and J. Iwasa, Transplantation of cartilage-like tissue made by tissue engineering in the treatment of cartilage defects of the knee, The Journal of Bone and Joint Surgery, vol.84, issue.4, pp.571-579, 2002.
DOI : 10.1302/0301-620X.84B4.11947

U. Schneider and S. Andereya, First results of a prospective randomized clinical trial on traditional chondrocyte transplantation vs CaReS-Technology, Z Orthop Ihre Grenzgeb, vol.141, pp.496-503, 2003.

C. Sims, P. Butler, and Y. Cao, Tissue Engineered Neocartilage Using Plasma Derived Polymer Substrates and Chondrocytes, Plastic & Reconstructive Surgery, vol.101, issue.6, pp.1580-1585, 1998.
DOI : 10.1097/00006534-199805000-00022

E. Hunziker, Articular Cartilage Repair, pp.432-63, 2002.
DOI : 10.1007/978-4-431-68497-8_15

M. Fussenegger, J. Meinhart, W. Hobling, W. Kullich, S. Funk et al., Stabilized Autologous Fibrin-Chondrocyte Constructs for Cartilage Repair in Vivo, Annals of Plastic Surgery, vol.51, issue.5, pp.493-501, 2003.
DOI : 10.1097/01.sap.0000067726.32731.E1

G. Peretti, M. Randolph, M. Villa, M. Buragas, and M. Yaremchuk, Cell-Based Tissue-Engineered Allogeneic Implant for Cartilage Repair, Tissue Engineering, vol.6, issue.5, pp.567-76, 2000.
DOI : 10.1089/107632700750022206

J. Van-susante, P. Buma, L. Schuman, G. Homminga, W. Van-den-berg et al., Resurfacing potential of heterologous chondrocytes suspended in fibrin glue in large full-thickness defects of femoral articular cartilage: an experimental study in the goat, Biomaterials, vol.20, issue.13, pp.1167-75, 1999.
DOI : 10.1016/S0142-9612(97)00190-7

C. Vinatier, O. Gauthier, and M. Masson, Nasal chondrocytes and fibrin sealant for cartilage tissue engineering, Journal of Biomedical Materials Research Part A, vol.2, pp.176-85, 2009.
DOI : 10.1002/jbm.a.31988

D. Hendrickson, A. Nixon, and D. Grande, Chondrocyte-fibrin matrix transplants for resurfacing extensive articular cartilage defects, Journal of Orthopaedic Research, vol.20, issue.4, pp.485-97, 1994.
DOI : 10.1002/jor.1100120405

M. Wilke, D. Nydam, and A. Nixon, Enhanced early chondrogenesis in articular defects following arthroscopic mesenchymal stem cell implantation in an equine model, Journal of Orthopaedic Research, vol.367, issue.7
DOI : 10.1002/jor.20382

L. Peterson, M. Brittberg, I. Kiviranta, E. Akerlund, and A. Lindahl, Autologous chondrocyte transplantation. Biomechanics and long-term durability, Am J Sports Med, vol.30, pp.2-12, 2002.

H. Awad, M. Wickham, H. Leddy, J. Gimble, and F. Guilak, Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds, Biomaterials, vol.25, issue.16, pp.3211-3233, 2004.
DOI : 10.1016/j.biomaterials.2003.10.045

D. Diduch, L. Jordan, C. Mierisch, and G. Balian, Marrow stromal cells embedded in alginate for repair of osteochondral defects, Arthroscopy: The Journal of Arthroscopic & Related Surgery, vol.16, issue.6, pp.571-578, 2000.
DOI : 10.1053/jars.2000.4827

B. Rahfoth, J. Weisser, F. Sternkopf, T. Aigner, V. Der-mark et al., Transplantation of allograft chondrocytes embedded in agarose gel into cartilage defects of rabbits, Osteoarthritis and Cartilage, vol.6, issue.1, pp.50-65, 1998.
DOI : 10.1053/joca.1997.0092

J. Bonaventure, N. Kadhom, and L. Cohen-solal, Reexpression of Cartilage-Specific Genes by Dedifferentiated Human Articular Chondrocytes Cultured in Alginate Beads, Experimental Cell Research, vol.212, issue.1, pp.97-104, 1994.
DOI : 10.1006/excr.1994.1123

A. Carossino, R. Recenti, and R. Carossino, Methodological models for in vitro amplification and maintenance of human articular chondrocytes from elderly patients, Biogerontology, vol.45, issue.1
DOI : 10.1007/s10522-007-9088-4

K. Almqvist, L. Wang, and J. Wang, Culture of chondrocytes in alginate surrounded by fibrin gel: characteristics of the cells over a period of eight weeks, Annals of the Rheumatic Diseases, vol.60, issue.8, pp.781-90, 2001.
DOI : 10.1136/ard.60.8.781

G. Erickson, J. Gimble, D. Franklin, H. Rice, H. Awad et al., Chondrogenic Potential of Adipose Tissue-Derived Stromal Cells in Vitro and in Vivo, Biochemical and Biophysical Research Communications, vol.290, issue.2, pp.763-772, 2002.
DOI : 10.1006/bbrc.2001.6270

E. Fragonas, M. Valente, and M. Pozzi-mucelli, Articular cartilage repair in rabbits by using suspensions of allogenic chondrocytes in alginate, Biomaterials, vol.21, issue.8, pp.795-801, 2000.
DOI : 10.1016/S0142-9612(99)00241-0

C. Mierisch, H. Wilson, and M. Turner, CHONDROCYTE TRANSPLANTATION INTO ARTICULAR CARTILAGE DEFECTS WITH USE OF CALCIUM ALGINATE, The Journal of Bone and Joint Surgery-American Volume, vol.85, issue.9, pp.1757-67, 2003.
DOI : 10.2106/00004623-200309000-00015

K. Paige, L. Cima, M. Yaremchuk, B. Schloo, J. Vacanti et al., De Novo Cartilage Generation Using Calcium Alginate-Chondrocyte Constructs, Plastic & Reconstructive Surgery, vol.97, issue.1, pp.168-178, 1996.
DOI : 10.1097/00006534-199601000-00027

T. Selmi, P. Verdonk, and P. Chambat, Autologous chondrocyte implantation in a novel alginate-agarose hydrogel: OUTCOME AT TWO YEARS, Journal of Bone and Joint Surgery - British Volume, vol.90, issue.5, pp.597-604, 2008.
DOI : 10.1302/0301-620X.90B5.20360

W. Knudson, C. B. Nishida, Y. Eger, W. Kuettner, K. Knudson et al., Hyaluronan oligosaccharides perturb cartilage matrix homeostasis and induce chondrocytic chondrolysis, Arthritis & Rheumatism, vol.43, issue.5, pp.1165-74, 2000.
DOI : 10.1002/1529-0131(200005)43:5<1165::AID-ANR27>3.0.CO;2-H

E. Tognana, R. Padera, F. Chen, G. Vunjak-novakovic, and L. Freed, Development and remodeling of engineered cartilage-explant composites in vitro and in vivo, Osteoarthritis and Cartilage, vol.13, issue.10
DOI : 10.1016/j.joca.2005.05.003

K. Goa and P. Benfield, Hyaluronic Acid, Drugs, vol.47, issue.3, pp.536-66, 1994.
DOI : 10.2165/00003495-199447030-00009

P. Bulpitt and D. Aeschlimann, New strategy for chemical modification of hyaluronic acid: Preparation of functionalized derivatives and their use in the formation of novel biocompatible hydrogels, Journal of Biomedical Materials Research, vol.47, issue.2, pp.152-69, 1999.
DOI : 10.1002/(SICI)1097-4636(199911)47:2<152::AID-JBM5>3.3.CO;2-9

C. Chang, H. Liu, C. Lin, C. Chou, and F. Lin, Gelatin???chondroitin???hyaluronan tri-copolymer scaffold for cartilage tissue engineering, Biomaterials, vol.24, issue.26, pp.4853-4861, 2003.
DOI : 10.1016/S0142-9612(03)00383-1

M. Marcacci, M. Berruto, and D. Brocchetta, Articular Cartilage Engineering with Hyalograft?? C, Clinical Orthopaedics and Related Research, vol.13, issue.435, pp.96-105, 2005.
DOI : 10.1097/01.blo.0000165737.87628.5b

A. Montembault, K. Tahiri, C. Korwin-zmijowska, C. X. Corvol, M. Domard et al., A material decoy of??biological media based on??chitosan physical hydrogels: application to??cartilage tissue engineering, Biochimie, vol.88, issue.5, pp.551-64, 2006.
DOI : 10.1016/j.biochi.2006.03.002

D. Martino, A. Sittinger, M. Risbud, and M. , Chitosan: A versatile biopolymer for orthopaedic tissue-engineering, Biomaterials, vol.26, issue.30, pp.5983-90, 2005.
DOI : 10.1016/j.biomaterials.2005.03.016

C. Hoemann, J. Sun, A. Legare, M. Mckee, and M. Buschmann, Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle, Osteoarthritis and Cartilage, vol.13, issue.4
DOI : 10.1016/j.joca.2004.12.001

F. Muller, L. Muller, I. Hofmann, P. Greil, M. Wenzel et al., Cellulose-based scaffold materials for cartilage tissue engineering, Biomaterials, vol.27, issue.21, pp.3955-63, 2006.
DOI : 10.1016/j.biomaterials.2006.02.031

M. Martson, J. Viljanto, P. Laippala, and P. Saukko, Connective Tissue Formation in Subcutaneous Cellulose Sponge Implants in the Rat, European Surgical Research, vol.30, issue.6, pp.419-444, 1998.
DOI : 10.1159/000008608

G. Andrews, S. Gorman, and D. Jones, Rheological characterisation of primary and binary interactive bioadhesive gels composed of cellulose derivatives designed as ophthalmic viscosurgical devices, Biomaterials, vol.26, issue.5, pp.571-80, 2005.
DOI : 10.1016/j.biomaterials.2004.02.062

M. Sittinger, D. Reitzel, and M. Dauner, Resorbable polyesters in cartilage engineering: Affinity and biocompatibility of polymer fiber structures to chondrocytes, Journal of Biomedical Materials Research, vol.28, issue.2, pp.57-63, 1996.
DOI : 10.1002/(SICI)1097-4636(199622)33:2<57::AID-JBM1>3.0.CO;2-K

T. Spain, C. Agrawal, and K. Athanasiou, New Technique to Extend the Useful Life of a Biodegradable Cartilage Implant, Tissue Engineering, vol.4, issue.4, pp.343-52, 1998.
DOI : 10.1089/ten.1998.4.343

L. Galois, A. Freyria, D. Herbage, and D. Mainard, Ing??nierie tissulaire du cartilage : ??tat des lieux et perspectives, Pathologie Biologie, vol.53, issue.10, pp.590-598, 2005.
DOI : 10.1016/j.patbio.2004.12.019

X. Wang, S. Grogan, and F. Rieser, Tissue engineering of biphasic cartilage constructs using various biodegradable scaffolds: an in vitro study, Biomaterials, vol.25, issue.17, pp.3681-3689, 2004.
DOI : 10.1016/j.biomaterials.2003.10.102

L. Freed, G. Vunjak-novakovic, and R. Langer, Cultivation of cell-polymer cartilage implants in bioreactors, Journal of Cellular Biochemistry, vol.179, issue.3, pp.257-64, 1993.
DOI : 10.1002/jcb.240510304

L. Freed, D. Grande, Z. Lingbin, J. Emmanual, J. Marquis et al., Joint resurfacing using allograft chondrocytes and synthetic biodegradable polymer scaffolds, Journal of Biomedical Materials Research, vol.27, issue.8
DOI : 10.1002/jbm.820280808

C. Ossendorf, C. Kaps, P. Kreuz, G. Burmester, M. Sittinger et al., Treatment of posttraumatic and focal osteoarthritic cartilage defects of the knee with autologous polymer-based three-dimensional chondrocyte grafts: 2-year clinical results, Arthritis Research & Therapy, vol.9, issue.2, p.41, 2007.
DOI : 10.1186/ar2180

A. Carranza-bencano, J. Armas-padron, M. Gili-miner, and M. Lozano, Carbon fiber implants in osteochondral defects of the rabbit patella, Biomaterials, vol.21, issue.21, pp.2171-2177, 2000.
DOI : 10.1016/S0142-9612(00)00144-7

K. Messner, Hydroxylapatite supported Dacron plugs for repair of isolated full-thickness osteochondral defects of the rabbit femoral condyle: Mechanical and histological evaluations from 6-48 weeks, Journal of Biomedical Materials Research, vol.17, issue.12, pp.1527-1559, 1993.
DOI : 10.1002/jbm.820271209

K. Messner, Durability of artificial implants for repair of osteochondral defects of the medial femoral condyle in rabbits, Biomaterials, vol.15, issue.9, pp.657-64, 1994.
DOI : 10.1016/0142-9612(94)90163-5

J. Defrere and A. Franckart, Teflon/polyurethane arthroplasty of the knee: the first 2 years preliminary clinical experience in a new concept of artificial resurfacing of full thickness cartilage lesions of the knee, Acta Chir Belg, vol.92, pp.217-244, 1992.

S. Sontjens, D. Nettles, M. Carnahan, L. Setton, and M. Grinstaff, Biodendrimer-Based Hydrogel Scaffolds for Cartilage Tissue Repair, Biomacromolecules, vol.7, issue.1, pp.310-316, 2006.
DOI : 10.1021/bm050663e

D. Wallace and J. Rosenblatt, Collagen gel systems for sustained delivery and tissue engineering, Advanced Drug Delivery Reviews, vol.55, issue.12, pp.1631-1680, 2003.
DOI : 10.1016/j.addr.2003.08.004

J. Temenoff and A. Mikos, Injectable biodegradable materials for orthopedic tissue engineering, Biomaterials, vol.21, issue.23, pp.2405-2417, 2000.
DOI : 10.1016/S0142-9612(00)00108-3

I. Kim, S. Seo, and H. Moon, Chitosan and its derivatives for tissue engineering applications, Biotechnology Advances, vol.26, issue.1, pp.1-21, 2008.
DOI : 10.1016/j.biotechadv.2007.07.009

C. Vinatier, D. Magne, and A. Moreau, Engineering cartilage with human nasal chondrocytes and a silanized hydroxypropyl methylcellulose hydrogel, Journal of Biomedical Materials Research Part A, vol.31, issue.1, pp.66-74, 2007.
DOI : 10.1002/jbm.a.30867

J. Insall, The Pridie debridement operation for osteoarthritis of the knee, Clin Orthop Relat Res, pp.61-68, 1974.

J. Steadman, W. Rodkey, K. Briggs, and J. Rodrigo, The microfracture technic in the management of complete cartilage defects in the knee joint, Orthopade, vol.28, pp.26-32, 1999.

L. Hangody, G. Kish, Z. Karpati, I. Szerb, and I. Udvarhelyi, Arthroscopic autogenous osteochondral mosaicplasty for the treatment of femoral condylar articular defects, Knee Surgery, Sports Traumatology, Arthroscopy, vol.5, issue.4, pp.262-269, 1997.
DOI : 10.1007/s001670050061

M. Brittberg, A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson et al., Treatment of Deep Cartilage Defects in the Knee with Autologous Chondrocyte Transplantation, New England Journal of Medicine, vol.331, issue.14
DOI : 10.1056/NEJM199410063311401

R. Magnussen, W. Dunn, J. Carey, and K. Spindler, Treatment of Focal Articular Cartilage Defects in the Knee, Clinical Orthopaedics and Related Research, vol.85, issue.suppl, pp.952-62, 2008.
DOI : 10.1007/s11999-007-0097-z

P. Cherubino, F. Grassi, P. Bulgheroni, and M. Ronga, Autologous Chondrocyte Implantation Using a Bilayer Collagen Membrane: A Preliminary Report, Journal of Orthopaedic Surgery, vol.79, issue.1, pp.10-15, 2003.
DOI : 10.1177/230949900301100104

S. Wakitani, A. Kawaguchi, Y. Tokuhara, and K. Takaoka, Present status of and future direction for articular cartilage repair, Journal of Bone and Mineral Metabolism, vol.65, issue.suppl2, pp.115-137, 2008.
DOI : 10.1007/s00774-007-0802-8

S. Wakitani, K. Imoto, T. Yamamoto, M. Saito, N. Murata et al., Human autologous culture expanded bone marrow mesenchymal cell transplantation for repair of cartilage defects in osteoarthritic knees, Osteoarthritis and Cartilage, vol.10, issue.3, pp.199-206, 2002.
DOI : 10.1053/joca.2001.0504

C. Centeno, D. Busse, J. Kisiday, C. Keohan, M. Freeman et al., Increased knee cartilage volume in degenerative joint disease using percutaneously implanted, autologous mesenchymal stem cells, Pain Physician, vol.11, pp.343-53, 2008.

S. Wakitani, M. Nawata, K. Tensho, T. Okabe, H. Machida et al., Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees, Journal of Tissue Engineering and Regenerative Medicine, vol.13, issue.1, pp.74-83, 2007.
DOI : 10.1002/term.8

D. Bradham, A. Passaniti, W. Horton, and . Jr, Mesenchymal cell chondrogenesis is stimulated by basement membrane matrix and inhibited by age-associated factors, Matrix Biology, vol.14, issue.7
DOI : 10.1016/S0945-053X(05)80005-8

K. Bulic, Articular chondrocytes interact with basement membrane Matrigel through laminin active binding sites, Acta Med Croatica, vol.50, pp.69-74, 1996.

H. Fan, Y. Hu, and X. Li, Ectopic cartilage formation induced by mesenchymal stem cells on porous gelatin-chondroitin-hyaluronate scaffold containing microspheres loaded with TGF-beta1, Int J Artif Organs, vol.29, pp.602-613, 2006.

H. Pulkkinen, V. Tiitu, and E. Lammentausta, Cellulose sponge as a scaffold for cartilage tissue engineering, Biomed Mater Eng, vol.16, pp.29-35, 2006.

J. Dounchis, W. Bae, A. Chen, R. Sah, R. Coutts et al., Cartilage Repair With Autogenic Perichondrium Cell and Polylactic Acid Grafts, Clinical Orthopaedics and Related Research, vol.377, pp.248-64, 2000.
DOI : 10.1097/00003086-200008000-00033

J. Yan, N. Qi, and Q. Zhang, Rabbit Articular Chondrocytes Seeded on Collagen-Chitosan-GAG Scaffold for Cartilage Tissue Engineering In Vivo, Artificial Cells, Blood Substitutes, and Biotechnology, vol.25, issue.3, pp.333-377, 2007.
DOI : 10.1080/15321799408014163

S. Grad, L. Kupcsik, K. Gorna, S. Gogolewski, and M. Alini, The use of biodegradable polyurethane scaffolds for cartilage tissue engineering: potential and limitations, Biomaterials, vol.24, issue.28, pp.5163-71, 2003.
DOI : 10.1016/S0142-9612(03)00462-9

G. Kose, F. Korkusuz, and A. Ozkul, Tissue engineered cartilage on collagen and PHBV matrices, Biomaterials, vol.26, issue.25, pp.5187-5197, 2005.
DOI : 10.1016/j.biomaterials.2005.01.037

L. Estrada, G. Dodge, D. Richardson, A. Farole, and S. Jimenez, Characterization of a biomaterial with cartilage-like properties expressing type X collagen generated in vitro using neonatal porcine articular and growth plate chondrocytes, Osteoarthritis and Cartilage, vol.9, issue.2, pp.169-77, 2001.
DOI : 10.1053/joca.2000.0373

R. Barbucci, S. Lamponi, and A. Borzacchiello, Hyaluronic acid hydrogel in the treatment of osteoarthritis, Biomaterials, vol.23, issue.23, pp.4503-4516, 2002.
DOI : 10.1016/S0142-9612(02)00194-1

E. Liao, M. Yaszemski, P. Krebsbach, and S. Hollister, Tissue-Engineered Cartilage Constructs Using Composite Hyaluronic Acid/Collagen I Hydrogels and Designed Poly(Propylene Fumarate) Scaffolds, Tissue Engineering, vol.13, issue.3, pp.537-50, 2007.
DOI : 10.1089/ten.2006.0117

B. Sharma, C. Williams, M. Khan, P. Manson, and J. Elisseeff, In Vivo Chondrogenesis of Mesenchymal Stem Cells in a Photopolymerized Hydrogel, Plastic and Reconstructive Surgery, vol.119, issue.1, pp.112-132, 2007.
DOI : 10.1097/01.prs.0000236896.22479.52

E. Alsberg, K. Anderson, A. Albeiruti, J. Rowley, and D. Mooney, Engineering growing tissues, Proceedings of the National Academy of Sciences, vol.99, issue.19, pp.12025-12055, 2002.
DOI : 10.1073/pnas.192291499

A. Atala, L. Cima, and W. Kim, Injectable alginate seeded with chondrocytes as a potential treatment for vesicoureteral reflux, J Urol, vol.150, pp.745-752, 1993.

J. Elisseeff, A. Lee, H. Kleinman, and Y. Yamada, Biological Response of Chondrocytes to Hydrogels, Annals of the New York Academy of Sciences, vol.21, issue.Pt. 1, pp.118-140, 2002.
DOI : 10.1111/j.1749-6632.2002.tb03062.x

J. Suh and H. Matthew, Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review, Biomaterials, vol.21, pp.2589-98, 2000.

J. Van-susante, J. Pieper, and P. Buma, Linkage of chondroitin-sulfate to type I collagen scaffolds stimulates the bioactivity of seeded chondrocytes in vitro, Biomaterials, vol.22, issue.17, pp.2359-69, 2001.
DOI : 10.1016/S0142-9612(00)00423-3

T. Taguchi, L. Xu, H. Kobayashi, A. Taniguchi, K. Kataoka et al., Encapsulation of chondrocytes in injectable alkali-treated collagen gels prepared using poly(ethylene glycol)-based 4-armed star polymer, Biomaterials, vol.26, issue.11, pp.1247-52, 2005.
DOI : 10.1016/j.biomaterials.2004.04.029

N. Mercier, H. Costantino, M. Tracy, and L. Bonassar, A Novel Injectable Approach for Cartilage Formation in Vivo Using PLG Microspheres, Annals of Biomedical Engineering, vol.32, issue.3, pp.418-447, 2004.
DOI : 10.1023/B:ABME.0000017547.84146.fd

J. Elisseeff, K. Anseth, and D. Sims, Transdermal Photopolymerization of Poly (Ethylene Oxide)-Based Injectable Hydrogels for Tissue-Engineered Cartilage, Plastic and Reconstructive Surgery, vol.104, issue.4, pp.1014-1036, 1999.
DOI : 10.1097/00006534-199909020-00018

J. Elisseeff, W. Mcintosh, K. Anseth, S. Riley, P. Ragan et al., Photoencapsulation of chondrocytes in poly(ethylene oxide)-based semi-interpenetrating networks, Journal of Biomedical Materials Research, vol.51, issue.2
DOI : 10.1002/(SICI)1097-4636(200008)51:2<164::AID-JBM4>3.3.CO;2-N

T. Kim, B. Sharma, and C. Williams, Experimental Model for Cartilage Tissue Engineering to Regenerate the Zonal Organization of Articular Cartilage, Osteoarthritis and Cartilage, vol.11, issue.9, pp.653-64, 2003.
DOI : 10.1016/S1063-4584(03)00120-1

J. Burdick and K. Anseth, Photoencapsulation of osteoblasts in injectable RGD-modified PEG hydrogels for bone tissue engineering, Biomaterials, vol.23, issue.22, pp.4315-4338, 2002.
DOI : 10.1016/S0142-9612(02)00176-X