L. S. A¨?ta¨?t-ali, S. Prima, P. Hellier, B. Carsin, G. Edan et al., STREM: a robust multidimensional parametric method to segment MS lesions in MRI, Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv, pp.409-416, 2005.

F. Barkhof, M. Filippi, D. H. Miller, P. Scheltens, A. Campi et al., Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis, Brain, vol.120, issue.11, pp.2059-2069, 1997.
DOI : 10.1093/brain/120.11.2059

P. Coupe, P. Yger, S. Prima, P. Hellier, C. Kervrann et al., An Optimized Blockwise Nonlocal Means Denoising Filter for 3-D Magnetic Resonance Images, IEEE Transactions on Medical Imaging, vol.27, issue.4, pp.425-441, 2008.
DOI : 10.1109/TMI.2007.906087

URL : https://hal.archives-ouvertes.fr/inserm-00169658

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum Likelihood from Incomplete Data via the EM Algorithm, Journal of the Royal Statistical Society, vol.39, issue.33, pp.1-38, 1977.

G. Dugas-phocion, M. A. Gonzalez, C. Lebrun, S. Chanalet, C. Bensa et al., Hierarchical segmentation of multiple sclerosis lesions in multi-sequence MRI, 2004 2nd IEEE International Symposium on Biomedical Imaging: Macro to Nano (IEEE Cat No. 04EX821), pp.157-160, 2004.
DOI : 10.1109/ISBI.2004.1398498

URL : https://hal.archives-ouvertes.fr/inria-00615969

C. Fennema-notestine, I. B. Ozyurt, C. P. Clark, S. Morris, A. Bischoff-grethe et al., Quantitative evaluation of automated skull-stripping methods applied to contemporary and legacy images: Effects of diagnosis, bias correction, and slice location, Human Brain Mapping, vol.23, issue.2, pp.99-113, 2006.
DOI : 10.1002/hbm.20161

M. Filippi, M. Rovaris, M. P. Sormani, M. A. Horsfield, M. A. Rocca et al., Intraobserver and interobserver variability in measuring changes in lesion volume on serial brain MR images in multiple sclerosis, AJNR Am J Neuroradiol, vol.19, issue.51, pp.685-687, 1998.

D. García-lorenzo, S. Prima, J. Ferré, L. Parkes, J. Gauvrit et al., Quantitative evaluation of intensity inhomogeneity correction algorithms for Multiple Sclerosis, Presented in CARS, 2008.

J. Grimaud, M. Lai, J. Thorpe, P. Adeleine, L. Wang et al., Quantification of MRI lesion load in multiple sclerosis: A comparison of three computer-assisted techniques, Magnetic Resonance Imaging, vol.14, issue.5, pp.495-505, 1996.
DOI : 10.1016/0730-725X(96)00018-5

J. Mangin, Entropy minimization for automatic correction of intensity nonuniformity, Proceedings IEEE Workshop on Mathematical Methods in Biomedical Image Analysis. MMBIA-2000 (Cat. No.PR00737), pp.162-169, 2000.
DOI : 10.1109/MMBIA.2000.852374

N. Neykov, P. Filzmoser, R. Dimova, and P. Neytchev, Robust fitting of mixtures using the trimmed likelihood estimator, Computational Statistics & Data Analysis, vol.52, issue.1, pp.299-308, 2007.
DOI : 10.1016/j.csda.2006.12.024

E. David, . Rex, W. David, . Shattuck, P. Roger et al., A meta-algorithm for brain extraction in MRI, Neuroimage, vol.23, issue.33, pp.625-637, 2004.

S. M. Smith, Fast robust automated brain extraction, Human Brain Mapping, vol.20, issue.3, pp.143-155, 2002.
DOI : 10.1002/hbm.10062

B. Van-ginneken, T. Heimann, and M. Styner, 3D Segmentation in the Clinic: A Grand Challenge, 3D Segmentation in the Clinic: A Grand Challenge. Miccai Workshop, pp.7-15, 2002.

S. K. Warfield, K. H. Zou, and W. M. Wells, Simultaneous Truth and Performance Level Estimation (STAPLE): An Algorithm for the Validation of Image Segmentation, IEEE Transactions on Medical Imaging, vol.23, issue.7, pp.903-921, 2004.
DOI : 10.1109/TMI.2004.828354

I. Wells, W. M. , W. E. Grimson, R. Kikinis, and F. A. Jolesz, Adaptive segmentation of MRI data, IEEE Transactions on Medical Imaging, vol.15, issue.4, pp.429-442, 1996.
DOI : 10.1109/42.511747

P. Alex, R. Zijdenbos, A. C. Forghani, and . Evans, Automatic " pipeline " analysis of 3-D MRI data for clinical trials: application to multiple sclerosis, IEEE Trans Med Imaging, vol.21, issue.51, pp.1280-1291, 2002.