DOI : 10.1093/brain/104.3.589

P. Ribai, F. Pousset, M. Tanguy, S. Rivaud-pechoux, L. Ber et al., Neurological, Cardiological, and Oculomotor Progression in 104 Patients With Friedreich Ataxia During Long-term Follow-up, Archives of Neurology, vol.64, issue.4, pp.558-564, 2007.
DOI : 10.1001/archneur.64.4.558

URL : https://hal.archives-ouvertes.fr/hal-00166262

V. Campuzano, L. Montermini, M. Molto, L. Pianese, and M. Cossee, Friedreich's Ataxia: Autosomal Recessive Disease Caused by an Intronic GAA Triplet Repeat Expansion, Science, vol.271, issue.5254, pp.1423-1427, 1996.
DOI : 10.1126/science.271.5254.1423

M. Pandolfo and A. Pastore, The pathogenesis of Friedreich ataxia and the structure and function of frataxin, Journal of Neurology, vol.277, issue.S1, pp.9-17, 2009.
DOI : 10.1007/s00415-009-1003-2

A. Rotig, P. De-lonlay, D. Chretien, F. Foury, and M. Koenig, Aconitase and mitochondrial iron???sulphur protein deficiency in Friedreich ataxia, Nature Genetics, vol.12, issue.2, pp.215-217, 1997.
DOI : 10.1016/0009-8981(94)90055-8

J. Bradley, J. Blake, S. Chamberlain, P. Thomas, and J. Cooper, Clinical, biochemical and molecular genetic correlations in Friedreich's ataxia, Human Molecular Genetics, vol.9, issue.2, pp.275-282, 2000.
DOI : 10.1093/hmg/9.2.275

H. Puccio, D. Simon, M. Cossee, P. Criqui-filipe, and F. Tiziano, Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits, Nature Genetics, vol.27, issue.2, pp.181-186, 2001.
DOI : 10.1038/84818

A. Martelli, M. Wattenhofer-donze, S. Schmucker, S. Bouvet, and L. Reutenauer, Frataxin is essential for extramitochondrial Fe S cluster proteins in mammalian tissues, Human Molecular Genetics, vol.16, issue.22, 2007.
DOI : 10.1093/hmg/ddm163

URL : https://hal.archives-ouvertes.fr/hal-00187819

H. Seznec, D. Simon, C. Bouton, L. Reutenauer, and A. Hertzog, Friedreich ataxia: the oxidative stress paradox, Human Molecular Genetics, vol.14, issue.4, pp.463-474, 2005.
DOI : 10.1093/hmg/ddi042

URL : https://hal.archives-ouvertes.fr/hal-00187760

S. Adinolfi, C. Iannuzzi, F. Prischi, C. Pastore, and S. Iametti, Bacterial frataxin CyaY is the gatekeeper of iron-sulfur cluster formation catalyzed by IscS, Nature Structural & Molecular Biology, vol.5, issue.4, pp.390-396, 2009.
DOI : 10.1038/nsmb.1579

N. Sakamoto, K. Ohshima, L. Montermini, M. Pandolfo, and R. Wells, Sticky DNA, a Self-associated Complex Formed at Long GAA{middle dot}TTC Repeats in Intron 1 of the Frataxin Gene, Inhibits Transcription, Journal of Biological Chemistry, vol.276, issue.29, pp.27171-27177, 2001.
DOI : 10.1074/jbc.M101879200

A. Saveliev, C. Everett, T. Sharpe, Z. Webster, and R. Festenstein, DNA triplet repeats mediate heterochromatin-protein-1-sensitive variegated gene silencing, Nature, vol.422, issue.6934, pp.909-913, 2003.
DOI : 10.1038/nature01596

M. Busi, M. Maliandi, H. Valdez, M. Clemente, and E. Zabaleta, Deficiency of Arabidopsis thaliana frataxin alters activity of mitochondrial Fe-S proteins and induces oxidative stress, The Plant Journal, vol.15, issue.6, pp.873-882, 2006.
DOI : 10.1111/j.1365-313X.2006.02923.x

URL : https://hal.archives-ouvertes.fr/hal-00166169

M. Cossee, H. Puccio, A. Gansmuller, H. Koutnikova, and A. Dierich, Inactivation of the Friedreich ataxia mouse gene leads to early embryonic lethality without iron accumulation, Human Molecular Genetics, vol.9, issue.8, pp.1219-1226, 2000.
DOI : 10.1093/hmg/9.8.1219

N. Ventura, S. Rea, and R. Testi, Long-lived C. elegans Mitochondrial mutants as a model for human mitochondrial-associated diseases, Experimental Gerontology, vol.41, issue.10, pp.974-991, 2006.
DOI : 10.1016/j.exger.2006.06.060

P. Anderson, K. Kirby, A. Hilliker, and J. Phillips, RNAi-mediated suppression of the mitochondrial iron chaperone, frataxin, in Drosophila, Human Molecular Genetics, vol.14, issue.22, pp.3397-3405, 2005.
DOI : 10.1093/hmg/ddi367

J. Llorens, J. Navarro, M. Martinez-sebastian, M. Baylies, and S. Schneuwly, Causative role of oxidative stress in a Drosophila model of Friedreich ataxia, The FASEB Journal, vol.21, issue.2, pp.333-344, 2007.
DOI : 10.1096/fj.05-5709com

M. Cossee, A. Durr, M. Schmitt, N. Dahl, and P. Trouillas, Friedreich's ataxia: Point mutations and clinical presentation of compound heterozygotes, Annals of Neurology, vol.19, issue.2, pp.200-206, 1999.
DOI : 10.1002/1531-8249(199902)45:2<200::AID-ANA10>3.0.CO;2-U

C. Gellera, B. Castellotti, C. Mariotti, R. Mineri, and V. Seveso, Frataxin gene point mutations in Italian Friedreich ataxia patients, Neurogenetics, vol.16, issue.4, pp.289-299, 2007.
DOI : 10.1007/s10048-007-0101-5

S. Dhe-paganon, R. Shigeta, Y. Chi, M. Ristow, and S. Shoelson, Crystal Structure of Human Frataxin, Journal of Biological Chemistry, vol.275, issue.40, pp.30753-30756, 2000.
DOI : 10.1074/jbc.C000407200

G. Musco, G. Stier, B. Kolmerer, S. Adinolfi, and S. Martin, Towards a structural understanding of Friedreich???s ataxia: the solution structure of frataxin, Structure, vol.8, issue.7, pp.695-707, 2000.
DOI : 10.1016/S0969-2126(00)00158-1

A. Filla, D. Michele, G. Cavalcanti, F. Pianese, L. Monticelli et al., The relationship between trinucleotide (GAA) repeat length and clinical features in Friedreich ataxia, Am J Hum Genet, vol.59, pp.554-560, 1996.

S. Bidichandani, T. Ashizawa, and P. Patel, Atypical Friedreich ataxia caused by compound heterozygosity for a novel missense mutation and the GAA tripletrepeat expansion, Am J Hum Genet, vol.60, pp.1251-1256, 1997.

S. Forrest, M. Knight, M. Delatycki, D. Paris, and R. Williamson, The correlation of clinical phenotype in Friedreich ataxia with the site of point mutations in the FRDA gene, neurogenetics, vol.1, issue.4, pp.253-257, 1998.
DOI : 10.1007/s100480050037

D. Mccabe, N. Wood, F. Ryan, M. Hanna, and S. Connolly, Intrafamilial Phenotypic Variability in Friedreich Ataxia Associated With a G130V Mutation in the FRDA Gene, Archives of Neurology, vol.59, issue.2, pp.296-300, 2002.
DOI : 10.1001/archneur.59.2.296

C. Lu and G. Cortopassi, Frataxin knockdown causes loss of cytoplasmic iron???sulfur cluster functions, redox alterations and induction of heme transcripts, Archives of Biochemistry and Biophysics, vol.457, issue.1, pp.111-122, 2007.
DOI : 10.1016/j.abb.2006.09.010

R. Schoenfeld, E. Napoli, A. Wong, S. Zhan, and L. Reutenauer, Frataxin deficiency alters heme pathway transcripts and decreases mitochondrial heme metabolites in mammalian cells, Human Molecular Genetics, vol.14, issue.24, pp.3787-3799, 2005.
DOI : 10.1093/hmg/ddi393

URL : https://hal.archives-ouvertes.fr/hal-00187745

O. Stehling, H. Elsasser, B. Bruckel, U. Muhlenhoff, and R. Lill, Iron-sulfur protein maturation in human cells: evidence for a function of frataxin, Human Molecular Genetics, vol.13, issue.23, pp.3007-3015, 2004.
DOI : 10.1093/hmg/ddh324

G. Tan, E. Napoli, F. Taroni, and G. Cortopassi, Decreased expression of genes involved in sulfur amino acid metabolism in frataxin-deficient cells, Human Molecular Genetics, vol.12, issue.14, pp.1699-1711, 2003.
DOI : 10.1093/hmg/ddg187

I. Zanella, M. Derosas, M. Corrado, E. Cocco, and P. Cavadini, The effects of frataxin silencing in HeLa cells are rescued by the expression of human mitochondrial ferritin, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, vol.1782, issue.2, pp.90-98, 2008.
DOI : 10.1016/j.bbadis.2007.11.006

URL : https://hal.archives-ouvertes.fr/hal-00501557

H. Ide and M. Kotera, Human DNA Glycosylases Involved in the Repair of Oxidatively Damaged DNA, Biological & Pharmaceutical Bulletin, vol.27, issue.4, pp.480-485, 2004.
DOI : 10.1248/bpb.27.480

G. Zhou, S. Broyles, J. Dixon, and H. Zalkin, Avian glutamine phosphoribosylpyrophosphate amidotransferase propeptide processing and activity are dependent upon essential cysteine residues, J Biol Chem, vol.267, pp.7936-7942, 1992.

H. Puccio, Multicellular models of Friedreich ataxia, Journal of Neurology, vol.6, issue.S1, pp.18-24, 2009.
DOI : 10.1007/s00415-009-1004-1

URL : https://hal.archives-ouvertes.fr/inserm-00384533

M. Pook, S. Mahdawi, C. Carroll, M. Cossee, and H. Puccio, Rescue of the Friedreich's ataxia knockout mouse by human YAC transgenesis, Neurogenetics, vol.3, pp.185-193, 2001.

J. Sarsero, L. Li, T. Holloway, L. Voullaire, and S. Gazeas, Human BAC-mediated rescue of the Friedreich ataxia knockout mutation in transgenic mice, Mammalian Genome, vol.15, issue.5, pp.370-382, 2004.
DOI : 10.1007/s00335-004-3019-3

D. Simon, H. Seznec, A. Gansmuller, N. Carelle, and P. Weber, Friedreich Ataxia Mouse Models with Progressive Cerebellar and Sensory Ataxia Reveal Autophagic Neurodegeneration in Dorsal Root Ganglia, Journal of Neuroscience, vol.24, issue.8, pp.1987-1995, 2004.
DOI : 10.1523/JNEUROSCI.4549-03.2004

K. Chantrel-groussard, V. Geromel, H. Puccio, M. Koenig, and A. Munnich, Disabled early recruitment of antioxidant defenses in Friedreich's ataxia, Human Molecular Genetics, vol.10, issue.19, pp.2061-2067, 2001.
DOI : 10.1093/hmg/10.19.2061

L. Lobmayr, D. Brooks, and R. Wilson, Increased IRP1 activity in Friedreich ataxia, Gene, vol.354, pp.157-161, 2005.
DOI : 10.1016/j.gene.2005.04.040

V. Paupe, E. Dassa, S. Goncalves, F. Auchere, and M. Lonn, Impaired Nuclear Nrf2 Translocation Undermines the Oxidative Stress Response in Friedreich Ataxia, PLoS ONE, vol.228, issue.1, p.4253, 2009.
DOI : 10.1371/journal.pone.0004253.s003

B. Sturm, U. Bistrich, M. Schranzhofer, J. Sarsero, and U. Rauen, Friedreich's Ataxia, No Changes in Mitochondrial Labile Iron in Human Lymphoblasts and Fibroblasts: A DECREASE IN ANTIOXIDATIVE CAPACITY?, Journal of Biological Chemistry, vol.280, issue.8, pp.6701-6708, 2005.
DOI : 10.1074/jbc.M408717200

G. Tan, L. Chen, B. Lonnerdal, C. Gellera, and F. Taroni, Frataxin expression rescues mitochondrial dysfunctions in FRDA cells, Human Molecular Genetics, vol.10, issue.19, pp.2099-2107, 2001.
DOI : 10.1093/hmg/10.19.2099

M. Jauslin, T. Wirth, T. Meier, and F. Schoumacher, A cellular model for Friedreich Ataxia reveals small-molecule glutathione peroxidase mimetics as novel treatment strategy, Human Molecular Genetics, vol.11, issue.24, pp.3055-3063, 2002.
DOI : 10.1093/hmg/11.24.3055

A. Wong, J. Yang, P. Cavadini, C. Gellera, and B. Lonnerdal, The Friedreich's ataxia mutation confers cellular sensitivity to oxidant stress which is rescued by chelators of iron and calcium and inhibitors of apoptosis, Human Molecular Genetics, vol.8, issue.3, pp.425-430, 1999.
DOI : 10.1093/hmg/8.3.425

P. Anderson, K. Kirby, W. Orr, A. Hilliker, and J. Phillips, Hydrogen peroxide scavenging rescues frataxin deficiency in a Drosophila model of Friedreich's ataxia, Proceedings of the National Academy of Sciences, vol.105, issue.2, pp.611-616, 2008.
DOI : 10.1073/pnas.0709691105

A. Correia, C. Pastore, S. Adinolfi, A. Pastore, and C. Gomes, Dynamics, stability and iron-binding activity of frataxin clinical mutants, FEBS Journal, vol.279, issue.14, pp.3680-3690, 2008.
DOI : 10.1111/j.1742-4658.2008.06512.x

A. Correia, S. Adinolfi, A. Pastore, and C. Gomes, Conformational stability of human frataxin and effect of Friedreich's ataxia-related mutations on protein folding, Biochemical Journal, vol.398, issue.3, pp.605-611, 2006.
DOI : 10.1042/BJ20060345

URL : https://hal.archives-ouvertes.fr/hal-00478547

S. Klinge, J. Hirst, J. Maman, T. Krude, and L. Pellegrini, An iron-sulfur domain of the eukaryotic primase is essential for RNA primer synthesis, Nature Structural & Molecular Biology, vol.261, issue.9, pp.875-877, 2007.
DOI : 10.1021/bi00063a014

Z. Chen, J. Dong, A. Ishimura, I. Daar, and A. Hinnebusch, The Essential Vertebrate ABCE1 Protein Interacts with Eukaryotic Initiation Factors, Journal of Biological Chemistry, vol.281, issue.11, pp.7452-7457, 2006.
DOI : 10.1074/jbc.M510603200

H. Koutnikova, V. Campuzano, and M. Koenig, Maturation of wild-type and mutated frataxin by the mitochondrial processing peptidase, Human Molecular Genetics, vol.7, issue.9, pp.1485-1489, 1998.
DOI : 10.1093/hmg/7.9.1485

V. Campuzano, L. Montermini, Y. Lutz, L. Cova, and C. Hindelang, Frataxin is Reduced in Friedreich Ataxia Patients and is Associated with Mitochondrial Membranes, Human Molecular Genetics, vol.6, issue.11, pp.1771-1780, 1997.
DOI : 10.1093/hmg/6.11.1771

S. Ayala-torres, Y. Chen, T. Svoboda, J. Rosenblatt, and B. Van-houten, Analysis of Gene-Specific DNA Damage and Repair Using Quantitative Polymerase Chain Reaction, Methods, vol.22, issue.2, pp.135-147, 2000.
DOI : 10.1006/meth.2000.1054

S. Schmucker, M. Argentini, N. Carelle-calmels, A. Martelli, and H. Puccio, The in vivo mitochondrial two-step maturation of human frataxin, Human Molecular Genetics, vol.17, issue.22, 2008.
DOI : 10.1093/hmg/ddn244

URL : https://hal.archives-ouvertes.fr/inserm-00350838

R. Freshney, Culture of animal cells: a manual of basic technique, 2000.
DOI : 10.1002/9780471747598

S. Kim and P. Ponka, Control of Transferrin Receptor Expression via Nitric Oxide-mediated Modulation of Iron-regulatory Protein 2, Journal of Biological Chemistry, vol.274, issue.46, pp.33035-33042, 1999.
DOI : 10.1074/jbc.274.46.33035

H. Aebi and S. Wyss, The role of enzyme variants, polymorphisms and enzyme hybrids in enzyme deficiency conditions, Acta Biol Med Ger, vol.40, pp.537-541, 1981.

J. Moulis and J. Meyer, Characterization of the selenium-substituted 2[4Fe-4Se] ferredoxin from Clostridium pasteurianum, Biochemistry, vol.21, issue.19, pp.4762-4771, 1982.
DOI : 10.1021/bi00262a037