A. Maitra and R. Hruban, Pancreatic Cancer, Annual Review of Pathology: Mechanisms of Disease, vol.3, issue.1, pp.157-188, 2008.
DOI : 10.1146/annurev.pathmechdis.3.121806.154305

A. Maitra, N. Fukushima, K. Takaori, and R. Hruban, Precursors to Invasive Pancreatic Cancer, Advances in Anatomic Pathology, vol.12, issue.2, pp.81-91, 2005.
DOI : 10.1097/01.pap.0000155055.14238.25

T. Furukawa, G. Kloppel, V. Adsay, N. Albores-saavedra, J. Fukushima et al., Classification of types of intraductal papillary-mucinous neoplasm of the pancreas: a consensus study, Virchows Archiv, vol.49, issue.5, pp.794-799, 2005.
DOI : 10.1007/s00428-005-0039-7

J. Koorstra, S. Hustinx, G. Offerhaus, and A. Maitra, Pancreatic Carcinogenesis, Pancreatology, vol.8, issue.2, pp.110-125, 2008.
DOI : 10.1159/000123838

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2663569

N. Bardeesy and R. Depinho, Pancreatic cancer biology and genetics, Nature Reviews Cancer, vol.2, issue.12, pp.897-909, 2002.
DOI : 10.1038/nrc949

C. Shi, R. Hruban, and A. Klein, Familial pancreatic cancer, Arch Pathol Lab Med, vol.133, pp.365-374, 2009.

R. Hruban, N. Adsay, J. Albores-saavedra, M. Anver, and A. Biankin, Pathology of Genetically Engineered Mouse Models of Pancreatic Exocrine Cancer: Consensus Report and Recommendations, Cancer Research, vol.66, issue.1, pp.95-106, 2006.
DOI : 10.1158/0008-5472.CAN-05-2168

S. Hingorani, E. Petricoin, A. Maitra, V. Rajapakse, and C. King, Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse, Cancer Cell, vol.4, issue.6, pp.437-450, 2003.
DOI : 10.1016/S1535-6108(03)00309-X

C. Guerra, A. Schuhmacher, M. Canamero, P. Grippo, and L. Verdaguer, Chronic Pancreatitis Is Essential for Induction of Pancreatic Ductal Adenocarcinoma by K-Ras Oncogenes in Adult Mice, Cancer Cell, vol.11, issue.3, pp.291-302, 2007.
DOI : 10.1016/j.ccr.2007.01.012

P. Grippo, P. Nowlin, M. Demeure, D. Longnecker, and E. Sandgren, Preinvasive pancreatic neoplasia of ductal phenotype induced by acinar cell targeting of mutant Kras in transgenic mice, Cancer Research, vol.63, pp.2016-2019, 2003.

S. Hingorani, L. Wang, A. Multani, C. Combs, and T. Deramaudt, Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice, Cancer Cell, vol.7, issue.5, pp.469-483, 2005.
DOI : 10.1016/j.ccr.2005.04.023

A. Aguirre, N. Bardeesy, M. Sinha, L. Lopez, and D. Tuveson, Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma, Genes & Development, vol.17, issue.24, pp.3112-3126, 2003.
DOI : 10.1101/gad.1158703

N. Bardeesy, A. Aguirre, G. Chu, K. Cheng, and L. Lopez, Both p16Ink4a and the p19Arf-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse, Proceedings of the National Academy of Sciences, vol.103, issue.15, pp.5947-5952, 2006.
DOI : 10.1073/pnas.0601273103

H. Ijichi, A. Chytil, A. Gorska, M. Aakre, and Y. Fujitani, Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-beta signaling in cooperation with active Kras expression, Genes & Development, vol.20, issue.22, pp.3147-3160, 2006.
DOI : 10.1101/gad.1475506

A. Hezel, S. Gurumurthy, Z. Granot, A. Swisa, and G. Chu, Pancreatic Lkb1 Deletion Leads to Acinar Polarity Defects and Cystic Neoplasms, Molecular and Cellular Biology, vol.28, issue.7, pp.2414-2425, 2008.
DOI : 10.1128/MCB.01621-07

J. Siveke, H. Einwachter, B. Sipos, C. Lubeseder-martellato, and G. Kloppel, Concomitant Pancreatic Activation of KrasG12D and Tgfa Results in Cystic Papillary Neoplasms Reminiscent of Human IPMN, Cancer Cell, vol.12, issue.3, pp.266-279, 2007.
DOI : 10.1016/j.ccr.2007.08.002

D. La, O. Emerson, L. Goodman, J. Froebe, S. Illum et al., Notch and Kras reprogram pancreatic acinar cells to ductal intraepithelial neoplasia, Proc Natl Acad Sci, vol.105, pp.18907-18912, 2008.

O. Nolan-stevaux, J. Lau, M. Truitt, G. Chu, and M. Hebrok, GLI1 is regulated through Smoothened-independent mechanisms in neoplastic pancreatic ducts and mediates PDAC cell survival and transformation, Genes & Development, vol.23, issue.1, pp.24-36, 2009.
DOI : 10.1101/gad.1753809

G. Shi, L. Zhu, Y. Sun, R. Bettencourt, and B. Damsz, Loss of the Acinar-Restricted Transcription Factor Mist1 Accelerates Kras-Induced Pancreatic Intraepithelial Neoplasia, Gastroenterology, vol.136, issue.4, pp.1368-1378, 2009.
DOI : 10.1053/j.gastro.2008.12.066

S. Jones, X. Zhang, D. Parsons, J. Lin, and R. Leary, Core Signaling Pathways in Human Pancreatic Cancers Revealed by Global Genomic Analyses, Science, vol.321, issue.5897, pp.1801-1806, 2008.
DOI : 10.1126/science.1164368

N. Bardeesy, K. Cheng, J. Berger, G. Chu, and J. Pahler, Smad4 is dispensable for normal pancreas development yet critical in progression and tumor biology of pancreas cancer, Genes & Development, vol.20, issue.22, pp.3130-3146, 2006.
DOI : 10.1101/gad.1478706

K. Izeradjene, C. Combs, M. Best, A. Gopinathan, and A. Wagner, KrasG12D and Smad4/Dpc4 Haploinsufficiency Cooperate to Induce Mucinous Cystic Neoplasms and Invasive Adenocarcinoma of the Pancreas, Cancer Cell, vol.11, issue.3, pp.229-243, 2007.
DOI : 10.1016/j.ccr.2007.01.017

K. Kojima, S. Vickers, N. Adsay, N. Jhala, and H. Kim, Inactivation of Smad4 Accelerates KrasG12D-Mediated Pancreatic Neoplasia, Cancer Research, vol.67, issue.17, pp.8121-8130, 2007.
DOI : 10.1158/0008-5472.CAN-06-4167

C. Kuang, Y. Xiao, X. Liu, T. Stringfield, and S. Zhang, In vivo disruption of TGF-beta signaling by Smad7 leads to premalignant ductal lesions in the pancreas, Proceedings of the National Academy of Sciences, vol.103, issue.6, pp.1858-1863, 2006.
DOI : 10.1073/pnas.0508977103

S. Ross and C. Hill, How the Smads regulate transcription, The International Journal of Biochemistry & Cell Biology, vol.40, issue.3, pp.383-408, 2008.
DOI : 10.1016/j.biocel.2007.09.006

J. Massague and R. Gomis, The logic of TGF?? signaling, FEBS Letters, vol.103, issue.12, pp.2811-2820, 2006.
DOI : 10.1016/j.febslet.2006.04.033

L. Venturini, J. You, M. Stadler, R. Galien, and V. Lallemand, TIF1??, a novel member of the transcriptional intermediary factor 1 family, Oncogene, vol.18, issue.5, pp.1209-1217, 1999.
DOI : 10.1038/sj.onc.1202655

K. Yan, P. Dolle, M. Mark, T. Lerouge, and O. Wendling, Molecular cloning, genomic structure, and expression analysis of the mouse transcriptional intermediary factor 1 gamma gene, Gene, vol.334, pp.3-13, 2004.
DOI : 10.1016/j.gene.2004.02.056

S. Dupont, L. Zacchigna, M. Cordenonsi, S. Soligo, and M. Adorno, Germ-Layer Specification and Control of Cell Growth by Ectodermin, a Smad4 Ubiquitin Ligase, Cell, vol.121, issue.1, pp.87-99, 2005.
DOI : 10.1016/j.cell.2005.01.033

S. Dupont, A. Mamidi, M. Cordenonsi, M. Montagner, and L. Zacchigna, FAM/USP9x, a Deubiquitinating Enzyme Essential for TGF?? Signaling, Controls Smad4 Monoubiquitination, Cell, vol.136, issue.1, pp.123-135, 2009.
DOI : 10.1016/j.cell.2008.10.051

L. Levy, M. Howell, D. Das, S. Harkin, and V. Episkopou, Arkadia Activates Smad3/Smad4-Dependent Transcription by Triggering Signal-Induced SnoN Degradation, Molecular and Cellular Biology, vol.27, issue.17, pp.6068-6083, 2007.
DOI : 10.1128/MCB.00664-07

W. He, D. Dorn, H. Erdjument-bromage, P. Tempst, and M. Moore, Hematopoiesis Controlled by Distinct TIF1?? and Smad4 Branches of the TGF?? Pathway, Cell, vol.125, issue.5, pp.929-941, 2006.
DOI : 10.1016/j.cell.2006.03.045

J. Doisne, L. Bartholin, K. Yan, C. Garcia, and N. Duarte, iNKT cell development is orchestrated by different branches of TGF-?? signaling, The Journal of Experimental Medicine, vol.159, issue.6, pp.1365-1378, 2009.
DOI : 10.1038/sj.onc.1208928

URL : https://hal.archives-ouvertes.fr/inserm-00420389

G. Gu, J. Dubauskaite, and D. Melton, Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors, Development, vol.129, pp.2447-2457, 2002.

M. Jorgensen, J. Ahnfelt-ronne, J. Hald, O. Madsen, and P. Serup, An Illustrated Review of Early Pancreas Development in the Mouse, Endocrine Reviews, vol.28, issue.6, pp.685-705, 2007.
DOI : 10.1210/er.2007-0016

M. Erdogan, A. Pozzi, N. Bhowmick, H. Moses, and R. Zent, Transforming Growth Factor-?? (TGF-??) and TGF-??-Associated Kinase 1 Are Required for R-Ras-Mediated Transformation of Mammary Epithelial Cells, Cancer Research, vol.68, issue.15, pp.6224-6231, 2008.
DOI : 10.1158/0008-5472.CAN-08-0513

C. Heldin and A. Moustakas, A New Twist in Smad Signaling, Developmental Cell, vol.10, issue.6, pp.685-686, 2006.
DOI : 10.1016/j.devcel.2006.05.006

Y. Ng, J. Fan, W. Mu, D. Nikolic-paterson, and W. Yang, Glomerular epithelial-myofibroblast transdifferentiation in the evolution of glomerular crescent formation, Nephrology Dialysis Transplantation, vol.14, issue.12, pp.2860-2872, 1999.
DOI : 10.1093/ndt/14.12.2860

J. Sawyer, E. Thomas, J. Lukacs, C. Swanson, and Y. Ding, Recurring breakpoints of 1p13???p22 in osteochondroma, Cancer Genetics and Cytogenetics, vol.138, issue.2, pp.102-106, 2002.
DOI : 10.1016/S0165-4608(02)00598-8

M. Johansson, C. Dietrich, N. Mandahl, G. Hambraeus, and L. Johansson, Karyotypic characterization of bronchial large cell carcinomas, International Journal of Cancer, vol.15, issue.4, pp.463-467, 1994.
DOI : 10.1002/ijc.2910570404

S. Klugbauer and H. Rabes, The transcription coactivator HTIF1 and a related protein are fused to the RET receptor tyrosine kinase in childhood papillary thyroid carcinomas, Oncogene, vol.18, issue.30, pp.4388-4393, 1999.
DOI : 10.1038/sj.onc.1202824

K. Khetchoumian, M. Teletin, J. Tisserand, M. Mark, and B. Herquel, Loss of Trim24 (Tif1??) gene function confers oncogenic activity to retinoic acid receptor alpha, Nature Genetics, vol.9, issue.12, pp.1500-1506, 2007.
DOI : 10.1074/jbc.M404779200

URL : https://hal.archives-ouvertes.fr/hal-00206236

E. Jackson, N. Willis, K. Mercer, R. Bronson, and D. Crowley, Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras, Genes & Development, vol.15, issue.24, pp.3243-3248, 2001.
DOI : 10.1101/gad.943001

L. Johnson, K. Mercer, D. Greenbaum, R. Bronson, and D. Crowley, Somatic activation of the K-ras oncogene causes early onset lung cancer in mice.[see comment], Nature, vol.410, issue.6832, pp.1111-1116, 2001.
DOI : 10.1038/35074129

D. Tuveson, A. Shaw, N. Willis, D. Silver, and E. Jackson, Endogenous oncogenic K-rasG12D stimulates proliferation and widespread neoplastic and developmental defects, Cancer Cell, vol.5, issue.4, pp.375-387, 2004.
DOI : 10.1016/S1535-6108(04)00085-6

I. Treilleux, J. Blay, N. Bendriss-vermare, I. Ray-coquard, and T. Bachelot, Dendritic Cell Infiltration and Prognosis of Early Stage Breast Cancer, Clinical Cancer Research, vol.10, issue.22, pp.7466-7474, 2004.
DOI : 10.1158/1078-0432.CCR-04-0684

J. Albores-saavedra, M. Weimersheimer-sandoval, F. Chable-montero, D. Montante-montes-de-oca, and R. Hruban, The foamy variant of pancreatic intraepithelial neoplasia, Annals of Diagnostic Pathology, vol.12, issue.4, pp.252-259, 2008.
DOI : 10.1016/j.anndiagpath.2007.10.002

L. Bartholin, F. Cyprian, D. Vincent, C. Garcia, and S. Martel, Generation of mice with conditionally activated transforming growth factor beta signaling through the T??RI/ALK5 receptor, genesis, vol.370, issue.52, pp.724-731, 2008.
DOI : 10.1002/dvg.20425