P. Somasundaran, S. Chakraborty, Q. Qiang, P. Deo, J. Wang et al., Surfactants, polymers and their nanoparticles for personal care applications, J Cosmet Sci, vol.55, 2004.
DOI : 10.1111/j.1467-2494.2005.00257_2.x

S. Cross, B. Innes, M. Roberts, T. Tsuzuki, T. Robertson et al., Human Skin Penetration of Sunscreen Nanoparticles: In-vitro Assessment of a Novel Micronized Zinc Oxide Formulation, Skin Pharmacology and Physiology, vol.20, issue.3, pp.148-54, 2007.
DOI : 10.1159/000098701

W. Chen, J. Zhang, and A. Joly, Optical Properties and Potential Applications of Doped Semiconductor Nanoparticles, Journal of Nanoscience and Nanotechnology, vol.4, issue.8, pp.919-966, 2004.
DOI : 10.1166/jnn.2004.142

L. Nair and C. Laurencin, Nanofibers and Nanoparticles for Orthopaedic Surgery Applications, The Journal of Bone and Joint Surgery-American Volume, vol.90, issue.Suppl 1, pp.128-159, 2008.
DOI : 10.2106/JBJS.G.01520

Q. Le-masne-de-chermont, C. Chanéac, J. Seguin, F. Pellé, S. Maîtrejean et al., Nanoprobes with near-infrared persistent luminescence for in vivo imaging, Proceedings of the National Academy of Sciences, vol.104, issue.22, pp.9266-71, 2007.
DOI : 10.1073/pnas.0702427104

R. Service, NANOTOXICOLOGY: Nanotechnology Grows Up, Science, vol.304, issue.5678, pp.1732-1736, 2004.
DOI : 10.1126/science.304.5678.1732

M. Roco and W. Bainbridge, Societal implications of nanoscience and nanotechnology, NSET workshop report, National Science Foundation, vol.272, 2001.

M. Stanton, M. Laynard, A. Tegeris, E. Miller, M. May et al., Carcinogenicity of er 344 rats, J Toxicol Environ Health A, vol.65, pp.1047-60, 2002.

C. , J. G. Wang, M. Shi, J. Zhang, F. Zhao et al., fibrous glass: pleural response in the rat in relation to fiber dimension, J Natl Cancer Inst, vol.58, pp.587-603, 1977.

M. Watanabe, M. Okada, Y. Kudo, Y. Tonori, M. Niitsuya et al., Differences in the effects of fibrous and particulate titanium dioxide on alveolar macrophages of Fisch

G. Oberdörster, J. Ferin, R. Gelein, S. Soderholm, and J. Finkelstein, Role of the alveolar macrophage in lung injury: studies with ultrafine particles, Environmental Health Perspectives, vol.97, pp.193-202, 1992.
DOI : 10.1289/ehp.9297193

D. Hohr, Y. Steinfartz, and R. Schins, The surface area rather than the surface coating determines the acute inflammatory response after instillation of fine and ultrafine TiO2 in the rat, International Journal of Hygiene and Environmental Health, vol.205, issue.3, pp.239-283, 2002.
DOI : 10.1078/1438-4639-00123

K. Donaldson, V. Stone, A. Clouter, L. Renwick, and W. Macnee, Ultrafine particles, Occupational and Environmental Medicine, vol.58, issue.3, pp.211-217, 2001.
DOI : 10.1136/oem.58.3.211

S. Park, H. Nam, N. Chung, J. Park, and Y. Lim, The role of iron in reactive oxygen species generation from diesel exhaust particles, Toxicology in Vitro, vol.20, issue.6, pp.851-858, 2006.
DOI : 10.1016/j.tiv.2005.12.004

M. Aubier and S. Lanone, Biological effects of particles from the paris subway system, Chem Res Toxicol, vol.20, pp.1426-1459, 2007.

B. Ball, K. Smith, J. Veranth, and A. Aust, BIOAVAILABILITY OF IRON FROM COAL FLY ASH: Mechanisms of Mobilization and of Biological Effects, Inhalation Toxicology, vol.70, issue.6, pp.209-234, 2000.
DOI : 10.1042/bj2250259

A. Shvedova, V. Castranova, E. Kisin, D. Schwegler-berry, A. Murray et al., Exposure to Carbon Nanotube Material: Assessment of Nanotube Cytotoxicity using Human Keratinocyte Cells, Journal of Toxicology and Environmental Health, Part A, vol.9, issue.20
DOI : 10.1111/j.1574-6976.1993.tb00026.x

A. Patnaik, Structure and Dynamics in Self-Organized C<SUB>60</SUB> Fullerenes, Journal of Nanoscience and Nanotechnology, vol.7, issue.4, pp.1111-50, 2007.
DOI : 10.1166/jnn.2007.303

B. Wang, W. Feng, and T. Wang, Acute toxicity of nano- and micro-scale zinc powder in healthy adult mice, Toxicology Letters, vol.161, issue.2, pp.115-138, 2006.
DOI : 10.1016/j.toxlet.2005.08.007

M. Kendall, L. Brown, and K. Trought, Molecular Adsorption at Particle Surfaces: A PM Toxicity Mediation Mechanism, Inhalation Toxicology, vol.110, issue.2, pp.99-105, 2004.
DOI : 10.1080/08958370490443187

A. Derfus, W. Chan, S. Bhatia, T. Kato, T. Yashiro et al., Probing the Cytotoxicity of Semiconductor 5, Sugiyama issue Res, vol.311, pp.47-51, 2003.

K. Heckel, R. Kiefmann, M. Dorger, M. Stoeckelhuber, and A. Goetz, Colloidal gold particles as a new in vivo marker of early acute lung injury, AJP: Lung Cellular and Molecular Physiology, vol.287, issue.4, pp.867-78, 2004.
DOI : 10.1152/ajplung.00078.2004

C. Daigle, D. Chalupa, F. Gibb, P. Morrow, G. Oberdörster et al., Ultrafine Particle Deposition in Humans During Rest and Exercise, Inhalation Toxicology, vol.15, issue.6, pp.539-52, 2003.
DOI : 10.1080/08958370304468

L. Jennen, A. Walch, B. Michalke, P. Schramel, J. Heyder et al., Distribution pattern of inhaled ultrafine gold particles in the rat lung, Inhal Toxicol, vol.18, pp.733-773, 2006.

J. Brown, K. Zeman, and W. Bennett, Ultrafine Particle Deposition and Clearance in the Healthy and Obstructed Lung, American Journal of Respiratory and Critical Care Medicine, vol.166, issue.9, pp.1240-1247, 2002.
DOI : 10.1164/rccm.200205-399OC

G. Oberdörster, Inhaled Nano-sized Particles: Potential effects and Mech 4

G. Buxton, Ed Health nd Safety Executive-National Institute for Occupational Safety and He a, Report of the First International Symposium on Occupational Health Implications of Nanomaterials, pp.35-46, 2004.

O. Witschger and J. Fabries, Particules ultrafines et santé au travail: Caractéristiques et effets potentiels sur la santé. Hygiène et sécurité du travail. Cahiers de notes documentaires, INRS, vol.199, pp.21-35, 2005.

O. Witschger and J. Fabries, Particules ultrafines et santé au travail: Sources et caractérisation de l'exposition. Hygiène et sécurité du travail. Cahiers de notes documentaires, INRS, vol.199, pp.37-54, 2005.

A. Pietropaoli, M. Frampton, R. Hyde, P. Morrow, G. Oberdörster et al., Pulmonary function, diffusing capacity, and inflammation in healthy and asthmatic subjects exposed to ultrafine particles. Inhal To 45 Comparative measurement of lung deposition of inhaled fine particles in normal subjects and patients with obstructive airway disease, Am J Respir Crit Care Med, vol.155, pp.899-905, 1997.

W. Kreyling, M. Semmler, F. Erbe, P. Mayer, S. Takenaka et al., Polyethylene particles of 'critical size' are necessary for the induction of cytokins by macrophages in vitro

R. Gelein, A. Lunts, W. Kreyling, and C. Cox, nhaled nanoparticles, potential led nanoparticles from the alveolar region: A

A. Ziesenis, Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low, J Toxicol Environ Health, vol.65, pp.1513-1543, 2002.

Y. Tabata and Y. Ikada, Effect of the size and surface charge of polymer microspheres on their phagocytosis by macrophage, Biomaterials, vol.9, issue.4, pp.356-62, 1988.
DOI : 10.1016/0142-9612(88)90033-6

T. Green, Polyethylene particles of a 'critical size' are necessary for the induction of cytokines by macrophages in vitro, Biomaterials, vol.19, issue.24, pp.2297-302, 1998.
DOI : 10.1016/S0142-9612(98)00140-9

P. Borm and W. Kreyling, Toxicological Hazards of Inhaled Nanoparticles???Potential Implications for Drug Delivery, Journal of Nanoscience and Nanotechnology, vol.4, issue.5, pp.521-552, 2004.
DOI : 10.1166/jnn.2004.081

M. Semmler-behnke, S. Takenaka, S. Fertsch, A. Wenk, J. Seitz et al., Efficient Elimination of Inhaled Nanoparticles from the Alveolar Region: Evidence for Interstitial Uptake and Subsequent Reentrainment onto Airways Epithelium, Environmental Health Perspectives, vol.115, issue.5, pp.728-761, 2007.
DOI : 10.1289/ehp.9685

W. Möller, K. Felten, K. Sommerer, G. Scheuch, G. Meyer et al., Deposition, Retention, and Translocation of Ultrafine Particles from the Central Airways and Lung Periphery, American Journal of Respiratory and Critical Care Medicine, vol.177, issue.4, pp.426-458, 2008.
DOI : 10.1164/rccm.200602-301OC

C. Johnston, J. Finkelstein, R. Gelein, R. Baggs, and G. Oberdörster, Characterization of the Early Pulmonary Inflammatory Response Associated with PTFE Fume Exposure, Toxicology and Applied Pharmacology, vol.140, issue.1, pp.154-63, 1996.
DOI : 10.1006/taap.1996.0208

L. Zhu, D. Chang, L. Dai, and Y. Hong, DNA Damage Induced by Multiwalled Carbon Nanotubes in Mouse Embryonic Stem Cells, Nano Letters, vol.7, issue.12, pp.3592-3599, 2007.
DOI : 10.1021/nl071303v

C. Lam, J. James, R. Mccluskey, and R. Hunter, Pulmonary toxicity of single-wall carbon icity assessment of single-wall carbon nanotubes in rats

. Es, n nanotubes tranova V, Kagan VE. l application of multi-wall rbon nanotube, Environ Health Perspect J Toxicol Sci, vol.115, issue.33, pp.377-82, 2007.

R. Schins and A. Knaapen, Genotoxicity of Poorly Soluble Particles, Inhalation Toxicology, vol.393, issue.9, pp.189-98, 2007.
DOI : 10.1042/bj3130017

R. Mercer, J. Scabilloni, L. Wang, E. Kisin, A. Murray et al., Alteration of deposition pattern and pulmonary response as a result of improved dispersion of aspirated single-walled carbon nanotubes in a mouse model, American Journal of Physiology - Lung Cellular and Molecular Physiology, vol.294, issue.1, pp.87-97, 2008.
DOI : 10.1152/ajplung.00186.2007

L. Mitchell, J. Gao, R. Wal, A. Gigliotti, S. Burchiel et al., Pulmonary and ystemic immune response to i s 100, pp.203-217

J. Li, W. Li, J. Xu, X. Cai, R. Liu et al., Comparative study of pathological lesions induced by multiwalled carbon nanotubes in lungs of mice by tratracheal instillation and inhalation, Environ Toxicol

Z. Li, T. Hulderman, R. Salmen, R. Chapman, S. Leonard et al., Cardiovascular effects of pulmonary exposure to single

A. Shvedova, E. Kisin, A. Murray, O. Gorelik, S. Arepalli et al., Vitamin E deficiency enhances pulmonary inflammatory response and oxidative stress induced by single-walled carbon nanotubes in C57BL/6 mice, Toxicology and Applied Pharmacology, vol.221, issue.3, pp.339-387, 2007.
DOI : 10.1016/j.taap.2007.03.018

A. Shvedova, J. Fabisiak, E. Kisin, A. Murray, J. Roberts et al., Sequential Exposure to Carbon Nanotubes and Bacteria Enhances Pulmonary Inflammation and Infectivity, American Journal of Respiratory Cell and Molecular Biology, vol.38, issue.5, pp.579-90, 2008.
DOI : 10.1165/rcmb.2007-0255OC

A. Takagi, A. Hirose, T. Nishimura, N. Fukumori, A. Ogata et al., Induction of mesothelioma in p53+

C. Poland, R. Duffin, I. Kinloch, A. Maynard, W. Wallace et al., Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study, Nature Nanotechnology, vol.67, issue.7, pp.423-90, 2007.
DOI : 10.1038/nnano.2008.111

D. Warheit, T. Webb, K. Reed, S. Frerichs, and C. Sayes, Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 particles

V. Grassian, O. Shaughnessy, P. T. Adamcakova-dodd, A. Pettibone, J. Thorne et al., Inhalation Exposure Study of Titanium Dioxide Nanoparticles with a Primary Particle Size of 2 to 5 nm, Environmental Health Perspectives, vol.115, issue.3
DOI : 10.1289/ehp.9469

D. Haar, C. Hassing, I. Bol, M. Bleumink, R. Pieters et al., Ultrafine but not fine particulate matter causes airway inflammation and allergic airway sensitization to co-administered antigen in mice, Clinical & Experimental Allergy, vol.167, issue.1, pp.1469-79, 2006.
DOI : 10.1002/jemt.1092

H. Chen, S. Su, C. Chien, W. Lin, S. Yu et al., Titanium dioxide nanoparticles induce emphysema-like lung injury in mice, The FASEB Journal, vol.20, issue.13, pp.2393-2398, 2006.
DOI : 10.1096/fj.06-6485fje

A. Nemmar, K. Melghit, and B. Ali, The Acute Proinflammatory and Prothrombotic Effects of Pulmonary Exposure to Rutile TiO2 Nanorods in Rats, Experimental Biology and Medicine, vol.233, issue.5, pp.610-619, 2008.
DOI : 10.3181/0706-RM-165