A hybrid system using symbolic and numeric knowledge for the semantic annotation of sulco-gyral anatomy in brain MRI images. - Archive ouverte HAL Access content directly
Journal Articles IEEE Transactions on Medical Imaging Year : 2009

A hybrid system using symbolic and numeric knowledge for the semantic annotation of sulco-gyral anatomy in brain MRI images.

(1) , (1, 2) , (3) , (1)
1
2
3

Abstract

This paper describes an interactive system for the semantic annotation of brain magnetic resonance images. The system uses both a numerical atlas and symbolic knowledge of brain anatomical structures depicted using the Semantic Web standards. This knowledge is combined with graphical data, automatically extracted from the images by imaging tools. The annotations of parts of gyri and sulci, in a region of interest, rely on constraint satisfaction problem solving and description logics inferences. The system is run on a client-server architecture, using Web services and including a sophisticated visualization tool. An evaluation of the system was done using normal (healthy) and pathological cases. The results obtained so far demonstrate that the system produces annotations with high precision and quality.
Fichier principal
Vignette du fichier
TMI_ammar-mechouche.pdf (851.13 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

inserm-00411401 , version 1 (27-08-2009)

Identifiers

Cite

Ammar Mechouche, Xavier Morandi, Christine Golbreich, Bernard Gibaud. A hybrid system using symbolic and numeric knowledge for the semantic annotation of sulco-gyral anatomy in brain MRI images.. IEEE Transactions on Medical Imaging, 2009, 28 (8), pp.1165-78. ⟨10.1109/TMI.2009.2026746⟩. ⟨inserm-00411401⟩
286 View
563 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More