A. Halestrap and N. Price, The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation, Biochemical Journal, vol.343, issue.2, pp.281-99, 1999.
DOI : 10.1042/bj3430281

C. Juel and A. Halestrap, Lactate transport in skeletal muscle - role and regulation of the monocarboxylate transporter, The Journal of Physiology, vol.67, issue.suppl. 1, pp.633-675, 1999.
DOI : 10.1111/j.1469-7793.1999.0633s.x

A. Bonen, Lactate transporters (MCT proteins) in heart and skeletal muscles, Medicine & Science in Sports & Exercise, vol.32, issue.4, pp.778-89, 2000.
DOI : 10.1097/00005768-200004000-00010

S. Baker, K. Mccullagh, and A. Bonen, Training intensity dependent and tissue specific increases in lactate uptake and MCT1 in heart and muscle, J Appl Physiol, vol.84, pp.987-94, 1998.

K. Mccullagh, R. Poole, and A. Halestrap, Role of the lactate transporter (MCT1) in skeletal muscles, Am J Physiol, vol.271, pp.143-50, 1996.

N. Eydoux, G. Py, and K. Lambert, Training does not protect against exhaustive exercise-induced lactate transport capacity alterations, Am J Physiol, vol.278, pp.1045-52, 2000.

A. Bonen, The expression of lactate transporters (MCT1 and MCT4) in heart and muscle, European Journal of Applied Physiology, vol.86, issue.1, pp.6-11, 2000.
DOI : 10.1007/s004210100516

G. Van-hall, Lactate as a fuel for mitochondrial respiration, Acta Physiologica Scandinavica, vol.254, issue.4, pp.643-56, 2000.
DOI : 10.1016/0955-2863(93)90055-2

G. Brooks, The lactate shuttle during exercise and recovery, Medicine & Science in Sports & Exercise, vol.18, issue.3, pp.360-368, 1986.
DOI : 10.1249/00005768-198606000-00019

G. Brooks, E. Wolfel, and B. Groves, Muscle accounts for glucose disposal but not blood lactate appearance during exercise after acclimation to 4,300 m, J Appl Physiol, vol.72, pp.2435-2480, 1992.

B. Grassi, G. Ferretti, and B. Kayser, Maximal rate of blood lactate accumulation during exercise at altitude in humans, J Appl Physiol, vol.79, pp.331-340, 1995.

H. Green, J. Sutton, and P. Young, Operation Everest II: muscle energetics during maximal exhaustive exercise, J Appl Physiol, vol.66, pp.142-50, 1989.

G. Brooks, Increased glucose dependency in circulatory compensated hypoxia, Hypoxia and mountain medicine. Burlington (Vt)7 Queen City, pp.213-239, 1992.

G. Mcclelland and G. Brooks, Changes in MCT 1, MCT 4, and LDH expression are tissue specific in rats after long-term hypobaric hypoxia, Journal of Applied Physiology, vol.92, issue.4, pp.1573-84, 2002.
DOI : 10.1152/japplphysiol.01069.2001

A. Bigard, P. Douce, and D. Merino, Changes in dietary protein intake fail to prevent decrease in muscle growth induced by severe hypoxia in rats, J Appl Physiol, vol.80, pp.208-223, 1996.

Z. Daneshrad, V. Novel-chate, and O. Birot, Diet restriction plays an important role in the alterations of heart mitochondrial function following exposure of young rats to chronic hypoxia, Pfl??gers Archiv, vol.442, issue.1, pp.12-20, 2001.
DOI : 10.1007/s004240000461

M. Pissarek, A. Bigard, and P. Mateo, Adaptation of cardiac myosin and creatine kinase to chronic hypoxia. Contribution of anorexia and hypertension, Am J Physiol, vol.272, pp.1690-1695, 1997.

D. Bissonnette and K. Jeejeebhoy, Feeding a low energy diet and refeeding a control diet affect glycolysis differently in the slowand fast-twitch muscles of adult male Wistar rats, J Nutr, vol.128, pp.1723-1753, 1998.

T. Wetter, A. Gazdag, and D. Dean, Effect of calorie restriction on in vivo glucose metabolism by individual tissues in rats, Am J Physiol, vol.276, pp.728-766, 1999.

K. Lambert, G. Py, and N. Eydoux, Effect of food restriction on lactate sarcolemmal transport, Metabolism, vol.52, issue.3, pp.322-329, 2003.
DOI : 10.1053/meta.2003.50050

D. Heath, C. Edwards, and M. Winson, Effects on the right ventricle, pulmonary vasculature, and carotid bodies of the rat of exposure to, and recovery from, simulated high altitude, Thorax, vol.28, issue.1, pp.24-32, 1973.
DOI : 10.1136/thx.28.1.24

M. Pietschmann and H. Bartels, Cellular hyperplasia and hypertrophy, capillary proliferation and myoglobin concentration in the heart of newborn and adult rats at high altitude, Respiration Physiology, vol.59, issue.3, pp.347-60, 1995.
DOI : 10.1016/0034-5687(85)90138-0

B. Sobel, P. Henry, and B. Ehrlich, Altered myocardial lactate dehydrogenase isoenzymes in experimental cardiac hypertrophy, Lab Invest, vol.22, pp.23-30, 1970.

Z. Daneshrad, M. Verdys, and O. Birot, Chronic Hypoxia Delays Myocardial Lactate Dehydrogenase Maturation in Young Rats, Experimental Physiology, vol.88, issue.3, pp.405-418, 2003.
DOI : 10.1113/eph8802451

W. Rumsey, B. Abbott, and D. Bertelsen, Adaptation to hypoxia alters energy metabolism in rat heart, Am J Physiol, vol.276, pp.71-80, 1999.

J. Work, D. Penney, and T. Weeks, Lactate dehydrogenase changes following several cardiac hypertrophic stresses, J Appl Physiol, vol.40, pp.923-929, 1976.

V. Jackson, N. Price, and A. Halestrap, cDNA cloning of MCT1, a monocarboxylate transporter from rat skeletal muscle, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1238, issue.2, pp.193-199, 1995.
DOI : 10.1016/0005-2736(95)00160-5

N. Price, V. Jackson, and A. Halestrap, Cloning and sequencing of four new mammalian monocarboxylate transporter (MCT) homologues confirms the existence of a transporter family with an ancient past, Biochemical Journal, vol.329, issue.2, pp.321-329, 1998.
DOI : 10.1042/bj3290321

K. Livak and T. Schmittgen, Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2???????CT Method, Methods, vol.25, issue.4, pp.402-410, 2001.
DOI : 10.1006/meth.2001.1262

A. Giulietti, L. Overbergh, and D. Valckx, An Overview of Real-Time Quantitative PCR: Applications to Quantify Cytokine Gene Expression, Methods, vol.25, issue.4, pp.386-401, 2001.
DOI : 10.1006/meth.2001.1261

H. Dubouchaud, N. Eydoux, and P. Granier, Lactate transport activity in rat skeletal muscle sarcolemmal vesicles after acute exhaustive exercise, J Appl Physiol, vol.87, pp.955-61, 1999.

G. Py, K. Lambert, and A. Perez-martin, Impaired sarcolemmal vesicle lactate uptake and skeletal muscle MCT1 and MCT4 expression in obese Zucker rats, Am J Physiol, vol.281, pp.1308-1323, 2001.

M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, vol.72, issue.1-2, pp.248-54, 1976.
DOI : 10.1016/0003-2697(76)90527-3

D. Roth and G. Brooks, Lactate transport is mediated by a membrane-bound carrier in rat skeletal muscle sarcolemmal vesicles, Archives of Biochemistry and Biophysics, vol.279, issue.2, pp.377-85, 1990.
DOI : 10.1016/0003-9861(90)90505-S

A. Bonen, M. Tonouchi, and D. Miskovic, Isoform-specific regulation of the lactate transporters MCT1 and MCT4 by contractile activity

R. Leino, D. Gerhart, and L. Drewes, Monocarboxylate transporter (MCT1) abundance in brains of suckling and adult rats: a quantitative electron microscopic immunogold study, Developmental Brain Research, vol.113, issue.1-2, pp.47-54, 1999.
DOI : 10.1016/S0165-3806(98)00188-6

A. Bonen, D. Miskovic, and M. Tonouchi, Abundance and subcellular distribution of MCT1 and MCT4 in heart and fast-twitch skeletal muscles, Am J Physiol, vol.278, pp.1067-77, 2000.

Y. Wang, M. Tonouchi, and D. Miskovic, T3 increases lactate transport and the expression of MCT4, but not MCT1

S. Broer, H. Schneider, and A. Broer, Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH, Biochemical Journal, vol.333, issue.1, pp.167-74, 1998.
DOI : 10.1042/bj3330167

M. Tonouchi, H. Hatta, and A. Bonen, Muscle contraction increases lactate transport while reducing sarcolemmal MCT4, but not MCT1, American Journal of Physiology - Endocrinology And Metabolism, vol.282, issue.5, pp.1062-1071, 2002.
DOI : 10.1152/ajpendo.00358.2001

H. Becker, S. Brfer, and J. Deitmer, Facilitated Lactate Transport by MCT1 when Coexpressed with the Sodium Bicarbonate Cotransporter (NBC) in Xenopus Oocytes, Biophysical Journal, vol.86, issue.1, pp.235-282, 2004.
DOI : 10.1016/S0006-3495(04)74099-0

H. Hatta, M. Tonouchi, and D. Miskovic, Tissue-specific and isoformspecific changes in MCT1 and MCT4 in heart and soleus muscle during 1-yr period, Am J Physiol, vol.281, pp.749-56, 2001.

S. Sharma, H. Taegtmeyer, and J. Adrogue, Dynamic changes of gene expression in hypoxia-induced right ventricular hypertrophy, Am J Physiol, vol.286, pp.1185-92, 2004.

G. Semenza, B. Jiang, and S. Leung, Hypoxia Response Elements in the Aldolase A, Enolase 1, and Lactate Dehydrogenase A Gene Promoters Contain Essential Binding Sites for Hypoxia-inducible Factor 1, Journal of Biological Chemistry, vol.271, issue.51, pp.32529-32566, 1996.
DOI : 10.1074/jbc.271.51.32529