F. Delom and E. Chevet, Phosphoprotein analysis: from proteins to proteomes, Proteome Science, vol.4, issue.1, p.15, 2006.
DOI : 10.1186/1477-5956-4-15

M. P. Myers, I. Pass, I. H. Batty, J. Van-der-kaay, J. P. Stolarov et al., The lipid phosphatase activity of PTEN is critical for its tumor supressor function, Proceedings of the National Academy of Sciences, vol.95, issue.23, pp.13513-13518, 1998.
DOI : 10.1073/pnas.95.23.13513

M. Cully, H. You, A. J. Levine, and T. W. Mak, Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis, Nature Reviews Cancer, vol.65, issue.3, pp.184-192, 2006.
DOI : 10.1038/nrc1819

R. W. Freeburn, K. L. Wright, S. J. Burgess, E. Astoul, D. A. Cantrell et al., Evidence That SHIP-1 Contributes to Phosphatidylinositol 3,4,5-Trisphosphate Metabolism in T Lymphocytes and Can Regulate Novel Phosphoinositide 3-Kinase Effectors, The Journal of Immunology, vol.169, issue.10, pp.5441-5450, 2002.
DOI : 10.4049/jimmunol.169.10.5441

M. Pallis, C. Seedhouse, M. Grundy, and N. Russell, Flow cytometric measurement of phosphorylated STAT5 in AML: lack of specific association with FLT3 internal tandem duplications, Leukemia Research, vol.27, issue.9, pp.803-805, 2003.
DOI : 10.1016/S0145-2126(03)00012-2

Y. P. Lim, Mining the Tumor Phosphoproteome for Cancer Markers, Clinical Cancer Research, vol.11, issue.9, pp.3163-3169, 2005.
DOI : 10.1158/1078-0432.CCR-04-2243

G. Huyer, S. Liu, J. Kelly, J. Moffat, P. Payette et al., Mechanism of Inhibition of Protein-tyrosine Phosphatases by Vanadate and Pervanadate, Journal of Biological Chemistry, vol.272, issue.2, pp.843-851, 1997.
DOI : 10.1074/jbc.272.2.843

M. P. Wymann, G. Bulgarelli-leva, M. J. Zvelebil, L. Pirola, B. Vanhaesebroeck et al., Wortmannin inactivates phosphoinositide 3-kinase by covalent modification of Lys-802, a residue involved in the phosphate transfer reaction., Molecular and Cellular Biology, vol.16, issue.4, pp.1722-1733, 1996.
DOI : 10.1128/MCB.16.4.1722

T. Harder and M. Kuhn, Immunoisolation of TCR Signaling Complexes from Jurkat T Leukemic Cells, Science Signaling, vol.2001, issue.71, p.1, 2001.
DOI : 10.1126/stke.2001.71.pl1

S. Yoon and R. Seger, The extracellular signal-regulated kinase: Multiple substrates regulate diverse cellular functions, Growth Factors, vol.276, issue.2, pp.21-44, 2006.
DOI : 10.1074/jbc.M909934199

P. O. Krutzik, J. M. Irish, G. P. Nolan, and O. D. Perez, Analysis of protein phosphorylation and cellular signaling events by flow cytometry: techniques and clinical applications, Clinical Immunology, vol.110, issue.3, pp.206-221, 2004.
DOI : 10.1016/j.clim.2003.11.009

A. Pandey, J. S. Andersen, and M. Mann, Use of Mass Spectrometry to Study Signaling Pathways, Science Signaling, vol.2000, issue.37, p.1, 2000.
DOI : 10.1126/stke.2000.37.pl1

H. Steen, A. Pandey, J. S. Andersen, and M. Mann, Analysis of Tyrosine Phosphorylation Sites in Signaling Molecules by a Phosphotyrosine-Specific Immonium Ion Scanning Method, Science Signaling, vol.2002, issue.154, p.16, 2002.
DOI : 10.1126/stke.2002.154.pl16

M. O. Collins, L. Yu, H. Husi, W. P. Blackstock, J. S. Choudhary et al., Robust Enrichment of Phosphorylated Species in Complex Mixtures by Sequential Protein and Peptide Metal-Affinity Chromatography and Analysis by Tandem Mass Spectrometry, Science Signaling, vol.2005, issue.298, p.6, 2005.
DOI : 10.1126/stke.2982005pl6

N. R. Gough, Detecting Signaling in Single Cells, Science Signaling, vol.1, issue.47, p.406, 2008.
DOI : 10.1126/scisignal.147ec406

R. Cheong, C. J. Wang, and A. Levchenko, Using a Microfluidic Device for High-Content Analysis of Cell Signaling, Science Signaling, vol.2, issue.75, p.2, 2009.
DOI : 10.1126/scisignal.275pl2

R. Varro, R. Chen, H. Sepulveda, and J. Apgar, Bead-Based Multianalyte Flow Immunoassays, Methods Mol Biol, vol.378, pp.125-152, 2007.
DOI : 10.1007/978-1-59745-323-3_9

P. O. Krutzik, J. M. Crane, M. R. Clutter, and G. P. Nolan, High-content single-cell drug screening with phosphospecific flow cytometry, Nature Chemical Biology, vol.78, issue.2, pp.132-142, 2008.
DOI : 10.1002/cyto.a.20003

P. R. Cutillas, A. Khwaja, M. Graupera, W. Pearce, S. Gharbi et al., Ultrasensitive and absolute quantification of the phosphoinositide 3-kinase/Akt signal transduction pathway by mass spectrometry, Proceedings of the National Academy of Sciences, vol.103, issue.24, pp.8959-8964, 2006.
DOI : 10.1073/pnas.0602101103

S. A. Johnson and T. Hunter, Kinomics: methods for deciphering the kinome, Nature Methods, vol.401, issue.1, pp.17-25, 2005.
DOI : 10.1042/BJ20031692

J. M. Irish, R. Hovland, P. O. Krutzik, O. D. Perez, O. Bruserud et al., Single Cell Profiling of Potentiated Phospho-Protein Networks in Cancer Cells, Cell, vol.118, issue.2, pp.217-228, 2004.
DOI : 10.1016/j.cell.2004.06.028

P. L. Dahia, R. C. Aguiar, J. Alberta, J. B. Kum, S. Caron et al., PTEN is inversely correlated with the cell survival factor Akt/PKB and is inactivated via multiple mechanismsin haematological malignancies, Human Molecular Genetics, vol.8, issue.2, pp.185-193, 1999.
DOI : 10.1093/hmg/8.2.185

R. C. Hui, A. R. Gomes, D. Constantinidou, J. R. Costa, C. T. Karadedou et al., The Forkhead Transcription Factor FOXO3a Increases Phosphoinositide-3 Kinase/Akt Activity in Drug-Resistant Leukemic Cells through Induction of PIK3CA Expression, Molecular and Cellular Biology, vol.28, issue.19, pp.5886-5898, 2008.
DOI : 10.1128/MCB.01265-07

A. Hamilton, L. Elrick, S. Myssina, M. Copland, H. Jorgensen et al., BCR-ABL activity and its response to drugs can be determined in CD34+ CML stem cells by CrkL phosphorylation status using flow cytometry, Leukemia, vol.82, issue.6, pp.1035-1039, 2006.
DOI : 10.1038/sj.leu.2404189

M. M. Hammer, N. Kotecha, J. M. Irish, G. P. Nolan, and P. O. Krutzik, WebFlow: A Software Package for High-Throughput Analysis of Flow Cytometry Data, ASSAY and Drug Development Technologies, vol.7, issue.1, 2009.
DOI : 10.1089/adt.2008.174