M. J. Berridge, P. Lipp, and M. D. Bootman, The versatility and universality of calcium signalling, Nature Reviews Molecular Cell Biology, vol.1, issue.1, pp.11-21, 2000.
DOI : 10.1038/35036035

M. J. Berridge, M. D. Bootman, and H. L. Roderick, Calcium: Calcium signalling: dynamics, homeostasis and remodelling, Nature Reviews Molecular Cell Biology, vol.4, issue.7, pp.517-529, 2003.
DOI : 10.1038/nrm1155

M. D. Bootman, M. J. Berridge, and H. L. Roderick, Calcium Signalling: More Messengers, More Channels, More Complexity, Current Biology, vol.12, issue.16, pp.563-565, 2002.
DOI : 10.1016/S0960-9822(02)01055-2

S. Thebault, M. Roudbaraki, V. Sydorenko, Y. Shuba, L. Lemonnier et al., Alpha1-adrenergic receptors activate Ca(2+)-permeable cationic channels in prostate cancer epithelial cells, J. Clin. Invest, pp.111-1691, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00139765

K. Vanoverberghe, F. Vanden-abeele, P. Mariot, G. Lepage, M. Roudbaraki et al., Ca2+ homeostasis and apoptotic resistance of neuroendocrine-differentiated prostate cancer cells, Cell Death and Differentiation, vol.11, issue.3, pp.321-330, 2004.
DOI : 10.1038/sj.cdd.4401375

L. Zhang and G. J. Barritt, TRPM8 in prostate cancer cells: a potential diagnostic and prognostic marker with a secretory function?, Endocrine Related Cancer, vol.13, issue.1, pp.27-38, 2006.
DOI : 10.1677/erc.1.01093

T. Fixemer, U. Wissenbach, V. Flockerzi, and H. Bonkhoff, Expression of the Ca2+-selective cation channel TRPV6 in human prostate cancer: a novel prognostic marker for tumor progression, Oncogene, vol.22, issue.49, pp.7858-7861, 2003.
DOI : 10.1038/sj.onc.1206895

U. Wissenbach, B. Niemeyer, N. Himmerkus, T. Fixemer, H. Bonkhoff et al., TRPV6 and prostate cancer: cancer growth beyond the prostate correlates with increased TRPV6 Ca2+ channel expression, Biochemical and Biophysical Research Communications, vol.322, issue.4, pp.322-1359, 2004.
DOI : 10.1016/j.bbrc.2004.08.042

U. Wissenbach, B. A. Niemeyer, T. Fixemer, A. Schneidewind, C. Trost et al., Expression of CaT-like, a novel calciumselective channel, correlates with the malignancy of prostate cancer, J. Biol. Chem, pp.276-19461, 2001.

M. Bodding and V. Flockerzi, Ca2+ Dependence of the Ca2+-selective TRPV6 Channel, Journal of Biological Chemistry, vol.279, issue.35, pp.36546-36552, 2004.
DOI : 10.1074/jbc.M404679200

R. Schindl, H. Kahr, I. Graz, K. Groschner, and C. Romanin, Store depletion-activated CaT1 currents in rat basophilic leukemia mast cells are inhibited by 2- aminoethoxydiphenyl borate. Evidence for a regulatory component that controls activation of both CaT1 and CRAC (Ca(2+) release-activated Ca(2+) channel) channels, J. Biol. Chem, pp.277-26950, 2002.
DOI : 10.1074/jbc.m203700200

F. Vanden-abeele, L. Lemonnier, S. Thebault, G. Lepage, J. B. Parys et al., Two types of store-operated Ca2+ channels with different activation modes and molecular origin in LNCaP human prostate cancer epithelial cells, J. Biol. Chem, pp.279-30326, 2004.
URL : https://hal.archives-ouvertes.fr/inserm-00139796

V. Lehen-'kyi, M. Flourakis, R. Skryma, and N. Prevarskaya, TRPV6 channel controls prostate cancer cell proliferation via Ca2+/NFAT-dependent pathways, Oncogene, vol.19, issue.52, pp.7380-7385, 2007.
DOI : 10.1038/sj.onc.1210545

URL : https://hal.archives-ouvertes.fr/inserm-00139720

L. Tsavaler, M. H. Shapero, S. Morkowski, and R. Laus, Trp-p8, a novel prostate-specic gene, is up-regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins, Cancer Res, pp.61-3760, 2001.

. Fig, Scheme summarizing the changes in Ca 2+ homeostasis in epithelial cells of late prostate cancer stages. The main features of late stage prostate cancer are (i) an increase in cell proliferation which could be due to TRPV6 expression enhancement and (ii) a decrease in the apoptosis rate due to the decrease in the SOC entry (probably via Orai1 activation)

D. D. Mckemy, W. M. Neuhausser, and D. Julius, Identification of a cold receptor reveals a general role for TRP channels in thermosensation, Nature, vol.371, issue.6876, pp.52-58, 2002.
DOI : 10.1038/nature719

S. Thebault, L. Lemonnier, G. Bidaux, M. Flourakis, A. Bavencoffe et al., Novel Role of Cold/Menthol-sensitive Transient Receptor Potential Melastatine Family Member 8 (TRPM8) in the Activation of Store-operated Channels in LNCaP Human Prostate Cancer Epithelial Cells, Journal of Biological Chemistry, vol.280, issue.47, pp.39423-39435, 2005.
DOI : 10.1074/jbc.M503544200

URL : https://hal.archives-ouvertes.fr/inserm-00137715

G. Bidaux, M. Flourakis, S. Thebault, A. Zholos, B. Beck et al., Prostate cell differentiation status determines transient receptor potential melastatin member 8 channel subcellular localization and function, Journal of Clinical Investigation, vol.117, issue.6, pp.1647-1657, 2007.
DOI : 10.1172/JCI30168DS1

URL : https://hal.archives-ouvertes.fr/inserm-00137718

R. Capiod, N. Skryma, and . Prevarskaya, Differential role of transient receptor potential channels in Ca2+ entry and proliferation of prostate cancer epithelial cells, Cancer Res, vol.66, pp.2038-2047, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00137697

S. Thebault, A. Zholos, A. Enssi, C. Slomianny, E. Dewailly et al., Receptor-operated Ca2+ entry mediated by TRPC3/TRPC6 proteins in rat prostate smooth muscle (PS1) cell line, Journal of Cellular Physiology, vol.66, issue.1, pp.320-328, 2005.
DOI : 10.1002/jcp.20301

URL : https://hal.archives-ouvertes.fr/inserm-00139745

F. Vanden-abeele, R. Skryma, Y. Shuba, F. Van-coppenolle, C. Slomianny et al., Bcl-2-dependent modulation of Ca2+ homeostasis and store-operated channels in prostate cancer cells, Cancer Cell, vol.1, issue.2, pp.169-179, 2002.
DOI : 10.1016/S1535-6108(02)00034-X

M. J. Berridge, The Versatility and Complexity of Calcium Signalling, Novartis Found. Symp, vol.239, pp.52-64, 2001.
DOI : 10.1002/0470846674.ch6

N. Prevarskaya, R. Skryma, and Y. Shuba, Ca2+ homeostasis in apoptotic resistance of prostate cancer cells, Biochemical and Biophysical Research Communications, vol.322, issue.4, pp.1326-1335, 2004.
DOI : 10.1016/j.bbrc.2004.08.037

R. Skryma, P. Mariot, X. L. Bourhis, F. V. Coppenolle, Y. Shuba et al., current in human prostate cancer LNCaP cells: involvement in apoptosis, The Journal of Physiology, vol.90, issue.1, pp.527-71, 2000.
DOI : 10.1111/j.1469-7793.2000.00071.x

A. B. Parekh, On the activation mechanism of store-operated calcium channels, Pugers Arch, pp.303-311, 2006.

A. B. Parekh and J. W. Putney-jr, Store-Operated Calcium Channels, Physiological Reviews, vol.85, issue.2, pp.757-810, 2005.
DOI : 10.1152/physrev.00057.2003

F. Vanden-abeele, M. Roudbaraki, Y. Shuba, R. Skryma, and N. Prevarskaya, Storeoperated Ca2+ current in prostate cancer epithelial cells. Role of endogenous Ca2 + transporter type 1, J. Biol. Chem, pp.278-15381, 2003.

S. L. Zhang, Y. Yu, J. Roos, J. A. Kozak, T. J. Deerinck et al., STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane, Nature, vol.1481, issue.7060, pp.902-905, 2005.
DOI : 10.1074/jbc.M011342200

J. Roos, P. J. Digregorio, A. V. Yeromin, K. Ohlsen, M. Lioudyno et al., Stauderman, STIM1, an essential and conserved component of store-operated Ca2+ channel function, J. Cell. Biol, pp.169-435, 2005.

S. Feske, Y. Gwack, M. Prakriya, S. Srikanth, S. H. Puppel et al., A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function, Nature, vol.25, issue.7090, pp.179-185, 2006.
DOI : 10.1038/nature04702

M. Vig, C. Peinelt, A. Beck, D. L. Koomoa, D. Rabah et al., CRACM1 Is a Plasma Membrane Protein Essential for Store-Operated Ca2+ Entry, Science, vol.312, issue.5777, pp.1220-1223, 2006.
DOI : 10.1126/science.1127883

R. S. Lewis, The molecular choreography of a store-operated calcium channel, Nature, vol.7, issue.7133, pp.284-287, 2007.
DOI : 10.1038/nature05637

I. F. Abdullaev, J. M. Bisaillon, M. Potier, J. C. Gonzalez, R. K. Motiani et al., Stim1 and Orai1 Mediate CRAC Currents and Store-Operated Calcium Entry Important for Endothelial Cell Proliferation, Circulation Research, vol.103, issue.11, pp.1289-1299, 2008.
DOI : 10.1161/01.RES.0000338496.95579.56

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2682347

Y. Gwack, S. Feske, S. Srikanth, P. G. Hogan, and A. Rao, Signalling to transcription: Store-operated Ca2+ entry and NFAT activation in lymphocytes, Cell Calcium, vol.42, issue.2, pp.42-145, 2007.
DOI : 10.1016/j.ceca.2007.03.007

S. W. Ng, J. L. Dicapite, K. Singaravelu, and A. B. Parekh, Sustained activation of the tyrosine kinase Syk by antigen in mast cells requires local Ca2+ inux through Ca2+ release-activated Ca2+ (CRAC) channels, J. Biol. Chem, issue.46, pp.283-31348, 2008.

J. Stiber, A. Hawkins, Z. S. Zhang, S. Wang, J. Burch et al., STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle, Nature Cell Biology, vol.285, issue.6, pp.688-697, 2008.
DOI : 10.1074/jbc.M110958200