Scenario recognition for temporal reasoning in medical domains.

Abstract : The recognition of high level clinical scenes is fundamental in patient monitoring. In this paper, we propose a technique for recognizing a session, i.e. the clinical process evolution, by comparison against a predetermined set of scenarios, i.e. the possible behaviors for this process. We use temporal constraint networks to represent both scenario and session. Specific operations on networks are then applied to perform the recognition task. An index of temporal proximity is introduced to quantify the degree of matching between two temporal networks in order to select the best scenario fitting a session. We explore the application of our technique, implemented in the Déjà Vu system, to the recognition of typical medical scenarios with both precise and imprecise temporal information.
Type de document :
Article dans une revue
Artificial Intelligence in Medicine, Elsevier, 1998, 14 (1-2), pp.139-55
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

http://www.hal.inserm.fr/inserm-00402424
Contributeur : Michel Dojat <>
Soumis le : mardi 7 juillet 2009 - 12:23:57
Dernière modification le : mercredi 4 juillet 2018 - 16:44:02
Document(s) archivé(s) le : samedi 26 novembre 2016 - 10:34:59

Fichier

 Accès restreint
Fichier visible le : jamais

Connectez-vous pour demander l'accès au fichier

Identifiants

  • HAL Id : inserm-00402424, version 1
  • PUBMED : 9779887

Collections

Citation

Michel Dojat, Nicolas Ramaux, Dominique Fontaine. Scenario recognition for temporal reasoning in medical domains.. Artificial Intelligence in Medicine, Elsevier, 1998, 14 (1-2), pp.139-55. 〈inserm-00402424〉

Partager

Métriques

Consultations de la notice

126