S. M. Berget, C. Moore, and P. A. Sharp, Spliced segments at the 5??? terminus of adenovirus 2 late mRNA, Proc. Natl Acad. Sci. USA, pp.3171-3175, 1977.
DOI : 10.1016/0092-8674(76)90156-2

T. W. Nilsen, The spliceosome: the most complex macromolecular machine in the cell?, BioEssays, vol.108, issue.12, pp.1147-1149, 2003.
DOI : 10.1002/bies.10394

Z. Zhou, L. J. Licklider, S. P. Gygi, and R. Reed, Comprehensive proteomic analysis of the human spliceosome, Nature, vol.14, issue.6903, pp.182-185, 2002.
DOI : 10.1016/1044-0305(94)80016-2

R. E. Breitbart, H. T. Nguyen, R. M. Medford, A. T. Destree, V. Mahdavi et al., Intricate combinatorial patterns of exon splicing generate multiple regulated troponin T isoforms from a single gene, Cell, vol.41, issue.1, pp.67-82, 1985.
DOI : 10.1016/0092-8674(85)90062-5

T. Maniatis and B. Tasic, Alternative pre-mRNA splicing and proteome expansion in metazoans, Nature, vol.108, issue.6894, pp.236-243, 2002.
DOI : 10.1016/S0092-8674(02)00627-X

L. Cartegni, S. L. Chew, and A. R. Krainer, LISTENING TO SILENCE AND UNDERSTANDING NONSENSE: EXONIC MUTATIONS THAT AFFECT SPLICING, Nature Reviews Genetics, vol.3, issue.4, pp.285-298, 2002.
DOI : 10.1038/nrg775

B. L. Robberson, G. J. Cote, and S. M. Berget, Exon definition may facilitate splice site selection in RNAs with multiple exons., Molecular and Cellular Biology, vol.10, issue.1, pp.84-94, 1990.
DOI : 10.1128/MCB.10.1.84

M. Jacob and H. Gallinaro, The 5??? splice site: phylogetic evalution and variable geometry of association with U1RNA, Nucleic Acids Research, vol.17, issue.6, pp.2159-2180, 1989.
DOI : 10.1093/nar/17.6.2159

B. J. Blencowe, Exonic splicing enhancers: mechanism of action, diversity and role in human genetic diseases, Trends in Biochemical Sciences, vol.25, issue.3, pp.106-110, 2000.
DOI : 10.1016/S0968-0004(00)01549-8

J. Zhu, A. Mayeda, and A. R. Krainer, Exon Identity Established through Differential Antagonism between Exonic Splicing Silencer-Bound hnRNP A1 and Enhancer-Bound SR Proteins, Molecular Cell, vol.8, issue.6, pp.1351-1361, 2001.
DOI : 10.1016/S1097-2765(01)00409-9

URL : https://doi.org/10.1016/s1097-2765(01)00409-9

X. H. Zhang, C. S. Leslie, and L. A. Chasin, Computational searches for splicing signals, Methods, vol.37, issue.4, pp.292-305, 2005.
DOI : 10.1016/j.ymeth.2005.07.011

A. Bhasi, R. V. Pandey, S. P. Utharasamy, and P. Senapathy, EuSplice: a unified resource for the analysis of splice signals and alternative splicing in eukaryotic genes, Bioinformatics, vol.23, issue.14, pp.1815-1823, 2007.
DOI : 10.1093/bioinformatics/btm084

A. Churbanov, I. B. Rogozin, J. S. Deogun, and H. Ali, Method of predicting splice sites based on signal interactions, Biology Direct, vol.1, issue.1, p.10, 2006.
DOI : 10.1186/1745-6150-1-10

M. G. Dunckley, M. Manoharan, P. Villiet, I. C. Eperon, and G. Dickson, Modification of splicing in the dystrophin gene in cultured Mdx muscle cells by antisense oligoribonucleotides, Human Molecular Genetics, vol.7, issue.7, pp.1083-1090, 1998.
DOI : 10.1093/hmg/7.7.1083

S. D. Wilton and S. Fletcher, RNA Splicing Manipulation: Strategies to Modify Gene Expression for a Variety of Therapeutic Outcomes, Current Gene Therapy, vol.5, issue.5, pp.467-483, 2005.
DOI : 10.2174/156652305774329249

C. Beroud, D. Hamroun, G. Collod-beroud, C. Boileau, T. Soussi et al., UMD (Universal Mutation Database): 2005 update, ): 2005 update, pp.184-191, 2005.
DOI : 10.1002/humu.20210

URL : https://hal.archives-ouvertes.fr/inserm-00143605

C. Beroud, G. Collod-beroud, C. Boileau, T. Soussi, and C. Junien, UMD (Universal Mutation Database): A generic software to build and analyze locus-specific databases, Human Mutation, vol.3, issue.1, pp.86-94, 2000.
DOI : 10.1093/hmg/3.4.635

URL : https://hal.archives-ouvertes.fr/inserm-00143606

W. G. Fairbrother, G. W. Yeo, R. Yeh, P. Goldstein, M. Mawson et al., RESCUE-ESE identifies candidate exonic splicing enhancers in vertebrate exons, Nucleic Acids Research, vol.32, issue.Web Server, pp.187-190, 2004.
DOI : 10.1093/nar/gkh393

L. Cartegni, J. Wang, Z. Zhu, M. Q. Zhang, and A. R. Krainer, ESEfinder: a web resource to identify exonic splicing enhancers, Nucleic Acids Research, vol.31, issue.13, pp.3568-3571, 2003.
DOI : 10.1093/nar/gkg616

P. Flicek, B. L. Aken, K. Beal, B. Ballester, M. Caccamo et al., Ensembl 2008, Nucleic Acids Research, vol.36, issue.Database, pp.707-714, 2008.
DOI : 10.1093/nar/gkm988

URL : https://hal.archives-ouvertes.fr/hal-01626053

D. Karolchik, R. M. Kuhn, R. Baertsch, G. P. Barber, H. Clawson et al., The UCSC Genome Browser Database: 2008 update, Nucleic Acids Research, vol.36, issue.Database, pp.773-779, 2008.
DOI : 10.1093/nar/gkm966

M. B. Shapiro and P. Senapathy, RNA splice junctions of different classes of eukaryotes: sequence statistics and functional implications in gene expression, Nucleic Acids Research, vol.15, issue.17, pp.7155-7174, 1987.
DOI : 10.1093/nar/15.17.7155

G. Yeo and C. B. Burge, Maximum Entropy Modeling of Short Sequence Motifs with Applications to RNA Splicing Signals, Journal of Computational Biology, vol.11, issue.2-3, pp.377-394, 2004.
DOI : 10.1089/1066527041410418

M. R. Green, Biochemical Mechanisms of Constitutive and Regulated Pre-mRNA Splicing, Annual Review of Cell Biology, vol.7, issue.1, pp.559-599, 1991.
DOI : 10.1146/annurev.cb.07.110191.003015

C. Gooding, F. Clark, M. C. Wollerton, S. N. Grellscheid, H. Groom et al., A class of human exons with predicted distant branch points revealed by analysis of AG dinucleotide exclusion zones, Genome Biology, vol.7, issue.1, p.1, 2006.
DOI : 10.1186/gb-2006-7-1-r1

G. Kol, G. Lev-maor, and G. Ast, Human???mouse comparative analysis reveals that branch-site plasticity contributes to splicing regulation, Human Molecular Genetics, vol.14, issue.11, pp.1559-1568, 2005.
DOI : 10.1093/hmg/ddi164

URL : https://academic.oup.com/hmg/article-pdf/14/11/1559/1660090/ddi164.pdf

P. J. Smith, C. Zhang, J. Wang, S. L. Chew, M. Q. Zhang et al., An increased specificity score matrix for the prediction of SF2/ASF-specific exonic splicing enhancers, Human Molecular Genetics, vol.15, issue.16, pp.2490-2508, 2006.
DOI : 10.1093/hmg/ddl171

X. H. Zhang and L. A. Chasin, Computational definition of sequence motifs governing constitutive exon splicing, Genes & Development, vol.18, issue.11, pp.1241-1250, 2004.
DOI : 10.1101/gad.1195304

A. Goren, O. Ram, M. Amit, H. Keren, G. Lev-maor et al., Comparative Analysis Identifies Exonic Splicing Regulatory Sequences???The Complex Definition of Enhancers and Silencers, Molecular Cell, vol.22, issue.6, pp.769-781, 2006.
DOI : 10.1016/j.molcel.2006.05.008

C. Zhang, W. H. Li, A. R. Krainer, and M. Q. Zhang, RNA landscape of evolution for optimal exon and intron discrimination, Proc. Natl Acad. Sci. USA, pp.5797-5802, 2008.
DOI : 10.1093/bioinformatics/18.8.1021

M. Sironi, G. Menozzi, L. Riva, R. Cagliani, G. P. Comi et al., Silencer elements as possible inhibitors of pseudoexon splicing, Nucleic Acids Research, vol.32, issue.5, pp.1783-1791, 2004.
DOI : 10.1093/nar/gkh341

Z. Wang, M. E. Rolish, G. Yeo, V. Tung, M. Mawson et al., Systematic Identification and Analysis of Exonic Splicing Silencers, Cell, vol.119, issue.6, pp.831-845, 2004.
DOI : 10.1016/j.cell.2004.11.010

J. D. Thompson, D. G. Higgins, and T. J. Gibson, CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Research, vol.22, issue.22, pp.4673-4680, 1994.
DOI : 10.1093/nar/22.22.4673

T. L. Bailey, N. Williams, C. Misleh, and W. W. Li, MEME: discovering and analyzing DNA and protein sequence motifs, Nucleic Acids Research, vol.34, issue.Web Server, pp.369-373, 2006.
DOI : 10.1093/nar/gkl198

URL : https://academic.oup.com/nar/article-pdf/34/suppl_2/W369/7623054/gkl198.pdf

B. Yuan, J. P. Thomas, Y. Von-kodolitsch, and R. E. Pyeritz, Comparison of heteroduplex analysis, direct sequencing, and enzyme mismatch cleavage for detecting mutations in a large gene,FBN1, Human Mutation, vol.32, issue.5, pp.440-446, 1999.
DOI : 10.1006/geno.1996.0138

R. Youil, T. J. Toner, E. Bull, A. L. Bailey, C. D. Earl et al., Enzymatic mutation detection (EMD?) of novel mutations (R565X and R1523X) in the FBN1 gene of patients with Marfan syndrome using T4 endonuclease VII, Human Mutation, vol.16, issue.1, pp.92-93, 2000.
DOI : 10.1002/1098-1004(200007)16:1<92::AID-HUMU24>3.0.CO;2-1

I. Schrijver, W. Liu, R. Odom, T. Brenn, P. Oefner et al., Premature Termination Mutations in FBN1: Distinct Effects on Differential Allelic Expression and on Protein and Clinical Phenotypes, The American Journal of Human Genetics, vol.71, issue.2, pp.223-237, 2002.
DOI : 10.1086/341581

K. Rommel, M. Karck, A. Haverich, J. Schmidtke, and M. Arslan-kirchner, Mutation screening of the fibrillin-1 (FBN1) gene in 76 unrelated patients with Marfan syndrome or Marfanoid features leads to the identification of 11 novel and three previously reported mutations, Human Mutation, vol.20, issue.5, pp.406-407, 2002.
DOI : 10.1002/humu.9075

E. S. Park, E. A. Putnam, D. Chitayat, A. Child, and D. M. Milewicz, Clustering ofFBN2 mutations in patients with congenital contractural arachnodactyly indicates an important role of the domains encoded by exons 24 through 34 during human development, American Journal of Medical Genetics, vol.124, issue.4, pp.350-355, 1998.
DOI : 10.1002/(SICI)1096-8628(19980724)78:4<350::AID-AJMG9>3.0.CO;2-P

M. Palz, F. Tiecke, P. Booms, B. Goldner, T. Rosenberg et al., Clustering of mutations associated with mild Marfan-like phenotypes in the 3? region ofFBN1 suggests a potential genotype-phenotype correlation, American Journal of Medical Genetics, vol.129, issue.3, pp.212-221, 2000.
DOI : 10.1083/jcb.129.4.1165

G. Nijbroek, S. Sood, I. Mcintosh, C. A. Francomano, E. Bull et al., Fifteen novel FBN1 mutations causing Marfan syndrome detected by heteroduplex analysis of genomic amplicons, Am. J. Hum. Genet, vol.57, pp.8-21, 1995.

J. Mcgrory and W. G. Cole, Alternative splicing of exon 37 of FBN1 deletes part of an 'eight-cysteine' domain resulting in the Marfan syndrome, Clinical Genetics, vol.302, issue.2, pp.118-121, 1999.
DOI : 10.1042/bj3020889

B. Loeys, L. Nuytinck, I. Delvaux, S. De-bie, D. Paepe et al., Genotype and Phenotype Analysis of 171 Patients Referred for Molecular Study of the Fibrillin-1 Gene FBN1 Because of Suspected Marfan Syndrome, Archives of Internal Medicine, vol.161, issue.20, pp.2447-2454, 2001.
DOI : 10.1001/archinte.161.20.2447

W. O. Liu, P. J. Oefner, C. Qian, R. S. Odom, and U. Francke, Denaturing HPLC-Identified Novel FBN1 Mutations, Polymorphisms, and Sequence Variants in Marfan Syndrome and Related Connective Tissue Disorders, Genetic Testing, vol.1, issue.4, pp.237-242, 1997.
DOI : 10.1089/gte.1997.1.237

S. Hutchinson, B. P. Wordsworth, and P. A. Handford, Marfan syndrome caused by a mutation in FBN1 that gives rise to cryptic splicing and a 33 nucleotide insertion in the coding sequence, Human Genetics, vol.109, issue.4, pp.416-420, 2001.
DOI : 10.1007/s004390100573

D. Halliday, S. Hutchinson, S. Kettle, H. Firth, P. Wordsworth et al., Molecular analysis of eight mutations in FBN1, Human Genetics, vol.105, issue.6, pp.587-597, 1999.
DOI : 10.1007/s004399900190

P. A. Gupta, D. D. Wallis, T. O. Chin, H. Northrup, V. T. Tran-fadulu et al., FBN2 mutation associated with manifestations of Marfan syndrome and congenital contractural arachnodactyly, Journal of Medical Genetics, vol.41, issue.5, p.56, 2004.
DOI : 10.1136/jmg.2003.012880

P. A. Gupta, E. A. Putnam, S. G. Carmical, I. Kaitila, B. Steinmann et al., mutations in congenital contractural arachnodactyly: Delineation of the molecular pathogenesis and clinical phenotype, Human Mutation, vol.16, issue.1, pp.39-48, 2002.
DOI : 10.1093/emboj/16.22.6659

D. Guo, F. K. Tan, A. Cantu, S. E. Plon, and D. M. Milewicz, FBN1 exon 2 splicing error in a patient with Marfan syndrome, American Journal of Medical Genetics, vol.275, issue.2, pp.130-134, 2001.
DOI : 10.1074/jbc.275.3.2205

H. C. Dietz, I. Mcintosh, L. Y. Sakai, G. M. Corson, S. C. Chalberg et al., Four Novel FBN1 Mutations: Significance for Mutant Transcript Level and EGF-like Domain Calcium Binding in the Pathogenesis of Marfan Syndrome, Genomics, vol.17, issue.2, pp.468-475, 1993.
DOI : 10.1006/geno.1993.1349

P. Comeglio, P. Johnson, G. Arno, G. Brice, A. Evans et al., The importance of mutation detection in Marfan syndrome and Marfan-related disorders: report of 193FBN1 mutations, Human Mutation, vol.28, issue.9, p.928, 2007.
DOI : 10.1002/humu.9505

G. Collod-beroud, L. Bourdelles, S. Ades, L. Ala-kokko, L. Booms et al., polymorphism database, Human Mutation, vol.14, issue.3, pp.199-208, 2003.
DOI : 10.1002/humu.1380110112

URL : https://hal.archives-ouvertes.fr/inserm-00143263

H. Chikumi, T. Yamamoto, Y. Ohta, E. Nanba, K. Nagata et al., Fibrillin gene ( FBN1 ) mutations in Japanese patients with Marfan syndrome, Journal of Human Genetics, vol.45, issue.2, pp.115-118, 2000.
DOI : 10.1007/s100380050027

A. Biggin, K. Holman, M. Brett, B. Bennetts, and L. Ades, mutations in patients with Marfan syndrome or a related fibrillinopathy, Human Mutation, vol.23, issue.1, p.99, 2004.
DOI : 10.1002/humu.9207

M. Attanasio, I. Lapini, L. Evangelisti, L. Lucarini, B. Giusti et al., FBN1 mutation screening of patients with Marfan syndrome and related disorders: detection of 46 novel FBN1 mutations, Clinical Genetics, vol.161, issue.20, pp.39-46, 2008.
DOI : 10.1002/ajmg.a.31759

B. L. Loeys, J. Chen, E. R. Neptune, D. P. Judge, M. Podowski et al., A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2, Nature Genetics, vol.167, issue.3, pp.275-281, 2005.
DOI : 10.1083/jcb.200403067

C. Houdayer, C. Dehainault, C. Mattler, D. Michaux, V. Caux-moncoutier et al., Evaluation of in silico splice tools for decision-making in molecular diagnosis, Human Mutation, vol.24, issue.7, pp.975-982, 2008.
DOI : 10.1002/humu.20765

I. Tournier, M. Vezain, A. Martins, F. Charbonnier, S. Baert-desurmont et al., A large fraction of unclassified variants e67, Nucleic Acids Research, vol.37, issue.9, pp.12-14, 2008.

J. Auclair, M. P. Busine, C. Navarro, E. Ruano, G. Montmain et al., Systematic mRNA analysis for the effect ofMLH1 andMSH2 missense and silent mutations on aberrant splicing, Human Mutation, vol.24, issue.2, pp.145-154, 2006.
DOI : 10.1002/humu.20280

D. Blasi, C. He, Y. Morandi, L. Cornelio, F. Guicheney et al., Mild muscular dystrophy due to a nonsense mutation in the LAMA2 gene resulting in exon skipping, Brain, vol.124, issue.4, pp.698-704, 2001.
DOI : 10.1093/brain/124.4.698

A. Disset, C. F. Bourgeois, N. Benmalek, M. Claustres, J. Stevenin et al., An exon skipping-associated nonsense mutation in the dystrophin gene uncovers a complex interplay between multiple antagonistic splicing elements, Human Molecular Genetics, vol.15, issue.6, pp.999-1013, 2006.
DOI : 10.1093/hmg/ddl015

URL : https://hal.archives-ouvertes.fr/hal-00187889

J. D. Fackenthal, L. Cartegni, A. R. Krainer, and O. I. Olopade, BRCA2 T2722R Is a Deleterious Allele That Causes Exon Skipping, The American Journal of Human Genetics, vol.71, issue.3, pp.625-631, 2002.
DOI : 10.1086/342192

URL : https://doi.org/10.1086/342192

W. G. Fairbrother, R. F. Yeh, P. A. Sharp, and C. B. Burge, Predictive Identification of Exonic Splicing Enhancers in Human Genes, Science, vol.297, issue.5583, pp.1007-1013, 2002.
DOI : 10.1126/science.1073774

S. Mazoyer, N. Puget, L. Perrin-vidoz, H. T. Lynch, O. M. Serova-sinilnikova et al., A BRCA1 Nonsense Mutation Causes Exon Skipping, The American Journal of Human Genetics, vol.62, issue.3, pp.713-715, 1998.
DOI : 10.1086/301768

URL : https://doi.org/10.1086/301768

K. B. Nielsen, S. Sorensen, L. Cartegni, T. J. Corydon, T. K. Doktor et al., Seemingly Neutral Polymorphic Variants May Confer Immunity to Splicing-Inactivating Mutations: A Synonymous SNP in Exon 5 of MCAD Protects from Deleterious Mutations in a Flanking Exonic Splicing Enhancer, The American Journal of Human Genetics, vol.80, issue.3, pp.416-432, 2007.
DOI : 10.1086/511992

A. Zatkova, L. Messiaen, I. Vandenbroucke, R. Wieser, C. Fonatsch et al., Disruption of exonic splicing enhancer elements is the principal cause of exon skipping associated with seven nonsense or missense alleles of NF1, Human Mutation, vol.61, issue.6, pp.491-501, 2004.
DOI : 10.1093/jnen/61.10.896

J. T. Den-dunnen and S. E. Antonarakis, Mutation nomenclature extensions and suggestions to describe complex mutations: A discussion, Human Mutation, vol.10, issue.1, pp.7-12, 2000.
DOI : 10.1038/ng0795-259

M. Y. Frederic, C. Monino, C. Marschall, D. Hamroun, L. Faivre et al., ), and genotype-phenotype correlations, Human Mutation, vol.167, issue.Pt 2, pp.181-190, 2008.
DOI : 10.1006/dbio.1995.1003

V. Frank, N. Ortiz-bruchle, S. Mager, S. G. Frints, A. Bohring et al., Aberrant splicing is a common mutational mechanism inMKS1, a key player in Meckel-Gruber syndrome, Human Mutation, vol.28, issue.6, pp.638-639, 2007.
DOI : 10.1002/humu.9496

O. Anczukow, M. Buisson, M. J. Salles, S. Triboulet, M. Longy et al., exon 11: Consequences on splicing, BRCA1 exon 11: Consequences on splicing, pp.418-426, 2008.
DOI : 10.4161/cbt.3.5.809

W. Ng, A. X. Loh, A. S. Teixeira, S. P. Pereira, and D. M. Swallow, Genetic regulation of MUC1 alternative splicing in human tissues, British Journal of Cancer, vol.10, issue.6, pp.978-985, 2008.
DOI : 10.1093/nar/gkg595

L. Baala, S. Romano, R. Khaddour, S. Saunier, U. M. Smith et al., The Meckel-Gruber Syndrome Gene, MKS3, Is Mutated in Joubert Syndrome, The American Journal of Human Genetics, vol.80, issue.1, pp.186-194, 2007.
DOI : 10.1086/510499

Y. Habara, M. Doshita, S. Hirozawa, Y. Yokono, M. Yagi et al., A Strong Exonic Splicing Enhancer in Dystrophin Exon 19 Achieve Proper Splicing Without an Upstream Polypyrimidine Tract, The Journal of Biochemistry, vol.143, issue.3, pp.303-310, 2008.
DOI : 10.1093/jb/mvm227

A. Aartsma-rus, L. Van-vliet, M. Hirschi, A. A. Janson, H. Heemskerk et al., Guidelines for Antisense Oligonucleotide Design and Insight Into Splice-modulating Mechanisms, Molecular Therapy, vol.17, issue.3, pp.548-553, 2008.
DOI : 10.1038/mt.2008.205

URL : https://doi.org/10.1038/mt.2008.205

S. G. Khan, A. Metin, E. Gozukara, H. Inui, T. Shahlavi et al., Two essential splice lariat branchpoint sequences in one intron in a xeroderma pigmentosum DNA repair gene: mutations result in reduced XPC mRNA levels that correlate with cancer risk, Human Molecular Genetics, vol.13, issue.3, pp.343-352, 2004.
DOI : 10.1093/hmg/ddh026

P. A. Sharp and C. B. Burge, Classification of Introns: U2-Type or U12-Type, Cell, vol.91, issue.7, pp.875-879, 1997.
DOI : 10.1016/S0092-8674(00)80479-1

L. A. Chasin, Searching for Splicing Motifs, Adv. Exp. Med. Biol, vol.623, pp.85-106, 2007.
DOI : 10.1007/978-0-387-77374-2_6

V. K. Nalla and P. K. Rogan, Automated splicing mutation analysis by information theory, Human Mutation, vol.17, issue.4, pp.334-342, 2005.
DOI : 10.1128/MCB.14.11.7670

C. Beroud, S. Tuffery-giraud, M. Matsuo, D. Hamroun, V. Humbertclaude et al., Multiexon skipping leading to an artificial DMD protein lacking amino acids from exons 45 through 55 could rescue up to 63% of patients with Duchenne muscular dystrophy, Human Mutation, vol.18, issue.Web Server issu, pp.196-202, 2007.
DOI : 10.1016/S0002-9440(10)65354-0

URL : https://hal.archives-ouvertes.fr/hal-00122078

K. Kainulainen, L. Karttunen, L. Puhakka, L. Sakai, and L. Peltonen, Mutations in the fibrillin gene responsible for dominant ectopia lentis and neonatal Marfan syndrome, Nature Genetics, vol.26, issue.1, pp.64-69, 1994.
DOI : 10.1016/0092-8674(87)90123-1

W. Liu, C. Qian, K. Comeau, T. Brenn, H. Furthmayr et al., Mutant fibrillin-1 monomers lacking EGF-like domains disrupt microfibril assembly and cause severe marfan syndrome, Human Molecular Genetics, vol.5, issue.10, pp.1581-1587, 1996.
DOI : 10.1093/hmg/5.10.1581

URL : https://academic.oup.com/hmg/article-pdf/5/10/1581/1707358/5-10-1581.pdf

P. Booms, J. Cisler, K. R. Mathews, M. Godfrey, F. Tiecke et al., Novel exon skipping mutation in the fibrillin-1 gene: Two 'hot spots' for the neonatal Marfan syndrome, Clinical Genetics, vol.42, issue.2, pp.110-117, 1999.
DOI : 10.1002/ajmg.1320420106

M. Wang, C. Price, J. Han, J. Cisler, K. Imaizumi et al., Recurrent mis-splicing of fibrillin exon 32 in two patients with neonatal Marfan syndrome, Human Molecular Genetics, vol.4, issue.4, pp.607-613, 1995.
DOI : 10.1093/hmg/4.4.607

M. Godfrey, N. Vandemark, M. Wang, M. Velinov, D. Wargowski et al., Prenatal diagnosis and a donor splice site mutation in fibrillin in a family with Marfan syndrome, Am. J. Hum. Genet, vol.53, pp.472-480, 1993.

M. Wang, C. L. Clericuzio, and M. Godfrey, Familial occurrence of typical and severe lethal congenital contractural arachnodactyly caused by missplicing of exon, pp.34-36, 1996.

L. Karttunen, T. Ukkonen, K. Kainulainen, A. C. Syvanen, and L. Peltonen, Two novel fibrillin-1 mutations resulting in premature termination codons but in different mutant transcript levels and clinical phenotypes, Human Mutation, vol.4, issue.S1, pp.34-37, 1998.
DOI : 10.1093/hmg/4.4.607

K. Kosaki, D. Takahashi, T. Udaka, R. Kosaki, M. Matsumoto et al., Molecular pathology of Shprintzen-Goldberg syndrome, American Journal of Medical Genetics Part A, vol.12, issue.1, pp.104-108, 2006.
DOI : 10.1002/ajmg.a.31006

B. L. Loeys, U. Schwarze, T. Holm, B. L. Callewaert, G. H. Thomas et al., Aneurysm Syndromes Caused By Mutations In The TGF-Beta Receptor, Journal of Vascular Surgery, vol.44, issue.6, pp.788-798, 2006.
DOI : 10.1016/j.jvs.2006.10.011

V. K. Tran, Y. Takeshima, Z. Zhang, Y. Habara, K. Haginoya et al., A nonsense mutation-created intraexonic splice site is active in the lymphocytes, but not in the skeletal muscle of a DMD patient, Human Genetics, vol.85, issue.5, pp.737-742, 2007.
DOI : 10.1007/s00439-006-0241-y

A. Sharp, G. Pichert, A. Lucassen, and D. Eccles, RNA analysis reveals splicing mutations and loss of expression defects inMLH1 andBRCA1, Human Mutation, vol.24, issue.3, p.272, 2004.
DOI : 10.1002/humu.9267

N. P. Burrows, A. C. Nicholls, A. J. Richards, C. Luccarini, J. B. Harrison et al., A Point Mutation in an Intronic Branch Site Results in Aberrant Splicing of COL5A1 and in Ehlers-Danlos Syndrome Type II in Two British Families, The American Journal of Human Genetics, vol.63, issue.2, pp.390-398, 1998.
DOI : 10.1086/301948

M. Sinnreich, C. Therrien, and G. Karpati, Lariat branch point mutation in the dysferlin gene with mild limb-girdle muscular dystrophy, Neurology, vol.66, issue.7, pp.1114-1116, 2006.
DOI : 10.1212/01.wnl.0000204358.89303.81

C. Maslen, D. Babcock, M. Raghunath, and B. Steinmann, A Rare Branch-Point Mutation Is Associated with Missplicing of Fibrillin-2 in a Large Family with Congenital Contractural Arachnodactyly, The American Journal of Human Genetics, vol.60, issue.6, pp.1389-1398, 1997.
DOI : 10.1086/515472

D. Vivenza, L. Guazzarotti, M. Godi, D. Frasca, B. Di-natale et al., Gene Including the IVS3 Branch Site Responsible for Autosomal Dominant Isolated Growth Hormone Deficiency, The Journal of Clinical Endocrinology & Metabolism, vol.91, issue.3, pp.980-986, 2006.
DOI : 10.1210/jc.2005-1703

S. Chavanas, Y. Gache, J. Vailly, J. Kanitakis, L. Pulkkinen et al., Splicing modulation of integrin beta4 pre-mRNA carrying a branch point mutation underlies epidermolysis bullosa with pyloric atresia undergoing spontaneous amelioration with ageing, Human Molecular Genetics, vol.8, issue.11, pp.2097-2105, 1999.
DOI : 10.1093/hmg/8.11.2097

J. A. Kuivenhoven, H. Weibusch, P. H. Pritchard, H. Funke, R. Benne et al., An intronic mutation in a lariat branchpoint sequence is a direct cause of an inherited human disorder (fish-eye disease)., Journal of Clinical Investigation, vol.98, issue.2, pp.358-364, 1996.
DOI : 10.1172/JCI118800

J. C. Webb, D. D. Patel, C. C. Shoulders, B. L. Knight, and A. K. Soutar, Genetic variation at a splicing branch point in intron 9 of the low density lipoprotein (LDL)-receptor gene: a rare mutation that disrupts mRNA splicing in a patient with familial hypercholesterolaemia and a common polymorphism, Human Molecular Genetics, vol.5, issue.9, pp.1325-1331, 1996.
DOI : 10.1093/hmg/5.9.1325

D. Leo, E. Panico, F. Tarugi, P. Battisti, C. Federico et al., A point mutation in the lariat branch point of intron 6 ofNPC1 as the cause of abnormal pre-mRNA splicing in Niemann-Pick type C disease, Human Mutation, vol.24, issue.5, p.440, 2004.
DOI : 10.1002/humu.9287

S. Vuillaumier-barrot, L. Bizec, C. De-lonlay, P. Madinier-chappat, N. Barnier et al., PMM2 intronic branch-site mutations in CDG-Ia, Molecular Genetics and Metabolism, vol.87, issue.4, pp.337-340, 2006.
DOI : 10.1016/j.ymgme.2005.10.015

R. J. Janssen, R. A. Wevers, M. Haussler, J. A. Luyten, G. C. Steenbergen-spanjers et al., A branch site mutation leading to aberrant splicing of the human tyrosine hydroxylase gene in a child with a severe extrapyramidal movement disorder, Annals of Human Genetics, vol.64, issue.5, pp.375-382, 2000.
DOI : 10.1046/j.1469-1809.2000.6450375.x

K. Mayer, W. Ballhausen, W. Leistner, and H. Rott, Three novel types of splicing aberrations in the tuberous sclerosis TSC2 gene caused by mutations apart from splice consensus sequences, Biochim. Biophys. Acta, pp.1502-495, 2000.