Skip to Main content Skip to Navigation
Journal articles

Effects of creatine treatment on survival and differentiation of GABA-ergic neurons in cultured striatal tissue.

Abstract : Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder, characterized by a prominent loss of GABA-ergic medium-sized spiny neurons in the caudate putamen. There is evidence that impaired energy metabolism contributes to neuronal death in HD. Creatine is an endogenous substrate for creatine kinases and thereby supports cellular ATP levels. This study investigated the effects of creatine supplementation (5 mm) on cell survival and neuronal differentiation in striatal cultures. Chronic creatine treatment resulted in significant increased densities of GABA-immunoreactive (-ir) neurons, although total neuronal cell number and general viability were not affected. Similar effects were seen after short-term treatment, suggesting that creatine acted as a differentiation factor. Inhibitors of transcription or translation did not abolish the creatine-mediated effects, nor did omission of extracellular calcium, whereas inhibition of mitogen-activated protein kinase and phosphatidylinositol-3-kinase significantly attenuated the creatine induced increase in GABA-ir cell densities. Creatine exhibited significant neuroprotection against toxicity instigated either by glucose- and serum deprivation or addition of 3-nitropropionic acid. In sum, the neuroprotective properties in combination with promotion of neuronal differentiation suggest that creatine has potential as a therapeutic drug in the treatment of neurodegenerative diseases, like HD.
Document type :
Journal articles
Complete list of metadata
Contributor : Sarah Hamant <>
Submitted on : Tuesday, June 2, 2009 - 11:09:02 PM
Last modification on : Thursday, March 5, 2020 - 3:18:01 PM

Links full text




Robert Andres, Angélique Ducray, Alexander Huber, Alberto Pérez-Bouza, Sandra Krebs, et al.. Effects of creatine treatment on survival and differentiation of GABA-ergic neurons in cultured striatal tissue.. Journal of Neurochemistry, Wiley, 2005, 95 (1), pp.33-45. ⟨10.1111/j.1471-4159.2005.03337.x⟩. ⟨inserm-00390874⟩



Record views