P. Black, Management of malignant glioma: role of surgery in relation to multimodality therapy, Journal of Neurovirology, vol.4, issue.2, pp.227-236, 1998.
DOI : 10.3109/13550289809114522

M. Salcman, Survival in Glioblastoma, Neurosurgery, vol.7, issue.5, pp.435-439, 1980.
DOI : 10.1227/00006123-198011000-00001

R. De-crevoisier, J. Pierga, and R. Dendale, Radioth??rapie des glioblastomes, Cancer/Radioth??rapie, vol.1, issue.3, pp.194-207, 1997.
DOI : 10.1016/S1278-3218(97)89765-X

C. Belka, W. Budach, and R. Kortmann, Radiation induced CNS toxicity ??? molecular and cellular mechanisms, British Journal of Cancer, vol.5, issue.9, pp.1233-1239, 2001.
DOI : 10.1054/bjoc.2001.2100

W. Ng, Radiation-associated changes in tissues and tumours, Current Diagnostic Pathology, vol.9, issue.2, pp.124-136, 2003.
DOI : 10.1054/cdip.2003.0164

C. Bertrand and M. Liang, Radiation-associated neurotoxicity, Hospital Physician, vol.35, pp.54-58, 1999.

I. Lamproglou, Q. Chen, and G. Boisserie, Radiation-induced cognitive dysfunction: An experimental model in the old rat, International Journal of Radiation Oncology*Biology*Physics, vol.31, issue.1, pp.65-70, 1995.
DOI : 10.1016/0360-3016(94)00332-F

P. Plowman, Stereotactic radiosurgery VIII. The classification of postradiation reactions, British Journal of Neurosurgery, vol.13, issue.3, pp.256-264, 1999.
DOI : 10.1080/02688699943655

H. Reinhold, A. Keyeux, and A. Dunjic, The influence of radiation on blood vessels and circulation. XII. Discussion and conclusions, Curr Top Radiat Res Q, vol.10, pp.185-198, 1974.

M. Diserbo, A. Agin, and L. Lamproglou, Blood-brain barrier permeability after gamma whole-body irradiation: an in vivo microdialysis study, Canadian Journal of Physiology and Pharmacology, vol.80, issue.7, pp.670-678, 2002.
DOI : 10.1139/y02-070

H. Yuan, M. Gaber, and T. Mccolgan, Radiation-induced permeability and leukocyte adhesion in the rat blood???brain barrier: modulation with anti-ICAM-1 antibodies, Brain Research, vol.969, issue.1-2, pp.59-69, 2003.
DOI : 10.1016/S0006-8993(03)02278-9

H. Nakata, T. Yoshimine, and A. Murasawa, Early blood-brain barrier disruption after high-dose single-fraction irradiation in rats, Acta Neurochirurgica, vol.57, issue.1-2, pp.82-86, 1995.
DOI : 10.1007/BF01411440

M. Werner-wasik, S. Rudoler, and P. Preston, Immediate side effects of stereotactic radiotherapy and radiosurgery, International Journal of Radiation Oncology*Biology*Physics, vol.43, issue.2, pp.299-304, 1999.
DOI : 10.1016/S0360-3016(98)00410-6

D. Slatkin, P. Spanne, and F. Dilmanian, Subacute neuropathological effects of microplanar beams of x-rays from a synchrotron wiggler., Proceedings of the National Academy of Sciences, vol.92, issue.19, pp.8783-8787, 1995.
DOI : 10.1073/pnas.92.19.8783

J. Laissue, G. Geiser, and P. Spanne, Neuropathology of ablation of rat gliosarcomas and contiguous brain tissues using a microplanar beam of synchrotron-wiggler-generated X rays, International Journal of Cancer, vol.14, issue.5
DOI : 10.1002/(SICI)1097-0215(19981123)78:5<654::AID-IJC21>3.0.CO;2-L

J. Laissue, N. Lyubimova, and H. Wagner, Microbeam radiation therapy, Medical Applications of Penetrating Radiation, pp.38-45, 1999.
DOI : 10.1117/12.368185

URL : https://hal.archives-ouvertes.fr/hal-00426057

F. Dilmanian, G. Morris, L. Duc, and G. , Response of avian embryonic brain to spatially segmented x-ray microbeams, Cell Mol Biol, vol.47, pp.485-493, 2001.

J. Laissue, H. Blattmann, and D. Michiel, <title>Weanling piglet cerebellum: a surrogate for tolerance to MRT (microbeam radiation therapy) in pediatric neuro-oncology</title>, Penetrating Radiation Systems and Applications III, pp.65-73, 2001.
DOI : 10.1117/12.450774

F. Dilmanian, G. Morris, and N. Zhong, Murine EMT-6 Carcinoma: High Therapeutic Efficacy of Microbeam Radiation Therapy, Radiation Research, vol.159, issue.5, pp.632-641, 2003.
DOI : 10.1667/0033-7587(2003)159[0632:MECHTE]2.0.CO;2

P. Newman, The biology of PECAM-1., Journal of Clinical Investigation, vol.99, issue.1, pp.25-29, 1997.
DOI : 10.1172/JCI119129

P. Rijken, H. Bernsen, and A. Van-der-kogel, Application of an Image Analysis System to the Quantitation of Tumor Perfusion and Vascularity in Human Glioma Xenografts, Microvascular Research, vol.50, issue.2, pp.141-153, 1995.
DOI : 10.1006/mvre.1995.1048

D. Archer, Collimator for producing an array of microbeams, U.S, 1998.

D. Kleinfeld, W. Denk, R. Yuste, F. Lanni, and A. Konnerth, Two-photon imaging of cortical microcirculation, Imaging neurons: A laboratory manual. Cold Spring Harbor, pp.23-38, 1999.

E. Beaurepaire, M. Oheim, and J. Mertz, Ultra-deep two-photon fluorescence excitation in turbid media, Optics Communications, vol.188, issue.1-4, pp.25-29, 2001.
DOI : 10.1016/S0030-4018(00)01156-1

J. Kapuscinski, DAPI: a DNA-Specific Fluorescent Probe, Biotechnic & Histochemistry, vol.4, issue.5, pp.220-233, 1995.
DOI : 10.1080/07391102.1989.10508505

T. Adair, M. Wells, and J. Hang, A stereological method for estimating length density of the arterial vascular system, Am J Physiol, vol.266, pp.1434-1438, 1994.

W. Denk, J. Strickler, and W. Webb, Two-photon laser scanning fluorescence microscopy, Science, vol.248, issue.4951, pp.73-76, 1990.
DOI : 10.1126/science.2321027

C. Xu, W. Zipfel, and J. Shear, Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy., Proceedings of the National Academy of Sciences, vol.93, issue.20, pp.10763-10768, 1996.
DOI : 10.1073/pnas.93.20.10763

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC38229

R. Williams, W. Zipfel, and W. Webb, Multiphoton microscopy in biological research, Current Opinion in Chemical Biology, vol.5, issue.5, pp.603-608, 2001.
DOI : 10.1016/S1367-5931(00)00241-6

K. Dunn, R. Sandoval, and K. Kelly, Functional studies of the kidney of living animals using multicolor two-photon microscopy, AJP: Cell Physiology, vol.283, issue.3, pp.905-916, 2002.
DOI : 10.1152/ajpcell.00159.2002

E. Chaigneau, M. Oheim, and E. Audinat, Two-photon imaging of capillary blood flow in olfactory bulb glomeruli, Proceedings of the National Academy of Sciences, vol.100, issue.22, pp.13081-13086, 2003.
DOI : 10.1073/pnas.2133652100

E. Brown, R. Campbell, and Y. Tsuzuki, In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy, Nature Medicine, vol.7, issue.7, pp.864-868, 2001.
DOI : 10.1038/89997

M. Oheim, E. Beaurepaire, and E. Chaigneau, Two-photon microscopy in brain tissue: parameters influencing the imaging depth, Journal of Neuroscience Methods, vol.111, issue.1, pp.29-37, 2001.
DOI : 10.1016/S0165-0270(01)00438-1

P. Vérant, R. Serduc, and J. Coles, A method for measuring cerebral blood volume of mouse using multiphoton laser scanning microscopy, Femtosecond Laser Applications in Biology, pp.1-12, 2004.
DOI : 10.1117/12.546334

M. Fuss, F. Wenz, and R. Scholdei, Radiation-induced regional cerebral blood volume (rCBV) changes in normal brain and low-grade astrocytomas: quantification and time and dose-dependent occurrence, International Journal of Radiation Oncology*Biology*Physics, vol.48, issue.1, pp.53-58, 2000.
DOI : 10.1016/S0360-3016(00)00590-3

F. Dilmanian, J. Kalef-ezra, and M. Petersen, Could X-ray microbeams inhibit angioplasty-induced restenosis in the rat carotid artery?, Cardiovascular Radiation Medicine, vol.4, issue.3, pp.139-145, 2003.
DOI : 10.1016/S1522-1865(03)00180-X

M. Reidy and S. Schwartz, Endothelial regeneration. III. Time course of intimal changes after small defined injury to rat aortic endothelium, Lab Invest, vol.44, pp.301-308, 1981.

M. Van-vulpen, H. Kal, and M. Taphoorn, Changes in blood-brain barrier permeability induced by radiotherapy: Implications for timing of chemotherapy? (Review), Oncology Reports, vol.9, pp.683-688, 2002.
DOI : 10.3892/or.9.4.683

F. Dilmanian, J. Hainfeld, and C. Kruse, Biological mechanisms underlying the X-ray microbeam effects of preferentially destroying tumors, National Synchrotron Light Source activity report, 2002.

E. Siegbahn, E. Brauer-krisch, and J. Stepanek, Dosimetric studies of microbeam radiation therapy (MRT) with Monte Carlo simulations, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.548, issue.1-2, pp.54-58, 2005.
DOI : 10.1016/j.nima.2005.03.065

D. Slatkin, P. Spanne, and F. Dilmanian, Microbeam radiation therapy, Medical Physics, vol.19, issue.6, pp.1395-1400, 1992.
DOI : 10.1118/1.596771

E. Brauer-krisch, A. Bravin, and M. Lerch, MOSFET dosimetry for microbeam radiation therapy at the European Synchrotron Radiation Facility, Medical Physics, vol.42, issue.6, pp.583-589, 2003.
DOI : 10.1118/1.1562169

D. Slatkin, Uniaxial and biaxial irradiation protocols for microbeam radiation therapy, Physics in Medicine and Biology, vol.49, issue.13, pp.203-204, 2004.
DOI : 10.1088/0031-9155/49/13/N04

E. Brauer-krisch, H. Requardt, and P. Regnard, New irradiation geometry for microbeam radiation therapy, Physics in Medicine and Biology, vol.50, issue.13, pp.3103-3111, 2005.
DOI : 10.1088/0031-9155/50/13/009

J. Stepanek, H. Blattmann, and J. Laissue, Physics study of microbeam radiation therapy with PSI-version of Monte Carlo code GEANT as a new computational tool, Medical Physics, vol.45, issue.3, pp.1664-1675, 2000.
DOI : 10.1118/1.599034

?. R. Serduc, Short-term effects of microbeam irradiation on mouse brain microvasculature
URL : https://hal.archives-ouvertes.fr/inserm-00388979