A. Zweidler, Core histone variants of the mouse: primary structure and differential expression, 1984.

L. Hereford, M. Osley, L. Trn, and C. Mclaughlin, Cell-cycle regulation of yeast histone mRNA, Cell, vol.24, issue.2, pp.367-75, 1981.
DOI : 10.1016/0092-8674(81)90326-3

F. Sierra, A. Lichtler, F. Marashi, R. Rickles, T. Van-dyke et al., Organization of human histone genes., Proceedings of the National Academy of Sciences, vol.79, issue.6, pp.1795-1804, 1982.
DOI : 10.1073/pnas.79.6.1795

G. Stein, W. Park, C. Thrall, R. Mans, and J. Stein, Regulation of cell cycle stage-specific transcription of histone genes from chromatin by non-histone chromosomal proteins, Nature, vol.63, issue.5529, pp.764-771, 1975.
DOI : 10.1038/257764a0

K. Ahmad and S. Henikoff, The Histone Variant H3.3 Marks Active Chromatin by Replication-Independent Nucleosome Assembly, Molecular Cell, vol.9, issue.6, pp.1191-200, 2002.
DOI : 10.1016/S1097-2765(02)00542-7

URL : https://hal.archives-ouvertes.fr/hal-00782360

R. Wu, S. Tsai, and W. Bonner, Patterns of histone variant synthesis can distinguish go from G1 cells, Cell, vol.31, issue.2, 1982.
DOI : 10.1016/0092-8674(82)90130-1

R. Kamakaka and S. Biggins, Histone variants: deviants?, Genes & Development, vol.19, issue.3, pp.295-310, 2005.
DOI : 10.1101/gad.1272805

S. Franklin and A. Zweidler, Non-allelic variants of histones 2a, 2b and 3 in mammals, Nature, vol.38, issue.5599, pp.273-278, 1977.
DOI : 10.1038/266273a0

K. Ahmad and S. Henikoff, Histone H3 variants specify modes of chromatin assembly, Proceedings of the National Academy of Sciences, vol.99, issue.Supplement 4, pp.16477-84, 2002.
DOI : 10.1073/pnas.172403699

H. Tagami, D. Ray-gallet, G. Almouzni, and Y. Nakatani, Histone H3.1 and H3.3 Complexes Mediate Nucleosome Assembly Pathways Dependent or Independent of DNA Synthesis, Cell, vol.116, issue.1, pp.51-61, 2004.
DOI : 10.1016/S0092-8674(03)01064-X

C. Akey and K. Luger, Histone chaperones and nucleosome assembly, Current Opinion in Structural Biology, vol.13, issue.1, pp.6-14, 2003.
DOI : 10.1016/S0959-440X(03)00002-2

S. Polo and G. Almouzni, Chromatin assembly: a basic recipe with various flavours, Current Opinion in Genetics & Development, vol.16, issue.2, pp.104-115, 2006.
DOI : 10.1016/j.gde.2006.02.011

S. Polo, D. Roche, and G. Almouzni, New Histone Incorporation Marks Sites of UV Repair in Human Cells, Cell, vol.127, issue.3, pp.481-93, 2006.
DOI : 10.1016/j.cell.2006.08.049

D. Ray-gallet, J. Quivy, C. Scamps, E. Martini, M. Lipinski et al., HIRA Is Critical for a Nucleosome Assembly Pathway Independent of DNA Synthesis, Molecular Cell, vol.9, issue.5, pp.1091-100, 2002.
DOI : 10.1016/S1097-2765(02)00526-9

K. Shibahara and B. Stillman, Replication-Dependent Marking of DNA by PCNA Facilitates CAF-1-Coupled Inheritance of Chromatin, Cell, vol.96, issue.4, pp.575-85, 1999.
DOI : 10.1016/S0092-8674(00)80661-3

C. Chow, A. Georgiou, H. Szutorisz, M. E. Silva, A. Pombo et al., Variant histone H3.3 marks promoters of transcriptionally active genes during mammalian cell division, EMBO reports, vol.19, issue.4, pp.354-60, 2005.
DOI : 10.1073/pnas.0308506101

M. Creyghton, S. Markoulaki, S. Levine, J. Hanna, M. Lodato et al., H2AZ Is Enriched at Polycomb Complex Target Genes in ES Cells and Is Necessary for Lineage Commitment, Cell, vol.135, issue.4, pp.649-61, 2008.
DOI : 10.1016/j.cell.2008.09.056

R. Faast, V. Thonglairoam, T. Schulz, J. Beall, J. Wells et al., Histone variant H2A.Z is required for early mammalian development, Current Biology, vol.11, issue.15, pp.1183-1190, 2001.
DOI : 10.1016/S0960-9822(01)00329-3

S. Henikoff, J. Henikoff, A. Sakai, G. Loeb, and K. Ahmad, Genome-wide profiling of salt fractions maps physical properties of chromatin, Genome Research, vol.19, issue.3, 2008.
DOI : 10.1101/gr.087619.108

D. Zilberman, D. Coleman-derr, T. Ballinger, and S. Hennikoff, Histone H2A.Z and DNA methylation are mutually antagonistic chromatin marks, Nature, vol.15, issue.7218, pp.125-134, 2008.
DOI : 10.1038/nature07324

A. Konev, M. Tribus, S. Park, V. Podhraski, C. Lim et al., CHD1 Motor Protein Is Required for Deposition of Histone Variant H3.3 into Chromatin in Vivo, Science, vol.317, issue.5841, pp.1087-90, 2007.
DOI : 10.1126/science.1145339

H. Zhang, D. Roberts, and B. Cairns, Genome-Wide Dynamics of Htz1, a Histone H2A Variant that Poises Repressed/Basal Promoters for Activation through Histone Loss, Cell, vol.123, issue.2, pp.219-250, 2005.
DOI : 10.1016/j.cell.2005.08.036

N. Tanphaichitr, P. Sobhon, N. Taluppeth, and P. Chalermisarachai, Basic nuclear proteins in testicular cells and ejaculated spermatozoa in man, Experimental Cell Research, vol.117, issue.2, pp.347-56, 1978.
DOI : 10.1016/0014-4827(78)90148-9

J. Gatewood, G. Cook, R. Balhorn, C. Schmid, and E. Bradbury, Isolation of four core histones from human sperm chromatin representing a minor subset of somatic histones, J Biol Chem, vol.265, pp.20662-20668, 1990.

J. Gatewood, G. Cook, R. Balhorn, E. Bradbury, and C. Schmid, Sequence-specific packaging of DNA in human sperm chromatin, Science, vol.236, issue.4804, pp.962-966, 1987.
DOI : 10.1126/science.3576213

M. Gardiner-garden, M. Ballesteros, M. Gordon, and P. Tam, Histone- and Protamine-DNA Association: Conservation of Different Patterns within the ??-Globin Domain in Human Sperm, Molecular and Cellular Biology, vol.18, issue.6, pp.3350-3356, 1998.
DOI : 10.1128/MCB.18.6.3350

M. Ingouff, Y. Hamamura, M. Gourgues, T. Higashiyama, and F. Berger, Distinct Dynamics of HISTONE3 Variants between the Two Fertilization Products in Plants, Current Biology, vol.17, issue.12, pp.1032-1039, 2007.
DOI : 10.1016/j.cub.2007.05.019

C. Ziegler-birling, A. Helmrich, L. Tora, and M. Torres-padilla, Distribution of p53 binding protein 1 (53BP1) and phosphorylated H2A.X during mouse preimplantation development in the absence of DNA damage, The International Journal of Developmental Biology, vol.53, issue.7, 2009.
DOI : 10.1387/ijdb.082707cz

URL : https://hal.archives-ouvertes.fr/inserm-00438653

L. Daury, C. Chailleux, J. Bonvallet, and D. Trouche, Histone H3.3 deposition at E2F-regulated genes is linked to transcription, EMBO reports, vol.35, issue.1, pp.66-71, 2006.
DOI : 10.1016/S0092-8674(03)01064-X

URL : https://hal.archives-ouvertes.fr/hal-00021145

S. Janicki, T. Tsukamoto, S. Salghetti, W. Tansey, R. Sachidanandam et al., From Silencing to Gene Expression, Cell, vol.116, issue.5, pp.683-98, 2004.
DOI : 10.1016/S0092-8674(04)00171-0

B. Garcia, C. Thomas, N. Kelleher, and C. Mizzen, Tissue-Specific Expression and Post-Translational Modification of Histone H3 Variants, Journal of Proteome Research, vol.7, issue.10, pp.4225-4261, 2008.
DOI : 10.1021/pr800044q

S. Hake, B. Garcia, E. Duncan, M. Kauer, G. Dellaire et al., Expression Patterns and Post-translational Modifications Associated with Mammalian Histone H3 Variants, Journal of Biological Chemistry, vol.281, issue.1, pp.559-68, 2006.
DOI : 10.1074/jbc.M509266200

E. Mckittrick, P. Gafken, K. Ahmad, and S. Henikoff, From The Cover: Histone H3.3 is enriched in covalent modifications associated with active chromatin, Proceedings of the National Academy of Sciences, vol.101, issue.6, pp.1525-1555, 2004.
DOI : 10.1073/pnas.0308092100

A. Loyola, T. Bonaldi, D. Roche, A. Imhof, and G. Almouzni, PTMs on H3 Variants before Chromatin Assembly Potentiate Their Final Epigenetic State, Molecular Cell, vol.24, issue.2, pp.309-325, 2006.
DOI : 10.1016/j.molcel.2006.08.019

B. Li, M. Carey, and J. Workman, The Role of Chromatin during Transcription, Cell, vol.128, issue.4, pp.707-726, 2007.
DOI : 10.1016/j.cell.2007.01.015

C. Jin and G. Felsenfeld, Nucleosome stability mediated by histone variants H3.3 and H2A.Z, Genes & Development, vol.21, issue.12, pp.1519-1548, 2007.
DOI : 10.1101/gad.1547707

M. Torres-padilla, A. Bannister, P. Hurd, T. Kouzarides, and M. Zernicka-goetz, Dynamic distribution of the replacement histone variant H3.3 in the mouse oocyte and preimplantation embryos, The International Journal of Developmental Biology, vol.50, issue.Next, pp.455-61, 2006.
DOI : 10.1387/ijdb.052073mt

P. Hajkova, K. Ancelin, T. Waldmann, N. Lacoste, U. Lange et al., Chromatin dynamics during epigenetic reprogramming in the mouse germ line, Nature, vol.171, issue.7189, pp.877-81, 2008.
DOI : 10.1038/nature06714

D. Wouters-tyrou, A. Martinage, P. Chevaillier, and P. Sautiere, Nuclear basic proteins in spermiogenesis, Biochimie, vol.80, issue.2, pp.117-145, 1998.
DOI : 10.1016/S0300-9084(98)80018-7

G. Van-der-heijden, J. Dieker, A. Derijck, S. Muller, J. Berden et al., Asymmetry in Histone H3 variants and lysine methylation between paternal and maternal chromatin of the early mouse zygote, Mechanisms of Development, vol.122, issue.9, pp.1008-1030, 2005.
DOI : 10.1016/j.mod.2005.04.009

S. Kageyama, H. Liu, N. Kaneko, M. Ooga, M. Nagata et al., Alterations in epigenetic modifications during oocyte growth in mice, Reproduction, vol.133, issue.1, pp.85-94, 2007.
DOI : 10.1530/REP-06-0025

B. Loppin, E. Bonnefoy, C. Anselme, A. Laurencon, T. Karr et al., The histone H3.3 chaperone HIRA is essential for chromatin assembly in the male pronucleus, Nature, vol.15, issue.7063, pp.1386-90, 2005.
DOI : 10.1126/science.1092727

URL : https://hal.archives-ouvertes.fr/hal-00391456

P. Magnaghi, C. Roberts, S. Lorain, M. Lipinski, and P. Scambler, HIRA, a mammalian homologue of Saccharomyces cerevisiae transcriptional co-repressors, interacts with Pax3, Nature Genetics, vol.20, pp.74-81, 1998.

M. Rehtanz, H. Schmidt, U. Warthorst, and G. Steger, Direct Interaction between Nucleosome Assembly Protein 1 and the Papillomavirus E2 Proteins Involved in Activation of Transcription, Molecular and Cellular Biology, vol.24, issue.5, pp.2153-68, 2004.
DOI : 10.1128/MCB.24.5.2153-2168.2004

B. Turner, Meiotic sex chromosome inactivation, Development, vol.134, issue.10, pp.1823-1854, 2007.
DOI : 10.1242/dev.000018

URL : https://hal.archives-ouvertes.fr/hal-01229825

G. Van-der-heijden, A. Derijck, E. Postfai, M. Giele, P. Pelczar et al., Chromosome-wide nucleosome replacement and H3.3 incorporation during mammalian meiotic sex chromosome inactivation, Nature Genetics, vol.117, issue.2, pp.251-259, 2007.
DOI : 10.1038/ng1949

P. Hajkova, S. Erhardt, N. Lane, T. Haaf, O. El-maari et al., Epigenetic reprogramming in mouse primordial germ cells, Mechanisms of Development, vol.117, issue.1-2, pp.15-23, 2002.
DOI : 10.1016/S0925-4773(02)00181-8

O. Fernandez-capetillo, S. Mahadevaiah, C. A. Romanienko, P. Camerini-otero, R. Bonner et al., H2AX Is Required for Chromatin Remodeling and Inactivation of Sex Chromosomes in Male Mouse Meiosis, Developmental Cell, vol.4, issue.4, pp.497-508, 2003.
DOI : 10.1016/S1534-5807(03)00093-5

S. Dimitrov, M. Dasso, and A. Wolffe, Remodeling sperm chromatin in Xenopus laevis egg extracts: the role of core histone phosphorylation and linker histone B4 in chromatin assembly, The Journal of Cell Biology, vol.126, issue.3, pp.591-601, 1994.
DOI : 10.1083/jcb.126.3.591

J. Pehrson and V. Fried, MacroH2A, a core histone containing a large nonhistone region, Science, vol.257, issue.5075, pp.1398-400, 1992.
DOI : 10.1126/science.1529340

C. Costanzi, P. Stein, D. Worrad, R. Schultz, and J. Pehrson, Histone macroH2A1 is concentrated in the inactive X chromosome of female preimplantation mouse embryos, Development, vol.127, pp.2283-2292, 2000.

S. Hoyer-fender, C. Costanzi, and J. Pehrson, Histone MacroH2A1.2 Is Concentrated in the XY-Body by the Early Pachytene Stage of Spermatogenesis, Experimental Cell Research, vol.258, issue.2, pp.254-60, 2000.
DOI : 10.1006/excr.2000.4951

C. Chang, Y. Ma, S. Jacobs, X. Tian, X. Yang et al., A maternal store of macroH2A is removed from pronuclei prior to onset of somatic macroH2A expression in preimplantation embryos, Developmental Biology, vol.278, issue.2, pp.367-80, 2005.
DOI : 10.1016/j.ydbio.2004.11.032

D. Angelov, A. Molla, P. Perche, F. Hans, J. Coté et al., The Histone Variant MacroH2A Interferes with Transcription Factor Binding and SWI/SNF Nucleosome Remodeling, Molecular Cell, vol.11, issue.4, pp.1033-1074, 2003.
DOI : 10.1016/S1097-2765(03)00100-X

URL : https://hal.archives-ouvertes.fr/hal-00023762

E. Sarcinella, P. Zuzarte, P. Lau, R. Draker, and P. Cheung, Monoubiquitylation of H2A.Z Distinguishes Its Association with Euchromatin or Facultative Heterochromatin, Molecular and Cellular Biology, vol.27, issue.18, pp.6457-68, 2007.
DOI : 10.1128/MCB.00241-07

M. Meneghini, M. Wu, and H. Madhani, Conserved Histone Variant H2A.Z Protects Euchromatin from the Ectopic Spread of Silent Heterochromatin, Cell, vol.112, issue.5, pp.725-761, 2003.
DOI : 10.1016/S0092-8674(03)00123-5

J. Swaminathan, E. Baxter, and V. Corces, The role of histone H2Av variant replacement and histone H4 acetylation in the establishment of Drosophila heterochromatin, Genes & Development, vol.19, issue.1, pp.65-76, 2005.
DOI : 10.1101/gad.1259105

K. Bruce, F. Myers, E. Mantouvalou, P. Lefevre, I. Greaves et al., The replacement histone H2A.Z in a hyperacetylated form is a feature of active genes in the chicken, Nucleic Acids Research, vol.33, issue.17, pp.5633-5642, 2005.
DOI : 10.1093/nar/gki874