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Development of the mammalian embryo is, by definition, 
epigenetic. At the level of the nucleosome, the building block of 
the chromatin, changes in chromatin structure can be regulated 
through histone content. Apart from the canonical histones whose 
synthesis is restricted to S-phase, different histone variants have 
been identified. Histone variants can help to establish specialised 
chromatin regions and to regulate developmental and cell differ-
entiation processes. While the role of histone variants has been 
extensively explored in differentiated cells, less is known in germ 
cells and embryos. Increasing lines of evidence suggest that the 
functions and/or properties of histone variants in embryos might 
be different to those in somatic cells. During reprogramming, 
histone variants such as H3.3 or H2A.Z are candidates to play 
potential important roles. We suggest that H3.3 has an important 
role in setting up a ‘transition’ signature, and provides the possi-
bility to infer changes in chromatin architecture independent of 
DNA replication. This should confer flexibility during important 
developmental processes. The specific pathways through which 
H3.3 could regulate different chromatin conformations at different 
loci and the identification of specific proteins responsible for this 
deposition are an important challenge for future investigation. 
Lastly, the set of variants incorporated within the nucleosome 
can have important consequences in the regulation of epigenetic 
mechanisms during development.

Eukaryotic gene expression is deeply influenced by changes in 
chromatin structure. When these changes are independent from the 
DNA sequence per se and are inherited through cell division, they 
can constitute epigenetic signatures. Apart from DNA methylation, 
most often these changes occur at the level of the building block 
of the chromatin, the nucleosome. The nucleosome is formed by 
two copies of each of the core histones: H3, H4, H2A and H2B, 
around which a ~146 bp piece of DNA is wrapped. The so called 
canonical histones are incorporated into the chromatin exclusively 

during S-phase, their expression is cell cycle regulated and they are 
transcribed from multiple genes often distributed in clusters.1-4 
However, for all histones—apart from H4—alternative histone 
variants exist. These histone variants are also expressed and incor-
porated outside of S-phase and are transcribed from single-copy 
genes.5-7 Importantly, some of these variants have acquired specia-
lised functions in developmental processes such as fertilization and 
X-chromosome inactivation. Here we discuss and present some 
hypotheses on the contribution of two types of variants: those of 
H3 and of H2A as well as their potential role in directing epigenetic 
information in mammalian development.

Histone H3 Variants: Small Differences Can be Big

Most studies concerning histone variants have focused on variants 
of H3. In mammals, there are two canonical histones of H3: H3.1 
and H3.2 as well as three other H3 variants: H3.3, a testis specific 
H3 variant (H3t) and centromeric H3 variants (CenH3s). We will 
focus on the three variants H3.1, H3.2 and H3.3, as they have been 
studied throughout key developmental processes and in cell differ-
entiation systems, including mouse embryos and ES cells. Only one 
amino acid differs between H3.1 and H3.2, located at position 96 
(a Cys-Ser substitution) and five amino acids are different between 
H3.1 and H3.3 at positions 31, 87, 89, 90 and 96 (Ala-Ser, Ser-Ala, 
Val-Ile, Met-Gly, Cys-Ser substitutions respectively).8 The differences 
in amino acid sequence amongst them, albeit surprisingly small, 
lead to different pathways of incorporation into the chromatin for  
H3.1/H3.2 on the one hand and H3.3 on the other hand.5,9,10 In 
somatic cells, it has been well established that the canonical vari-
ants H3.1 and H3.2 are synthesised only during S-phase and then 
deposited into the chromatin through a Replication Coupled (RC) 
pathway.9,11,12 Recently, it was further shown that these two vari-
ants can also be incorporated in the context of DNA repair.13 More 
generally, the canonical variants of H3 are deposited into chromatin 
concomitant and/or in a pathway that involves DNA synthesis. On 
the contrary, H3.3 is synthesised throughout the cell cycle and is 
incorporated into chromatin by a Replication Independent (RI) 
pathway, hence its name of ‘replacement variant.’

As a general rule, H3 is deposited as H3-H4 tetramers.10-12 
RI and RC deposition of H3 into the chromatin are carried out 
by different histone chaperones. In HeLa cells, the RC deposition 
complex for H3.1/2 contains the histone chaperone ASF-1 and the 
entire CAF-1 complex, while the RI deposition complex of H3.3 
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roles in sexual reproduction that are different from their roles in 
somatic cells. Whether the three H3 variants display a similar pattern 
of PTMs in embryos and in somatic cells is not known, but most 
likely the repertoire of modifications in each of the three variants 
differ in the two situations. For example, we have previously reported 
a dicotomy between H3.3 enrichment in the male pronucleus and a 
lack of the active marks H3K4me2 and H3K4me3 following fertil-
ization.25

In germ cells and embryos, two major events of large-scale replace-
ment of chromatin marks (DNA methylation, histone PTMs, histone 
content) occur. In mouse primordial germ cells (PGCs), parental 
imprints are erased and re-established in a sex-specific manner. 
Monoallelic parent-of-origin specific expression of imprinted genes is 
regulated by epigenetic modifications. The reprogramming of PGCs 
occurs between embryonic day (E) 11.5 and E12.5. During this 
reprogramming event, it has been inferred, because of the transient 
presence of HIRA in the nucleus of the PGCs between E11.5 and 
E12.5, that H3.3 could play a role in this phenomenon.26 Another 
event involving huge reprogramming occurs immediately following 
fertilization when two highly differentiated cells, the oocyte and the 
sperm, give rise to a totipotent cell, the zygote. In the sperm most 
histones are replaced by protamines and other nuclear basic proteins 
during spermiogenesis.27 After the sperm entry into the oocyte 
cytoplasm, protamines are removed and replaced by nucleosomal 
histones. It has been shown that H3.3 accumulates preferentially 
in newly assembled chromatin on the paternal genome.25,27,28 This 
constitutes the only event of genome wide deposition of H3.3 in the 
life of an organism. As a consequence of protamine exchange and 
the global acquisition of newly incorporated histones on the paternal 
genome, the paternal chromatin must acquire most epigenetic 
signatures, while the maternal genome has already epigenetic marks, 
which were acquired mainly during folliculogenesis.29

Histone H3 Variants: Time-Window for a Transition

We can suggest different hypotheses concerning a potential 
role for H3.3 during reprogramming, perhaps through facilitating 
this process at the nucleosomal level. First, because in both PGCs 
and in the zygote reprogramming takes place—at least initially—
independently of DNA replication, H3.3 deposition in PGCs and 
in the paternal chromatin might occur only because H3.1/2 is not 
available. This is however unlikely, as we have performed microinjec-
tions of H3.1 in zygotes before pronuclear formation and have not 
observed incorporation of H3.1 before the S-phase (our unpublished 
data). Thus, in the mouse zygote, as it is in Drosophila,30 the non- 
incorporation of H3.1 might not only be due to the absence of the 
H3.1 protein, but rather to the absence of functional H3.1 deposition 
machinery outside of the S-phase. If we consider that H3.3 is depos-
ited on the genome only because H3.1 cannot be deposited, then 
one could predict that H3.3 will play no particular role by itself but 
will just have a “neutral” or “default” filling-in role. Broadly speaking, 
this should be true if the deposition of H3 variants is genome-wide 
and not ‘loci-specifically’ regulated. However, we have recently found 
that in the mouse zygote, H3.3 and H3.1 show different distribu-
tions along specific genomic regions in the two pronuclei (Santenard 
A, et al. submitted). This new data suggests that H3.3 could have 
specific roles in the establishment of new epigenetic signatures in 
the male pronucleus after fertilization. If we consider that H3.3 

contains ASF-1, the smallest subunit of the CAF-1 complex (p48) 
and a specific histone chaperone HIRA.10,14 CAF-1 can interact with 
PCNA and promote subsequent deposition of H3.1/2-H4 heterodi-
mers to sites of DNA synthesis, allowing for the assembly of new 
nucleosomes at the replication fork.15 The absence of deposition of 
H3.1/2 outside of the S-phase cannot be explained exclusively by the 
fact that these variants are not available during the entire cell cycle. 
Indeed, in Drosophila, the pathway of assembly for H3 canonical 
variants is specified by the residues located in positions 87, 89 and 
90, which differ among H3.1/H3.2 and H3.3 variants.5,9

Once incorporated into nucleosomes, H3.1, H3.2 and H3.3 
will have different effects on chromatin-mediated processes. Indeed, 
studies in mammalian cells show that upon transcriptional induc-
tion, H3.3 is recruited at highly expressed loci,16-18 while H3.1 and 
H3.2 are potentially linked with both active and inactive genes. 
Despite their high degree of similarity, mass-spectrometric analysis of 
histone H3 variants has revealed that the post-translational modifica-
tions (PTMs) occurring on the three variants differ: H3.3 is mostly 
associated with marks of transcriptionally active chromatin, H3.2 
is enriched in repressive marks and H3.1 contains PTMs of active 
and inactive chromatin.19-21 It is important to note that, to date, 
this is the only evidence that H3.1 and H3.2 could have different 
functions. It has also been shown that when H3.3 is present in the 
chromatin, the surrounding nucleosomes, even if containing H3.1, 
will have predominantly marks of active transcription.22 So, it 
appears that, in somatic cells, H3.1 and H3.2 are deposited rather 
broadly on the genome during replication and could play roles both 
in active or inactive genomic regions, most likely due to their content 
of different PTMs. On the contrary, deposition of H3.3 could be 
more regulated, and perhaps targeted to specific genomic regions, as 
it is the case of sites of active transcription.

There are further considerations for H3.3 deposition outside 
of S-phase. It has been suggested that the deposition of H3.3 
at transcribed genes is the result of a neutral replacement, in a 
replication-independent manner, of nucleosomes that have been 
evicted by the transcription machinery.23 However, other studies 
suggest that H3.3 by itself, even in the absence of post-translational 
modifications, could act as a marker for active transcription.16 These 
conclusions are based on findings that show conservation of H3.3 
on the chromatin within a highly active transgene through mitosis, 
which is expected to promote gene activation immediately after exit 
from mitosis.16 However, the pathways responsible for controling 
specific deposition of H3.3 to active genes and the pathways of 
recognition of H3.3 by the transcription machinery still have to be 
elucidated. An important feature is that nucleosomes containing 
H3.3 appear to be less stable than those containing H3.1 or H3.2,24 
and could therefore be more easily removed, thereby allowing tran-
scription and/or local chromatin remodelling.

H3 Variants in Reprogramming During Mammalian 
Development

The roles played by the different variants of H3 in germ cells and 
during preimplantation development are less well described compared 
to what is known in somatic cells, most likely due to the technical 
limitations of both systems. The current lack of antibodies specific 
for the different variants does not facilitate this task. However, recent 
works have begun to highlight the fact that H3 variants could have 
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Histone H2A Variants: Nucleosomal Partners for H3.3?

It is important to ask which are the nucleosomal partners of 
H3.3 during these developmental processes, in particular because 
it has been suggested that the identity of the partners within the 
nucleosome might give rise to different effects on the chroma-
tin.24 Variants of H2A are also involved in wide-scale chromatin 
remodelling events and have acquired specialised functions during 
development. Among these, phosphorylation of the H2A variant 
H2A.X was implicated in the initiation of the MSCI.36 H2A.X is 
the most abundant H2A variant in Xenopus eggs, and the ability 
to remodel the sperm nucleus to form a paternal pronucleus after 
fertilization is directly associated with its phosphorylation status.37 
Moreover, unusually high levels of phosphorylated H2A.X are present 
throughout mouse preimplantation development (Ziegler-Birling  
et al., in press), opening the possibility for a role of this variant in 
chromatin assembly and remodelling during these early stages.58 
MacroH2A is an H2A variant possessing a long C-terminal domain 
and is conserved in vertebrates.38 MacroH2A is enriched in the 
inactive X chromosome and becomes enriched in X and Y chromo-
somes during MSCI.39,40 It is also peculiar because it shows a very 
tight temporal specific pattern of expression in mouse development. 
MacroH2A is present in the chromatin of developing and mature 
oocytes but it is immediately lost from the maternal chromatin in 
the zygote following fertilization and reappears only after the 8-cell 
stage.41 Because macroH2A inhibits chromatin remodelling—and 
transcription42—it is possible that its rapid disappearance following 
fertilization is necessary to render the zygotic chromatin permissive 
for remodelling and epigenetic reprogramming.

We have mentioned above a third variant of H2A, H2A.Z, which is 
associated with both euchromatin and facultative heterochromatin.43 
H2A.Z has been implicated in apparently opposing functions such 
as prevention of gene silencing in S. cerevisiae and the establishment 
of heterochromatin in Drosophila.44,45 Like H3.3, H2A.Z is not 
uniformly distributed throughout the genome. H2A.Z is enriched at 
promoters of developmentally regulated genes in chicken erythroid 
cells and in mouse ES cells.46,47 Interestingly, H2A.Z localization 
is different in pluripotent verus differentiated cells.43 In mouse ES 
cells, H2A.Z is required for differentiation and is functionally linked 
to Polycomb-induced gene silencing.47 These findings are in full 
agreement with the early embryonic lethality resulting from loss of 
H2A.Z, as mouse blastocysts lacking H2A.Z fail to survive beyond 
implantation.48 As we have already stated, a direct relationship 
between H2A.Z-H3.3-containing nucleosomes and local changes 
in chromatin structure have been documented. There are some 
interesting links between H3.3 and H2A.Z (H2Av in Drosophila). 
Nucleosome eviction during transcription can result in loss of  
H3.3/H2A.Z nucleosomes.49 Given the low stability conferred by 
the presence of both H3.3 and H2A.Z to the nucleosome compared 
to H2A- or H3-containing nucleosomes, it has been suggested 
that H3.3 possesses a specific regulatory role when coupled with 
H2A.Z.24 Another level of regulation by H2A variants arises from 
the interrelation of H2A.Z with DNA methylation. The presence 
of H2A.Z and DNA-methylation seem to be mutually exclusive in 
plants, and most importantly, loss of H2A.Z deposition following 
SWR1 complex knock-down leads to genomic hypermethylation. 
This led to the suggestion that H2A.Z protects genes from DNA 

can have both a “neutral” effect at some loci and specific effects on 
reprogramming of other loci, this would predict that H3.3 has to be 
recognised by different complexes at these different specific locations. 
If the genomic regions where specific variants become incorporated 
are important, the relevant question is how is this targeted deposi-
tion regulated? Is this achieved through the same HIRA complex? or 
Would there be a specific deposition complex, maybe different from 
the HIRA complex, in specialised genomic regions? And if so, would 
this putative complex recognise transcription factor sites or would it 
work based on RNA-interactions and/or bridging proteins? Of note, 
some histone chaperones can physically interact with specific tran-
scription factors: HIRA has been shown to interact with Pax3 and 
Pax7, and NAP1 with E2F.31,32 This suggests that deposition at given 
target genes can be potentially achieved through these interactions.

There is some evidence of H3.3 being enriched in specific 
genomic locations in developmentally regulated processes. During 
spermatogenesis, the X and Y chromosomes partially synapse to 
form the sex body in a process called Meiotic Sex Chromosome 
Inactivation (MSCI). During this process X and Y chromosomes 
become transcriptionally silenced.33 In mouse and human, imme-
diately after the initiation of MSCI at the early pachytene stage 
of meiotic prophase, nucleosomes present at the sex chromosomes 
are removed and replaced by new ones. Because this incorpora-
tion of new nucleosomes occurs independently of DNA synthesis, 
it is exclusively H3.3 that is incorporated in a chromosome-wide 
manner.34 These observations have interesting consequences: firstly, 
that deposition of H3.3 can be specifically regulated and secondly, 
that H3.3 can also be associated with silenced, heterochromatic 
genomic regions or, at least, that this variant does not interfere with 
the heterochromatic state of the sex chromosomes. Whether H3.3 
deposition is potentially involved in silencing is unclear. During 
MSCI, the incorporation of H3.3 and presumably newly assembled 
nucleosomes into chromatin further coincide with a lack of detec-
tion of almost all of the histone PTMs.34 This also occurs during 
reprogramming of PGCs, where there is a loss of almost all PTMs 
between E11.5 and E12.5.26,35 At this precise time, the replacement 
variant of H2A, H2A.Z, is also detected on the chromatin.26 Thus, 
although it is currently impossible to show whether an individual 
nucleosome contains both H3.3 and H2A.Z variants, there is a time 
window at ~E11.5 during which H2A.Z and H3.3 are presumably 
both present in the nucleosomes. Of note, nucleosomes containing 
H2A.Z and H3.3 are less stable than those containing the canonical 
H2A and H3.1.24 Because H2A.Z-H3.3-containing nucleosomes 
are less stable, the cell will thus need less energy to remove these. 
Thus, replacing the existing nucleosomes with their PTMs by less 
stable ones could be an efficient way to quickly remove old epige-
netic marks and rapidly allow a huge reprogramming of the genome. 
Non-stable nucleosomes could also be a signal for the cell to ‘realise’ 
that something is ongoing at these loci and that some proteins have 
to come to replace these non-stable octamers by another ones that 
should thereafter remain as a long-term message. For reprogram-
ming, H3.3 could then be a mark of transient state while H3.1/2 
a long-term mark. Thus, another hypothesis concerning the role of 
H3.3 incorporation during reprogramming relates to the flexibility 
imparted by its potential ‘transient’ or ‘less stable’ state.
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independently of replication, H3.3 will probably be more broadly 
present and will play an important role in reprogramming. The fact 
that H3.3 participates in the formation of less stable nucleosomes 
compared to H3.1 could be an advantage in germ cells and embryos, 
not only to allow transcription as it is in somatic cells, but also 
to allow quick and efficient removal of existing epigenetic marks, 
acquisition of new ones and a more open and permissive chromatin 
conformation. Thus, H3.1/2 would rather play a role in the propaga-
tion of a stable epigenetic state, a mark for example, through mitosis. 
We can also suggest that, in an H3.3 background in the paternal 
genome in zygotes, the presence of H3.1/2 could act as ‘marks’ by 
themselves, as H3.3 does in specific (e.g., transcribed) loci in a broad 
H3.1/2 background in somatic cells. If we assume that the same 
protein has different roles in a same organism, this implies that there 
should be different complexes that will interact with each of the vari-
ants depending on its localization or on its interacting proteins. Up 
to now, only one complex containing the histone chaperone HIRA 
has been described to interact with and deposit H3.3 but further 
investigations are needed to understand the pathways through which 
H3.3 could regulate different chromatin conformations at different 
loci. Thus, we suggest that H3.3 has an important role in setting up 
a ‘transition’ signature in germ cells and embryos, and provides the 
possibility to infer changes on the chromatin independent of one of 
the most basic DNA process, DNA replication. This should confer 
flexibility during important developmental processes to support 
changes mediated via alterations in chromatin composition.
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