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SUMMARY 

β-scorpion toxins specifically modulate the voltage dependence of sodium channel 

activation by acting through a voltage-sensor trapping model. We used mutagenesis, 

functional analysis and the action of β-toxin as tools to investigate the existence and role 

in channel activation of molecular interactions between the charged residues of the S2, S3 

and S4 segments in domain II of sodium channels. Mutating to arginine the acidic 

residues of the S2 and S3 transmembrane segments in domain II, or making charge-

reversal mutation of the two outermost gating charges of the IIS4 voltage-sensor, shifts 

the voltage-dependence of channel activation to more positive potentials and enhances 

the effect of β-scorpion toxin. Thus, mutations of acidic residues in IIS2 and IIS3 

segments are able to promote voltage sensor trapping in a way that is similar to the 

mutations of the arginines in the IIS4 segment. In order to disclose the network of 

interactions among acidic and basic residues we performed functional analysis of charge-

inversion double mutants: our data suggest that the first arginine of the voltage-sensor S4 

in domain II (R850) interacts specifically with E805, D814 and E821 in the S2 and S3 

segments, whereas the second arginine (R853) only interacts with D827 in the S3 

segment. Our results suggest that the S2, S3 and S4 segments in domain II form a 

voltage-sensing structure, and that molecular interactions between the charged residues of 

this structure modulate the availability of the IIS4 voltage-sensor for trapping by β-

toxins. They also provide unique insights into the molecular events that occur during 

channel activation, as well as into the structure of the channel. 
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INTRODUCTION 

Voltage-gated sodium channels are responsible for the voltage-dependent increase in 

sodium permeability and play a major role in initiating and propagating action potentials 

in excitable cells (Hodgkin & HUXLEY, 1952). They are transmembrane proteins 

composed of a pore forming α subunit that can be associated with smaller subunits ß1, 

ß2, ß3 and ß4 (Catterall, 2000; Yu et al., 2003). The α subunit consists of four 

homologous domains (I-IV), each containing six transmembrane segments (S1-S6) and 

one re-entrant segment (SS1/SS2) connected by internal and external polypeptide loops 

(Yu et al., 2003). The pore is formed by the transmembrane segments S5 and S6 and the 

membrane re-entrant segment SS1 and SS2 (Noda et al., 1989; Terlau et al., 1991; 

Heinemann et al., 1992; Ragsdale et al., 1994). The voltage-dependent gating of sodium 

channels is controlled by the S4 segments, which contain one positively charged residue 

at every third position and move outward in response to depolarisation; they therefore act 

as intrinsic voltage sensors to initiate activation (Catterall, 1986; Guy & Seetharamulu, 

1986; Stuhmer et al., 1989; Yang & Horn, 1995; Yang et al., 1996; Yang et al., 1997; 

Mitrovic et al., 1998; Cha et al., 1999; Chanda & Bezanilla, 2002).  

The function of voltage-dependent sodium channels is strongly altered by various groups 

of neurotoxins (Cestèle & Catterall, 2000), whose high affinity and specificity make them 

unique tools to get new insights into channel structure and function. ß-scorpion toxins are 

particularly useful to understand and unmask the molecular basis of sodium channel 

activation (Cestèle et al., 1998; Cestèle et al., 2001). Indeed, β-scorpion toxins bind to 

receptor site 4, reduce the peak sodium current and shift the voltage dependence of 

activation to more negative potentials (Cestèle et al., 1998). Identification of molecular 

determinants for binding of toxins that modify activation provide important information 

about the mechanisms of channel gating and the structure involved in this process. 

Attempts to localize the receptor site of β-scorpion toxins on sodium channels have been 

realised using the fact that they shift the voltage-dependence of activation on neuronal 

and skeletal sodium channels but not on cardiac sodium channels. Using chimeras 

between cardiac and skeletal muscle channels, it has been shown that domain II of 

skeletal muscle sodium channels is required for the effect of β-scorpion toxins on the 

voltage-dependence of activation (Marcotte et al., 1997). This data strongly suggest that 

β-scorpion toxins bind to domain II of sodium channels. Moreover, chimeric sodium 

channels in which the amino acid residues within each of the 16 extracellular loops of the 
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Nav1.2 brain sodium channels α subunit had been converted to those in the cardiac 

isoform revealed that chimeras of the S1-S2 and S3-S4 extracellular loops in domain II 

had altered β-toxin binding affinity. The strongest effect was obtained with the chimera 

G845N in the IIS3-S4 loop which not only reduces the affinity of the toxin for its 

receptor site but transfers specifically all the functional effects that β-scorpion toxins 

have on cardiac sodium channels to the Nav1.2 sodium channels (Cestèle et al., 1998). 

According to these data, it has been suggested that β-scorpion toxins bind to the 

extracellular loops in domain II of sodium channels and their effect on gating is described 

by a voltage-sensor trapping model (Cestèle et al., 1998; Cestèle et al., 2001). In fact, ß-

scorpion toxins shift the voltage-dependence of activation to more negative potentials 

only after a strong depolarising pre-pulse, thus indicating that their effect depends on 

channel activation. The voltage-sensor trapping model predicts that β-scorpion toxin first 

binds to the channel and partially inhibits the current and then, as the IIS4 segment moves 

outward during activation, the toxin binds to newly accessible residues in the IIS3-S4 

loop and in the extracellular end of the IIS4 segment, thus trapping IIS4 in an outward, 

activated position. Therefore, voltage-sensor trapping favours sodium channel activation 

and causes the negative shift in the voltage dependence of activation characteristic of ß-

scorpion toxins. Arguments in favour of the voltage-sensor trapping model include the 

following ones: 1- chemical modification of R850C in the IIS4 segment by MTS reagents 

shifts the activation to more negative potentials as the β-toxin (Mitrovic et al., 1998; 

Cestèle et al., 2001); 2- chemical modification of R853C by MTSEA alter the voltage 

dependence of activation and β-toxin action on sodium channels (Cestèle et al., 2001); 3- 

mutations in domain II alter β-toxin affinity and/or effect on sodium channels (Marcotte 

et al., 1997; Cestèle et al., 1998; Cestèle et al., 2001) ; 4- mutation G845N transfers to 

Nav1.2 the typical effects of ß-scorpion toxins on the cardiac channel (Cestèle et al., 

1998).  

Our previous study (Cestèle et al., 2001) demonstrated that neutralizing the two 

outermost arginine residues of the IIS4 voltage sensor markedly enhances the effect of  ß-

scorpion toxin on sodium channels, because of increased IIS4 segment accessibility from 

the extracellular side of the membrane. As it has been shown that basic amino acid 

residues in the S4 segment of K+ channels interact with acidic residues in the S2 and S3 

segments (Papazian et al., 1995; Planells-Cases et al., 1995; Seoh et al., 1996; Tiwari-

Woodruff et al., 1997; Tiwari-Woodruff et al., 2000), we predicted that the two 
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outermost arginine of the IIS4 segment could be involved in similar electrostatic 

interactions that may stabilize the voltage sensor within the membrane. Thus, mutations 

of acidic residues that interact with the arginines of the IIS4 could modify the availability 

of the IIS4 segment for β-scorpion toxin trapping. The selective interactions of the 

charged residues could therefore be disclosed by studying the effects of their mutations 

on ß-scorpion toxin activity, whose action, according to the voltage-sensor trapping 

model, depends on the availability of IIS4 segment. Moreover, the possible electrostatic 

interactions between the S2, S3 and S4 segments in domain II of voltage-gated sodium 

channels could be specific and distinct from the ones observed in potassium channels. 

Therefore, their study could disclose important aspects of the molecular topology and 

structure-function relationships of sodium channels. 

In this paper, we show that mutation of acidic amino acid residues of the S2 and S3 

segments in domain II alter sodium channel gating, which suggests that the S2, S3 and S4 

segments in domain II may constitute a voltage-sensing structure for voltage-gated 

sodium channels as has been shown for potassium channels (Planells-Cases et al., 1995; 

Seoh et al., 1996). Furthermore, our results indicate that mutation of the acidic amino 

acid residues of IIS2 and IIS3 segments enhances the effect of  ß-scorpion toxin on 

activation, finding that is consistent with the voltage sensor-trapping model.  Finally, 

using a charge-reversal mutation strategy and analysing the functional effect of ß-

scorpion toxin, we suggest the possible existence of electrostatic interactions between the 

two outermost arginines of the IIS4 segment and the four acidic amino acid residues of 

S2 and S3 segments in domain II.  
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METHODS 

Materials 

ß-scorpion toxin Css IV was purified from the venom of Centruroides suffusus suffusus 

(Martin et al., 1987). The restriction endonucleases were purchased from New England 

Biolabs, and the other molecular biology reagents from Promega. The MC1061 

Escherichia coli bacterial strain was purchased from Invitrogen. The human embryonic 

kidney tsA-201 cells, a derivate of HEK-293 cells expressing the simian virus (SV-40) 

large antigen, were purchased from ECACC (UK). cDNAs encoding rat Nav1.2a α 

subunits in the pCDM8 vector and β1 subunit in the pEYFP-N1 vector were used for 

transfection. 

 

Site-directed mutagenesis 

The R850E, R853E, E805R, D814R, E821R and D827R mutations were introduced by 

PCR amplifying an 800-bp cDNA fragment from the XmaI to the SphI site, that was 

subcloned into the Nav1.2a cDNA in pCDM8. In order to facilitate the screening of the 

clones, a silent restriction site was introduced along with the mutations: a silent HpaII site 

for R850E and R853E, a silent XmnI site for E805R and D814R, and a silent BamHI site 

for E821R and D827R. Double mutations E805R/R850E, E805R/R853E, D814R/R850E, 

D814R/R853E, E821R/R850E, E821R/R853E, D827R/R850E and D827R/R853E were 

introduced by PCR using R850E or R853E cDNA as template, and the PCR fragments 

were subcloned as describe above. The clones were screened using the silent restriction 

sites associated with the respective mutation. All of the clones were sequenced through 

the entire PCR fragment.  

 

Transient expression in tsA-201 cells. 

The tsA-cells were maintained at 37˚C in 5% CO2 in DMEM/F12 medium 

(GIBCO/BRL/Life Technologies) supplemented with 10% FBS (GIBCO/BRL/Life 

Technologies), 20 µg/ml penicillin, and 10 µg/ml streptomycin (Sigma). They were 

transiently co-transfected using calcium phosphate precipitation (Jordan et al., 1996) with 

cDNAs for the channel α subunit and for the ß1 subunit tagged with YFP (in the vector 

pEYFP-N1, Clontech) in a molar ratio of 1:2. The successfully transfected cells were 

detected by fluorescence microscopy.  
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Electrophysiological recording and analysis 

Whole-cell sodium currents were recorded from tsA-201 cells expressing Nav1.2a wild-

type or mutant sodium channel α subunits. The external recording solution consisted of 

the following (in mM): 110 NaCl, 10 Cs-HEPES, 2 KCl, 1 CaCl2, 80 glucose, pH 7; the 

internal recording solution consisted of the following (in mM): 90 CsF, 15 CsCl, 10 Cs-

HEPES, 10 EGTA, 70 glucose, pH 7. Recordings were obtained at room temperature 

using a Multiclamp 700A patch-clamp amplifier (Axon Instruments, Inc.) and were 

usually started 5 min after rupture of the membrane patch to allow intracellular dialysis 

with the pipette solution. Current signals were filtered at 10KHz, capacitative currents 

were minimized by means of the amplifier circuitry and 80-85% series resistance 

compensation was routinely used. The remaining linear leak and capacitance currents 

were subtracted online using a P/4 subtraction paradigm. Css IV was dissolved in the 

extracellular recording bath solution at the final concentration. All experiments were 

performed at room temperature. Conductance-voltage curves were derived from peak 

sodium current versus test voltage (I-V) curves according to G=I/(V-VR) where I is the 

peak current, V is the test voltage, and VR is the apparent reversal potential. Normalized 

conductance-voltage curves were fit with a Boltzmann relationship of the form 

1/{1+exp[(V1/2-V)/k]} or with the sum of two such expressions, where V1/2 is the voltage 

for half-maximal activation and k is a slope factor with the dimensions of millivolts. No 

perfusion of the toxin was used to record the I/V curves because the amount of natural 

toxin that we can use is limited. Therefore, in all these experiments the toxin was directly 

dissolved in the recording bath solution and conductance-voltage curves were normalized 

in control and in the presence of toxin. 
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RESULTS 

Effects of the β-scorpion toxin Css IV on wild-type Nav1.2a sodium channels.  

The effects of the β-scorpion toxin on Nav1.2a sodium channels are depicted in Figure 1. 

We have measured the sodium current elicited by a strong depolarisation to 0 mV and the 

sodium current elicited by a test pulse to a negative membrane potential of –60 mV 

following a 1-ms depolarisation to +60 mV (Fig. 1B), in the absence or in the presence of 

toxin. As shown in Figure 1, Css IV caused a reduction in the peak sodium current (Fig. 

1A) and elicited a current at –60 mV (Fig. 1C). Both effects are concentration dependent 

but only the activation at negative potentials requires a 1-ms depolarisation to very 

positive membrane potentials. As shown in Figures 1A and 1C, using 500 nM of Css IV 

does not produce a larger reduction of peak sodium current or a larger current amplitude 

at –60 mV than with 200nM of toxin. Therefore, 200 nM of toxin represents a saturating 

concentration regarding the toxin effect on Nav1.2 sodium channels. As previously 

described for the wild-type Nav1.2a channels (Cestèle et al., 1998; Cestèle et al., 2001), 

treatment with 50 nM of the β-scorpion toxin Css IV had no effect on channel activation, 

as measured by the conductance-voltage curve at a holding potential of –100 mV (Fig. 

1D). However, in the presence of a 1-ms prepulse to +60 mV, 50 nM Css IV induced a 

negative shift in the voltage dependence of activation of 18% of the channels (Fig. 1D, 

Table 1).  A higher concentration of toxin (200 nM) had no effect on the voltage-

dependence of activation in the absence of the depolarising prepulse (data not shown) but 

caused a complete shift to more negative potentials of the conductance-voltage curve 

when the prepulse was applied prior the test pulse (Fig. 1D). Therefore, Css IV has two 

sequential effects on Nav1.2 sodium channels: the first one corresponds to the reduction 

in the peak sodium current and the second one, which requires prior depolarisation and 

depends on channel activation, corresponds to the negative shift in the voltage 

dependence of activation, which is responsible for the appearance of sodium current at 

negative membrane potentials. The effect on sodium channel activation has been 

proposed to be due to the trapping by the toxin of the IIS4 segment in an outward position 

which favours activation at negative potentials (Cestèle et al., 1998). Therefore, the 

ability of β-scorpion toxins to trap the IIS4 segment during activation makes them unique 

and powerful tools to monitor the movement within the membrane and the availability of 

the IIS4 segment from the extracellular side of the membrane.  
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Effects of Css IV on mutants in IIS4 segment of Nav1.2a sodium channels. 

To investigate the possible molecular interactions between the IIS4 voltage sensor and 

the acidic residues of the IIS2 and IIS3 segments, we constructed mutants in which the 

charged residues of the S2, S3 and S4 segments were mutated to the opposite charge. 

First, the two outermost arginines of the IIS4 segment were mutated to a glutamic acid: 

R850E and R853E (Fig. 2). In control conditions (Figs. 3A, 3B and Table 1), analysis of 

the voltage-conductance relationships for the wild-type and mutant channels showed a 

positive shift in the activation curve of 12.6 mV for R850E and 4.9 mV for R853E and a 

reduction in the steepness of the curve. Comparison of the measurements of the steady-

state inactivation (Fig. 3C, Table 2) for Nav1.2a, R850E and R853E showed that the 

mutations do not significantly change the voltage of half maximal inactivation despite the 

difference in voltage dependence of activation. These data are similar to the ones we 

observed when the two outermost arginines of the IIS4 segment were mutated in 

glutamine or cysteine (Cestèle et al., 2001) and underline the specific role that the 

positive charges of the IIS4 segment play in activation.  

As in the case of the neutralization of the two outermost arginine by glutamine or 

cysteine (Cestèle et al., 2001), mutation of R850 and R853 to a glutamic acid strongly 

alters the effect of Css IV: the voltage-dependence of 19% of the R850E channels was 

shifted to more negative potentials even in the absence of a pre-pulse and 59% of the 

channels in the presence of the pre-pulse to +50 mV (Figs. 4A, 4B, Table 1); the voltage 

dependence of all the R853E channels was shifted by 10.6 to 12.8 mV even in the 

absence of the depolarising pre-pulse to +50 mV (Figs. 4C, 4D, Table 1). The ability of 

Css IV to induce a negative shift in the voltage dependence of activation even in the 

absence of the pre-pulse to +50 mV suggests that toxin binding by itself is sufficient to 

stabilize the IIS4 voltage-sensor in an outward/activated position at the resting membrane 

potential. Evidently, mutation of the two outermost arginine residues of the IIS4 segment 

to either a glutamine, a cysteine or a glutamic acid residue favours voltage-sensor 

trapping by ß-scorpion toxins. The ability to favour the activated position is modulated by 

point mutations in domain II: at resting membrane potential, the voltage sensor IIS4 can 

be fully deactivated (as for the wild type), partially activated (as for the mutant R850E) or 

fully activated (as for the mutant R853E). Therefore, β-scorpion toxins represent unique 

tools to track changes in the equilibrium for the IIS4 voltage sensor. 
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Effect of mutation of acidic residues of the IIS2 and IIS3 segment on Css IV activity on 

rat brain Nav1.2a sodium channels. 

It has been shown for K+ channels that basic residues in the S4 segment interact with 

acidic residues in the S2 and S3 segments. These electrostatic interactions represent 

structural constraints that can stabilize the S4 segments and impede their motion 

(Papazian et al., 1995; Planells-Cases et al., 1995; Tiwari-Woodruff et al., 1997; Tiwari-

Woodruff et al., 2000; Li-Smerin et al., 2000). In order to examine the possible 

interactions of R850 and R853 with acidic residues localized in the S2 and S3 segments 

of sodium channels, we also constructed mutants in which the acidic residues of these 

segments were mutated to arginine (Fig. 2). According to our hypothesis, if the negative 

charged residues of the S2 and S3 segments in domain II are involved in electrostatic 

interactions with R850 or R853 in the IIS4 segment, their mutation should have the same 

consequences regarding the β-scorpion toxin effect on activation than the mutation of 

R850 and R853. The disruption of one electrostatic interaction should modify the 

availability of the IIS4 segment within the membrane and therefore, it should favour the 

activated position of the voltage sensor. 

In control conditions, comparison of the conductance-voltage relationship of the wild 

type Nav1.2a and mutant channels (Figs. 5A, 5B, Table 3) showed that there was a 

positive shift of 5.4 to 12.6 mV in the voltage dependence of activation of E805R, D814R 

and D827R, and a reduction of the steepness of the voltage-conductance curves. These 

data are comparable with those described above for R850E and R853E. In the opposite, 

the mutant E821R did not show significant change in the voltage dependence of 

activation. This indicates that mutating the E805, D814 and D827 amino acid residues 

alters the voltage-dependent properties of activation. As shown in Figure 5C, analysis of 

the steady-state inactivation for E805R, D814R, E821R and D827R showed that the 

mutant E821R is the only one to shift the inactivation curve to more positive potentials 

by 6.9 mV (Table 2). This underlines the specific role of the acidic residues E805, D814 

and D827 (segments IIS2 and IIS3) in activation, and suggests that the S4 segment may 

not be the only segment governing the voltage-dependent activation of sodium channels. 

Therefore, our results suggest the existence of a voltage-sensing structure formed by S2, 

S3 and S4 segments in domain II of sodium channels. 

Analysis of the consequences of the mutation of the acidic residues of the IIS2 and IIS3 

segments on Css IV activity is presented in Figure 6. Compared to the effect of 50 nM of 

Css IV on wild-type Na v1.2a channels, the effect of ß-toxin is strongly altered. Treatment 
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with 50 nM Css IV induced a 21 to 31% negative shift in the voltage-dependence of 

activation of the E805R and D814R mutant channels in the IIS2 segment (Figs. 6A and 

B) and of  the E821R mutant channel in the IIS3 segment (Fig. 6C) even in the absence of 

the depolarising pre-pulse to +50 mV (Table 3). Furthermore, in the presence of the pre-

pulse, the fraction of toxin-modified channels was 62% for E805R, 44% for D814R and 

53% for E821R (Table 3). Thus, the effect of Css IV on the three mutants E805R, D814R 

and E821R was much greater than its effect on the wild-type Nav1.2a channels, and 

comparable to the one observed with R850E mutant channels (Figs. 4C, 6A, 6B and 6C; 

Table 3). More remarkably, Css IV induced a complete shift in the voltage dependence of 

activation of D827R channels, without or with the depolarising pre-pulse to +50 mV (Fig. 

6D, Table 3). This effect is identical to the one described for R853E mutant channels. 

The mutation of the acidic residues of IIS2 and IIS3 segments or of the two outermost 

gating charges of the IIS4 voltage-sensor therefore have the same effect on the action of 

Css IV: i.e. they shift the equilibrium for the voltage sensor in domain II and favour its 

activated position. The ability of Css IV to induce a negative shift in the voltage-

dependence of activation even in the absence of the depolarising pre-pulse suggests that 

the mutations E827R and R853E allow the IIS4 segment to adopt an outward position at 

the resting membrane potential which favours voltage sensor trapping by the toxin. All 

together, these results indicate that the negatively charged residues in IIS2 and IIS3 

segments, and the two outermost gating charges of the IIS4 voltage sensor, play an 

identical role regarding the effect of Css IV on sodium channels, and therefore suggest 

their possible role in modifying the conformation of the IIS4 segment to favour its 

activated position which increases its availability for β-toxin trapping.

 

Effect of  ß-scorpion toxin on charge-inversion double mutants 

In order to identify pairs of interacting residues, we designed charge-inversion double 

mutants between S2 and S4 segments or between S3 and S4 segments in domain II. In 

fact, electrostatic interactions are involved in specifying a particular fold of a protein and 

charges reversal mutations provide insight into the conformations in which these residues 

are in the closest proximity (Tiwari-Woodruff et al., 2000) and may give a conformation 

to the channel close to the native one.   

We constructed eight charge-inversion double mutants but, unfortunately, no current was 

detected for four of them (E805R/R850E, E805R/R853E, D827R/R850E, D827R/R853E) 

and their functional analysis in voltage-clamp experiments was not possible. Possible 
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reasons for this absence of currents are that the mutant channels lose their plasma 

membrane targeting and undergo degradation, or may not be conductive despite correct 

plasma membrane targeting. Preliminary binding experiments (data not shown) using the 

radiolabeled Css IV toxin and membranes prepared form tsA201-cells transfected with 

the charge-inversion double mutant sodium channels showed specific binding for all the 

tested mutants except D827R/R850E and D827R/R853E, thus indicating that these are 

not targeted to the plasma membrane, whereas the lack of current in E805R/R850E and 

E805R/R853E indicates that these mutations give the channel a conformation that 

prevents conduction.  

The properties of the other mutants (D814R/R850E, D814R/R853E, E821R/R850E and 

E821R/R853E), were analysed in control and in the presence of Css IV. We found that 

they shifted the voltage-dependence of activation to more positive potentials and reduced 

the steepness of the curves (Figs. 7A and 7B, Table 4). Therefore, these double mutants 

favour the resting state of the sodium channels. Moreover, the double charge-reversal 

mutations produce positive shifts in the voltage dependence of activation that are greater 

than the single charge reversal mutations. Thus, even if the double charge-reversal 

mutants have the same number of positive and negative charges than the wild type 

channels, our data point out that the localisation of the charges within the membrane is 

important to respond to changes in membrane depolarisation and gives to the channel its 

voltage-dependent properties. 

Analysis of the steady-state inactivation curves of these double mutants did not reveal 

any major changes in half-maximal inactivation potentials in comparison with wild-type 

sodium channels (Fig. 7C, Table 2). These effects are consistent with a decrease in 

voltage sensitivity due to the modifications of the charges in the voltage sensor. However, 

ß-scorpion toxin can reveal electrostatic interactions of the mutated charges. In fact, 

swapped interacting charges should favour the deactivated position of the IIS4 segment, 

whereas swapped non-interacting charges should conversely favour its partially or fully 

activated position and therefore increase its availability for β-scorpion toxin trapping.   

Treatment with 50 nM of Css IV did not induce a positive shift in the voltage-dependence 

of D814R/R850E (Fig. 8A) or E821R/R850E (Fig. 8B), unlike the single mutations 

D814R (Fig. 6B), E821R (Fig. 6C) and R850E (Fig. 4C). Furthermore, even in the 

presence of the depolarising pre-pulse to +50 mV, the D814R/R850E and E821R/R850E 

mutants abolished the effect of the toxin on sodium channel activation (Figs. 8A and 8B). 

In order to exclude the hypothesis that the lack of effect of Css IV on the double charge 
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reversal mutations is due to a lack of binding of the toxin to its receptor site, we measured 

the peak sodium current elicited by a test pulse at 0 mV. Indeed, we have shown that β-

scorpion toxins have two sequential effects on wild-type sodium channels: the toxin binds 

to the channel and induces a reduction in peak sodium current, and then, after 

depolarisation, which allow the toxin to bind to newly accessible residues on the IIS4 

voltage sensor, it shifts the activation to more negative potentials. As Scatchard analysis 

of binding experiments, realised under depolarised conditions, have shown that β-toxins 

bind to a single class of receptor sites (Cestèle et al., 1998), measurements of the current 

at 0mV gives information about the receptor site occupancy. As shown in Figure 8C, 

application of 50 nM, 200 nM or 500 nM  of toxin reduces the peak sodium current on 

D814R/R850E and D821R/R850E sodium channels as on wild type Nav1.2 sodium 

channels (Figs. 8C). 500 nM of Css IV does not produce a larger reduction of peak 

sodium current, indicating that 200nM of toxin represent a saturating concentration also 

for the mutant D814R/R850E and D821R/R850E channels. Therefore, the double 

charged reversal mutations do not alter the binding of the toxin to its receptor site on the 

channel. Moreover, we measured the current elicited by a test pulse at –60 mV following 

a depolarisation to +60 mV in the presence of high concentration of toxin (200 nM) that 

produces a complete shift of the conductance voltage curve of the wild type sodium 

channels (Fig. 1A). As shown in Figure 8, in the presence of 200 nM of the toxin, a test 

pulse to –60 mV following a depolarisation to +60 mV resulted in a substantial sodium 

current for the wild-type sodium channel (Fig. 8D) and no current for the double mutant 

D814R/R850E (Fig. 8E) and E821R/R850E (Fig. 8F) even if the length of the prepulse to 

+60 mV was as long as 30 ms (data not shown). The same experiments were done in the 

presence of 500 nM of toxin, and no current was activated for the double mutant 

D814R/R850E and E821R/R850E (data not shown). Moreover, to exclude the hypothesis 

that the absence of current at –60 mV is due to unbinding of the toxin (i.e. untrapping of 

the IIS4 segment) during the interval between the prepulse to +60 mV and the test pulse 

to –60mV, we reduced the time between the two test pulses. No current was recorded for 

the mutants D814R/R850E and E821R/R850E, even if the interval between the two test 

pulses was as short as 5ms and the amplitude of the current activated at –60mV for the 

wild type sodium channels was unchanged (data not shown). Therefore, the lack of 

activation at negative membrane potentials that we observed for the double mutant 

D814R/R850E and E821R/R850E is not caused by the unbinding of the toxin. All 
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together, these experiments suggest that the β-toxin Css IV is bound to the channel but 

that the double charge reversal mutations alter the availability of the IIS4 segment for 

voltage-sensor trapping by the toxin and favour the deactivated state of the IIS4 segment. 

Therefore, despite the effect of Css IV on the single D814R, E821R and R850E mutants, 

the double charge-inversion mutants prevent voltage-sensor trapping by ß-scorpion 

toxins. These results favour the hypothesis of the existence of electrostatic interactions 

between R850E and D814R and E821R, which stabilize the IIS4 voltage-sensor within 

the membrane (i.e. favour the deactivated state) and reduce the probability that this 

segment adopts a conformation favourable for voltage-sensor trapping by β-scorpion 

toxins (i.e. activated conformation). In order to verify that the absence of voltage sensor 

trapping, which we observed for the double reversal mutants D814R/R850E and 

E821R/R850E, is the consequence of an electrostatic interaction between R850E and 

D814R or E821R, we studied the effect of the toxin on the double charge neutralizing 

mutants D814C/R850Q and E821C/R850Q. Indeed, these mutants give the opportunity to 

check if the combination of the two mutations at these specific positions is responsible 

for the lack of effect of the toxin on the double charge reversal mutants or if this effect is 

specific to the nature of the amino acid used for the mutations. As for the charge reversal 

mutants, these mutations shift the voltage-dependence of the channels to positive 

potentials (Table 4), but 50 nM of Css IV strongly shifts the voltage-dependence of 

activation to more negative membrane potentials in the presence of the depolarising 

prepulse (Figs. 8G, 8H). These data exclude the hypothesis that a strong positive shift in 

the voltage-dependence of activation of sodium channels is sufficient to alter the ability 

of the β-scorpion toxin to trap the IIS4 segment in an outward position. Moreover, our 

results show that double charge neutralization mutations do not alter voltage-sensor 

trapping but favour the activated position of the voltage sensor. Our data reinforce the 

hypothesis that the double charge-reversal mutations restore electrostatic interactions 

between the S2, S3 and S4 segments of the sodium channels that prevent trapping of the 

IIS4 segment by the toxin. 

 Remarkably, in the case of the D814R/R853E (Fig. 9A) and E821R/R853E mutants (Fig. 

9B), treatment with 50 nM of Css IV completely shifted activation to more negative 

potentials regardless of the presence of the depolarising pre-pulse to +50 mV. This effect 

was identical to that observed in the case of R853E (Fig. 4C) and D827R (Fig. 6D). 

Moreover, although the mutant R853E, D814R/R853E and E821R/R853E channels have 
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different voltage dependences of activation (V1/2 values ranging from –18 to –26 mV, 

Tables 1 and 4), their modification by Css IV shifted their voltage dependences to 

approximately the same position on the voltage axis (V1/2 values ranging from -34 to –39 

mV, Tables 1 and 4). Therefore, as we have previously suggested (Cestèle et al., 2001), 

once sodium channels have been successfully modified by the toxin, they adopt a similar 

toxin-modified conformation regardless of the mutation. Evidently, the addition of the 

mutation D814R or E821R to the mutation R853E does not modify the ability of the 

R853E channels to enhance voltage-sensor trapping by β-scorpion toxins, and therefore 

does not inhibit the ability of Css IV binding to give the channel an outward/activated 

position at resting membrane potentials. Thus, the charges swapped in these double 

mutants do not interact and consequently their swapping does not alter the conformation 

of the IIS4 voltage-sensor which remains available for trapping by β-toxins.  
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DISCUSSION

Evidence for a voltage-sensing structure in domain II of voltage-gated sodium channels.  

The voltage-dependent activation process of sodium channels is mainly supported by the 

outward translocation of several positive charges across the membrane (Hodgkin & 

HUXLEY, 1952; Armstrong, 1981). The S4 segments have been identified as the voltage 

sensors and it has been shown that they move outward in response to the changes in 

membrane potential that initiate channel activation (Catterall, 1986; Guy & 

Seetharamulu, 1986; Yang & Horn, 1995; Yang et al., 1996; Yang et al., 1997; Chanda & 

Bezanilla, 2002). Structure-function studies on sodium channels have highlighted that 

their voltage sensors have discrete functions. The voltage sensor in domain IV is 

implicated specifically in inactivation (Stuhmer et al., 1989; Chen et al., 1996; Kontis & 

Goldin, 1997; Kontis et al., 1997; Cha et al., 1999; Chanda & Bezanilla, 2002; Chanda et 

al., 2004) whereas the voltage sensors of the three other domains are specifically 

involved in voltage dependent activation (Cha et al., 1999;Chanda & Bezanilla, 

2002;Chanda et al., 2004). Therefore, modifications of one of the voltage sensors in 

domain I, II or III directly modify the activation process of the channel. Moreover, the 

mutation of the positive charges of the S4 segment in domain II reduces the steepness of 

the voltage dependence of activation (Stuhmer et al., 1989) and the total gating charges 

of the channel (Sheets & Hanck, 2003), therefore decreasing its voltage sensitivity. Thus, 

the mutation of the positive charges stabilizes the resting state of the channel relative to 

the open state and the decrease in the number of positive charges in IIS4 voltage sensor 

implies stronger depolarisation to push the IIS4 segment outward (Cestèle et al., 2001).  

Analysis of the voltage dependence of gating of four mutant sodium channels in which 

the negative charged amino acid residues in the IIS2 and IIS3 segments have been 

replaced by an arginine indicates that the voltage-dependence of activation of three of 

them is strongly altered. The E805R, D814R and D827R mutants shift the voltage 

dependence of Nav1.2a sodium channels in the positive direction, reduce the steepness of 

the voltage-conductance curve, and thus favour the resting state of the channel. 

Furthermore, their effects on activation varies from one mutant to another, which 

indicates that the acidic residues of S2 and S3 segments in domain II are not functionally 

equivalent. These data are similar to those obtained using sodium channels with 

mutations of the gating charges of the IIS4 segment (Cestèle et al., 2001). Our data show 

that the negatively charged residues of the S2 and S3 segments in domain II modulate 

sodium channel activation because their mutation alters the voltage dependence of 
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activation. Therefore, our data suggest that S2, S3 and S4 segments in domain II have a 

cooperative role in activation of sodium channels and may constitute a voltage-sensing 

structure. Moreover, the negative charged residues in the S2 and S3 segments as well as 

the positive charged residues in the IIS4 segment are well conserved among the different 

sodium channels isoforms, which suggests that this voltage sensing structure is a 

common feature for the voltage-dependent sodium channels. These results are in 

agreement with data concerning K+ channels, in which it has been shown that the S4 

segment is not solely responsible for gating charges movement but that S2 and S3 

segments may be part of the voltage sensing structure (Planells-Cases et al., 1995; Seoh 

et al., 1996). This interpretation of our data seems to be the most plausible as it is in 

accordance with the results obtained for K+ channels. However, we can not exclude that 

the negative charges of the IIS2 and IIS3 segment are not a physical part of the voltage 

sensor as we suggest above but that their mutation rather modulate in an allosteric 

manner the voltage sensor IIS4. 

   

Voltage-sensor trapping is enhanced by charge-reversal mutation in the S2, S3 and S4 

segments. 

On wild-type sodium channels, β-scorpion toxin Css IV induce a partial shift of the 

activation curve, after a strong depolarising pre-pulse (Cestèle et al., 1998; Cestèle et al., 

2001). The biphasic curves for activation in the presence of β-scorpion toxin are 

proposed to be due to the trapping of the IIS4 segment of a fraction of sodium channels in 

an outward position by binding the extracellular end of the IIS4 segment to the previously 

bound toxin in its receptor site, which includes the IIS3-S4 extracellular loop (Cestèle et 

al., 1998). Interestingly, although the voltage sensors of the domains I, II and III are 

involved in voltage-dependent activation (Cha et al., 1999; Chanda & Bezanilla, 2002), 

the specific binding of β-scorpion toxin in domain II (Cestèle et al., 1998; Cestèle et al., 

2001) or the chemical modification of cysteine in the IIS4 voltage-sensor (Mitrovic et al., 

1998; Cestèle et al., 2001) is sufficient to modulate specifically the voltage dependence 

of sodium channel activation.  

Functional analysis of the charge-reversing mutants E805, D814, E821, E827, R850 and 

R853 shows that β-scorpion toxin action is strongly enhanced. The substitution of the two 

outermost arginine of the IIS4 segment (R850 and R853) by glutamine or cysteine gives 

identical results (Cestèle et al., 2001). As the mutation of E805, D814, E821, E827, R850 
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and R853 favours the resting state of the channels by shifting their voltage dependence of 

activation toward more positive potentials (Stuhmer et al., 1989; Cestèle et al., 2001; 

Izhar et al., 2004), the increase of β-scorpion toxin activity on these mutants can not be 

explained by a general enhancement of activation. Therefore, binding of β-scorpion toxin 

on the mutants E805, D814, E821, E827, R850 and R853 favours the activated position 

of the IIS4 voltage sensor, reduces the energy barrier for trapping the IIS4 segment in its 

outward position by binding of β-scorpion toxin while increasing the electrostatic force 

required to drive the IIS4 segment outward on depolarisation. 

Another hypothesis able to explain the increase of β-toxin activity would be a change in 

toxin affinity for its receptor site induced by the mutations. However, binding 

experiments for the mutants R850C/Q and R853C/Q show that these mutations do not 

alter the affinity of the toxin Css IV for the channels (Cestèle et al., unpublished data). 

Moreover, the β-scorpion toxin receptor site is localized within the S1-S2 and S3-S4 

extracellular loops in domain II (Cestèle et al., 1998; Cestèle et al., unpublished data) and 

therefore, the amino acid residues E805, D814, E821 and E827 in the S2 and S3 

segments in domain II are not involved in the formation of the receptor site. Thus, the 

increase in β-toxin activity that we observed for these double mutants is not correlated to 

an increase in toxin affinity for its receptor site.   

To explain our data, we proposed that R850 and R853 may interact with acidic residues 

localized in the S2 and S3 segments of sodium channels. We predicted the existence of 

electrostatic interactions between the positive residues of IIS4 and negatively charged 

residues localized in S2 and S3 segments in domain II because such structural constrains 

have been demonstrated for K+ channels (Papazian et al., 1995; Planells-Cases et al., 

1995; Tiwari-Woodruff et al., 1997; Tiwari-Woodruff et al., 2000; Li-Smerin et al., 

2000). The specific effect of β-toxin on the sodium channel activation makes it a unique 

and powerful tool for dissecting the molecular events occurring during the activation 

process of voltage-dependent sodium channels. We show that charge-reversal mutations 

of the negatively charged amino acid residues of the IIS2 and IIS3 segments not only 

modify the voltage-dependent gating of sodium channels, but also enhance the effect of 

ß-scorpion toxin on sodium channels in a similar way to that we have described for the 

mutation of the two outermost arginine of the IIS4 segment. The fact that mutation of 

charged amino acid residues in different transmembrane segments in domain II have the 

same consequences on the voltage-dependence of activation and on the effect of β-
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scorpion toxin action strongly suggests that they play a similar and/or a cooperative role 

in the voltage-sensing structure of sodium channels. Thus, acidic amino acid residues of 

the IIS2 and IIS3 segments and gating charges of the IIS4 voltage-sensor could have 

electrostatic interactions similar to the ones described for K+ channels. Mutations of the 

charged amino acid residues in the voltage-sensing structure may abolish such 

electrostatic interactions and reduce the kinetic barrier for S4 movement within the 

membrane leading to greater availability of the IIS4 segment and favouring voltage-

sensor trapping by β-scorpion toxins because IIS4 segment is more often available for 

toxin binding, even at negative membrane potentials where the channel is not activated. 

An alternative interpretation of our data would be that the mutations we introduced in 

domain II produce broad conformational changes in the sodium channel that alter β-

scorpion toxin binding and/or action. This seems unlikely because we have to assume that 

several mutations in three different segments in domain II (S2, S3 and S4) have the same 

consequences regarding β-toxin action on sodium channels. This interpretation of our 

data would involve complex modulation of β-toxin receptor site and multiple ad hoc 

assumptions are required to explain our data. 

 

The action of β-scorpion toxins on double charge-inversion mutants discloses molecular 

interactions among charged residues in S2, S3 and S4 segments in domain II.  

The conclusion presented above is supported by our results obtained using the double 

charge-inversion mutants. The effects of β-scorpion toxin on these mutants, depending on 

the availability of IIS4, give unique insights into the electrostatic interactions occurring 

within the voltage-sensing structure and the molecular mechanism of sodium channel 

activation. Electrostatic interactions are involved in specifying a particular fold of a 

protein (Tiwari-Woodruff et al., 2000) and charge-reversal mutations, which cause 

dramatic changes in local electrostatic potential in comparison with the wild-type protein, 

help to reveal the conformations in which these residues are in the closest proximity. As 

it has been shown in binding experiments that β-scorpion toxins bind to a single class of 

receptor site, our experiment measuring the reduction of the peak current at 0 mV gives 

information about the receptor site occupancy. Indeed, previous data and unpublished 

results have shown that molecular determinants involved in the formation of the receptor 

site for β-scorpion toxin are mainly localized in the S1-S2 and S3-S4 extracellular loops 

in domain II (Marcotte et al., 1997b;Cestèle et al., 1998).  Our data show that ß-scorpion 
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toxin is bound to the double mutants D814R/R850E and E821R/R850E channels with an 

affinity comparable to the one of the wild-type, but has no effect on the voltage-

dependence of activation. Thus, the double charge-reversal mutations prevent specifically 

the voltage-sensor trapping of the IIS4 segment, but do not affect the ability of the toxin 

to bind to the channel. Moreover, the double charge-neutralization mutants 

(D814C/R850Q and E821C/R850Q) do not alter the ability of the β-scorpion toxin Css 

IV to trap the IIS4 segment and induce a positive shift in the voltage-dependence of 

activation. Therefore, the double charge-reversal mutants D814R/R850E and 

E821R/R850E give a conformation to the channel that allows β-scorpion toxin binding 

but prevents specifically voltage-sensor trapping. Thus, our data can be interpreted in 

terms of electrostatic interactions between the first outermost arginine R850 of the IIS4 

segment and D814 in IIS2 and E821 in IIS3 segments. A stable electrostatic interaction 

occurs between the two mutated amino acid residues, which gives the voltage-sensing 

structure a conformation that makes the IIS4 segment unfavourable for voltage-sensor 

trapping by ß-scorpion toxins and favours the deactivated position of the IIS4 voltage 

sensor.  

We have interpreted our data in terms of electrostatic interactions between the acidic 

residues of the IIS2 and IIS3 segments and basic residues of the IIS4 segment. However, 

our data could be accommodated by complex conformational changes induced by the 

mutations that could result in an allosteric modulation of the receptor site of β-scorpion 

toxin on sodium channels. This interpretation seems to be unlikely as it implies first, that 

mutations in different part of the channel (IIS2, IIS3 and IIS4 segments) induce 

conformational changes that have the same consequences on β-toxin action, and second, 

that the combination of two mutations (D814R, E821R or R850E) that have a positive 

effect on β-scorpion toxin action, produce a negative allosteric modulation. Moreover, all 

the single mutations (charge-reversal or charge-neutralizing) favour the activated state of 

the channel and it seems unlikely that combination of two charge-reversal or two charge-

neutralizing mutations have distinct consequences on β-toxin action. Thus, although this 

interpretation of our data is possible, it implies multiple complex assumptions. 

On the contrary, the activity of Css IV on the double D814R/R853E and E821R/R853E 

mutants is identical to that described for R853E mutant channels. The movement of the 

IIS4 segment in the R853E mutant is therefore not affected by the additional D814 or 

E821 mutation: the enhanced effect of Css IV in these double mutant is due to the greater  
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availability of the IIS4 segment induced by the mutation of R853. Thus, our data indicate 

that D814 and E821 interact specifically with R850.

We can only make hypothesis concerning the possible involvement of E805 and D827 

residues in electrostatic interactions with the two outermost arginine of the IIS4 segment, 

because the double mutants involving these residues failed to generate currents.  

Preliminary binding experiments (data not shown) show specific binding for 

E805R/R850E and E805R/R853E, which indicate the ability of those mutants to be 

targeted to the plasma membrane. The lack of current with these double mutants indicate 

that they create a channel conformation that prevents current conduction. In the other 

hand, no specific binding was detected for the double mutants D827R/R850E and 

D827R/R853E indicating that those mutants are not targeted to the plasma membrane. 

However, comparison of the effect of ß-scorpion toxin on E805R and D827R with the 

one on R850E and R853E provides information about the possible electrostatic 

interactions occurring within them. The fact that R850E and R853E differently enhance 

the effect of ß-scorpion toxin on sodium channels makes the interpretation of the E805R 

and D827R data more specific. We show that E805R and R850E identically alter the 

activity of ß-toxin on sodium channels because their activation curves can be 

superimposed in the absence or presence of the depolarising pre-pulse. The mutation of 

E805 or R850 thus has the same consequences on the effect of ß-scorpion toxin on 

sodium channels and it is possible that E805 interacts with R850. On the other hand, both 

D827R and R853E modified the effect of ß-scorpion toxin on sodium channels in the 

same manner: the activation curve is completely shifted in the absence or in the presence 

of the depolarising pre-pulse. As D827R and R853E mutants lead to the same 

modification of ß-toxin activity on sodium channels, we conclude that D827 is involved 

in an electrostatic interaction with R853 in the native channels. Abolishing this 

interaction by mutating D827 or R853 unlocks the IIS4 segment, which becomes more 

accessible for ß-scorpion toxin to bind even at negative membrane potentials. Thus, as 

illustrated in Fig. 10A, our data indicate that R850 interacts with three negative residues 

in the wild-type sodium channels: E805 and D814 in IIS2 and E821 in IIS3 segments. It 

is likely that the interaction of R850 with each of these negatively charged residues 

occurs at different membrane potentials and accompanies the conformation changes 

involved in voltage-dependent activation. Another set of experiments is required to 

determine the sequence of these interactions during the voltage-dependent activation of 

sodium channels. Our data also suggest the existence of an electrostatic interaction of 



 22

R853 in IIS4 with D827 in IIS3, and underline its key role in stabilizing the voltage-

sensing structure within the membrane: voltage-sensor trapping and the resulting negative 

shift of activation occur with the D827R and R853E mutants in the absence of a 

depolarising pre-pulse. 

 

Divergence between sodium and potassium channels. 

Recently, the crystal structure of a bacterial voltage-dependent K+ channel has given 

evidence for the existence of a “voltage-sensor paddle” formed by the packing of the C-

terminal part of the S3 segment and the S4 segment (Jiang et al., 2003a). The same 

authors have shown that the voltage-sensor paddles move a large distance across the 

membrane from inside to outside when the channel opens (Jiang et al., 2003b). The 

voltage-sensor paddle model is controversial and do not support a large number of 

experimental data of the litterature. The effect of the mutations of the acidic residues of 

the S2 and S3 segments on voltage dependence of activation and on the effect of β-

scorpion toxin suggests that in sodium channels these negative charges have a role in 

voltage sensing and that the IIS4 may interact with the negative charges of IIS2 and of 

the N-terminal part of IIS3 during its movements across the membrane, decreasing in this 

way the energetic of the translocation (Ahern & Horn, 2004). As illustrated in Figure 10, 

comparison of our data with the ones obtained with K+ channels (Papazian et al., 1995; 

Planells-Cases et al., 1995; Seoh et al., 1996; Tiwari-Woodruff et al., 1997; Tiwari-

Woodruff et al., 2000) reveals a different set of electrostatic interactions between S2, S3 

and S4 segments and suggest that the molecular basis for channel activation is specific to 

K+ or Na+ channels. Moreover, only three of the negative charges that we have studied 

are aligned with the ones of Shaker potassium channels. The negative charges are very 

well conserved in sodium channels, except E821 that is present only in the neuronal 

isoforms. Also, D814 may be localised in the S2-S3 linker rather than in the IIS2 

segment, but as for the potassium channels, this linker may be localised in the membrane 

and therefore interact with the IIS4 segment of the channel. It is not surprising that our 

data are different in comparison with the ones obtained for potassium channels, as 

sodium and potassium channels display a large number of differences. For example, 

potassium channels are comprised of four subunits whereas sodium channels is a single 

polypeptide with four homologous domains. The difference in the primary structure 

between the four domains confers discrete functions. Therefore, our data disclose 

properties that are unique to the domain II of sodium channels. An other difference is that 
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in contrast with potassium channels, the mutation of the positive charges in the IIS4 

segment does not prevent expression of the channels and the positive charges involved in 

electrostatic interactions in sodium and potassium channels are different. Therefore, our 

results stress out the specific properties of domain II of sodium channels.  

 
Conclusions. 

Taken together, the results of our experiments indicate the existence of a voltage-sensing 

structure in voltage-dependent sodium channels composed of the S2, S3 and S4 segments 

in domain II. As the negative charges of IIS2 and IIS3 as well as the positive charges of 

IIS4 segment are conserved in all sodium channel subtypes, we suggest that this voltage 

sensing structure is present in all of them. Our data provide unique insights into the 

structure of sodium channels, and reveal molecular details about the conformational 

changes occurring during their voltage-dependent activation.   
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Table 1: Voltage Dependence of activation of Nav1.2 and mutant sodium channels 
 

 
 
 

 
V1 ½ (mV) 

 
k1 (mV) 

 
A1 

 
V2 ½  (mV) 

 
k2 (mV) 

 
A2 

 
n 

 
Nav1.2a-Control 

 
-31.6 ± 0.3 

 
6.3 ± 0.3 

 
 

    
9 

 
Nav1.2a-NP-Css IV 50 nM 

 
-31.4 ± 0.5 

 
6.3 ± 0.5 

   

   

   

   

     

  
6 

 
Nav1.2a-Pre-Css IV 50 nM 

 
-30.2 ± 1.6  

 
6.1 ± 1.1 

 
0.82 ± 0.08 

 
-64.1 ± 2.9 

 
6.1 ± 2.5 

 
0.2 ± 0.2 

 
6 

 
Nav1.2a-Pre-Css IV 200 nM 
 
R850E-Control 

 
-51.6 ± 0.6  

 
-18.9 ± 0.4 

 
8.9 ± 0.5 

 
8.4 ± 0.3 

  
3 
 
6 

 
R850E-NP-Css IV 50 nM 

 
-14.9 ± 1.2  

 
8.3 ± 1.2 

 
0.8 ± 0.2 

 
-46.7 ± 3.6 

 
13.1 ± 2.4 

 
0.2 ± 0.01 

 
7 

 
R850E-Pre-Css IV 50 nM 

 
-16.7 ± 0.9 

 
6.1 ± 0.8 

 
0.39 ± 0.02 

 
-51.1 ± 0.8 

 
8.5 ± 0.6 

 
0.6 ± 0.02 

 
7 

 
R853E-Control 

 
-26.6 ± 0.6 

 
8.8 ± 0.6 

  
14 

 
R853E-NP-Css IV 50 nM 

 
-37.3 ± 0.7 

 
10.7 ± 0.7 

  
7 

 
R853E-Pre-Css IV 50 nM 

 
-39.5 ± 0.9 

 
9.4 ± 0.8 6 
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Table 2: Voltage dependence of inactivation of Nav1.2 and mutant sodium channels 
 

 
 

 
V1 ½ (mV) 

 
k (mV) 

 
n 

 
Nav1.2 

 
-63.1 ± 0.3 

 
8.1 ± 0.3 

 
8 

 
R850E 

 
-63.9 ± 0.3 

 
7.2 ± 0.3 

 
4 

 
R853E 

 
-65.8 ± 0.8 

 
9.3 ± 0.7 

 
13 

 
E805R 

 
-60.5 ± 1.5 

 
9.9 ± 1.3 

 
10 

 
D814R 

 
-61.8 ± 0.4 

 
6.3 ± 0.3 

 
7 

 
E821R 

 
-54.4 ± 9.4 

 
9.4 ± 0.6 

 
11 

 
D827R 

 
-64.2 ± 1.1 

 
8.2 ± 0.9 

 
11 

 
D814R/R850E 

 
-60.3 ± 0.7 

 
9.6 ± 0.6 

 
7 

 
D814R/R853E 

 
-62.9 ± 0.9 

 
8.2 ± 0.8 

 
10 

 
E821R/R850E 

 
-65.6 ± 0.3 

 
7.5 ± 0.2 

 
9 

 
E821R/R853E 

 
-58.7 ± 0.5 

 
9.1 ± 0.5 

 
4 
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Table 3: Voltage dependence of activation of mutants in the IIS2 and IIS3 segments 
 

 
 
 

 
V1 ½ (mV) 

 
k1 (mV) 

 
A1 

 
V2 ½ (mV) 

 
K2 (mV) 

 
A2 

 
n 

 
E805R-Control 

 
-21.6 ± 0.3 

 
8.2 ± 0.3 

     
15 

 
E805R-NP-Css IV 50 nM 

 
-16.1 ± 1.3 

 
6.6 ± 0.9 

 
0.79 ± 0.11 

 
-49.4 ± 1.9 

 
10.1 ± 1.7 

 
0.21 ± 0.08 

 
18 

 
E805R-Pre-Css IV 50 nM 

 
-15.7 ± 1.6 

 
4.3 ± 1.3 

 
0.37 ± 0.08 

 
-46.1 ± 2.9 

 
8.9 ± 1.3 

 
0.62 ± 0.8 

 
20 

 
D814R-Control 

 
-26.2 ± 0.3 

 
9.2 ± 0.2 

     

     

     

   

   

7 
 
D814R-NP-Css IV 50 nM 

 
-22.9 ± 2.2 

 
6.9 ± 2.6  

 
0.71 ± 0.10 

 
-45.2 ± 1.9 

 
13.9 ± 1.6 

 
0.28 ± 0.01 

 
5 

 
D814R-Pre-Css IV 50 nM 

 
-23.9 ± 2.1  

 
7.9 ±1.9 

 
0.55 ± 0.07 

 
-52.3 ± 1.9 

 
11.1 ± 1.7 

 
0.44 ± 0.01 

 
12 

 
E821R-Control 

 
-29.8 ± 0.3 

 
5.6 ± 0.3 7 

 
E821R-NP-Css IV 50 nM 

 
-26.6 ± 2.2 

 
5.9 ± 3.2 

 
0.67 ± 0.05 

 
-51.4 ± 3.2 

 
14.2 ± 2.8 

 
0.32 ± 0.02 

 
7 

 
E821R-Pre-Css IV 50 nM 

 
-24.4 ± 2.1 

 
6.1 ± 1.4 

 
0.46 ± 0.14 

 
-55.1 ± 0.8 

 
11.1 ± 0.7 

 
0.53 ± 0.01 

 
9 

 
D827R-Control 

 
-18.9 ± 0.3 

 
9.2 ± 0.2 13 

 
D827R- NP-Css IV 50 nM 

 
-28.6 ± 0.6 

 
11.9 ± 0.6 

  
11 

 
D827R-Pre-Css IV 50 nM 

 
-30.3 ± 0.7 

 
10.1 ± 0.7 

  
11 
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Table 4: Voltage-dependence of charge-inversion double mutants 
 
 
 

 
V1 ½ (mV) 

 

 
k  (mV) 

 
n 

 
D814R/R850E-Control 

 
-15.3 ± 0.3 

 
7.9 ± 0.2 

 
8 

 
D814C/R850Q-Control 
 
D814R/R850E-NP-CssIV 50 nM 

 
-14.8 ± 0.1 

 
-14.7 ± 0.5 

 
7.9 ± 0.1 

 
9.2 ± 0.4 

 
7 
 
8 

 
D814R/R850E-Pre-CssIV 50 nM 

 
-15.1 ± 0.7 

 
7.9 ± 0.7 

 
8 

 
D814R/R853E-Control 

 
-21.4 ± 0.4 

 
8.9 ± 0.3 

 

 
7 
 

D814R/R853E-NP-CssIV 50 nM -32.2 ± 0.7 11.6 ± 0.6 4 
 
D814R/R853E-Pre-CssIV 50 nM 

 
-38.1 ± 0.6 

 
10.2 ± 0.5 

 
16 

 
E821R/R850E-Control 

 
-18.5 ± 0.3 

 
7.7 ± 0.2 

 
10 

 
E821C/R850Q-Control 
 
E821R /R850E-NP-CssIV 50 nM 

 
-15.9 ± 0.1 

 
-19.1 ± 0.3 

 
9.6 ± 0,3 

 
9.5 ± 0.3 

 
8 
 

10 
 
E821R /R850E-Pre-CssIV 50 nM 

 
-19.1 ± 0.3 

 
9.5 ± 0.3 

 
14 

 
E821R/R853E-Control 

 
-18.5 ± 0.3 

 
8.1 ± 0.3 

 
5 

 
E821R /R853E-NP-CssIV 50 nM 

 
-32.9 ± 0.7 

 
12.2 ± 0.6 

 
7 

 
E821R /R853E-Pre-CssIV 50 nM 

 
34.8 ± 0.6 

 
11.0 ± 0.5 

 
9 
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FIGURE LEGEND 

 

Figure 1: 

Effects of the β-scorpion toxin Css IV on wild-type Nav1.2 sodium channels. (A) Current 

recorded in a representative cell in response to the test pulse to 0 mV in control (plain 

line) or during perfusion with 50nM (dot line) or 200nM (dash line) of Css IV. Traces 

were normalized to the peak current in control. (B) Test pulse protocol for obtaining the 

data shown in panels (A) and (C). A test pulse to 0 mV was applied from a holding 

potential of –100 mV. This was followed 60 ms later by a 1 ms conditioning pulse to +60 

mV, a second period of 60 ms at the holding potential, and a 15 ms test pulse to –60 mV. 

This protocol was applied every 5s. (C) Currents recorded in response to the test pulse to 

–60 mV in control or during perfusion with 50 or 200 nM of Css IV. (D) Conductance-

voltage relationships in control (closed circles) in the presence of 50 nM of Css IV 

without the prepulse to + 50mV (open circles) or in the presence of  50 nM of Css IV 

(open triangles) or 200 nM (filled squares) with a +50 mV, 1-ms prepulse that preceded 

the test pulse by 60 ms for wild-type Nav1.2a.  

 

Figure 2:  

Schematic representation of the transmembrane folding topology of the domain II in the 

α subunit of voltage dependent sodium channels. The localization of the residues in 

transmembrane S2, S3 and S4 studied in this paper are shown. 

 

Figure 3:  

Effect of the mutation of the two outermost arginine R850 and R853 of the IIS4 segment 

of rat brain Nav1.2a sodium channels. (A) Current traces for Nav1.2a, R850E and R853E 

in control conditions elicited by a family of depolarizing pulses from –100 mV holding 

potentials to voltages ranging from –90 to -20 mV in 5mV step.  (B) Voltage dependence 

of activation (B) and inactivation (C) for wild type Nav1.2a, R850E and R853E. 

Conductance-voltage were determined as described in materials and methods. 

Inactivation curves were determined using 30 ms–long prepulses to the indicated 

potentials followed by a test pulse to –10mV. 
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Figure 4: 

Beta-scorpion toxin activity on R850E and R853E sodium channels. Conductance-

voltage relationships in control (closed circles) or in the presence of 50 nM of Css IV 

without (open circles) or with (open triangles) a +50 mV, 1-ms prepulse that preceded the 

test pulse by 60 ms for R850E (A) and R853E (C) sodium channels. Sodium current 

traces evoked by a test pulse to –65 mV before and after a prepulse to +50 mV in the 

presence of 50 nM Css IV for R850E (B) and R853E (D) sodium channels. Traces were 

normalized to the peak current.  

 

Figure 5: 

Voltage dependence of activation of Nav1.2a sodium channels with mutations of the 

acidic residues of the S2 and S3 segments in domain II. (A) Current traces for E805R, 

D814R and E821R and D827R in control conditions elicited by a family of depolarizing 

pulses from –100 mV holding potentials to voltages ranging form –90 to -20 mV in 5mV 

step.  Voltage dependence of activation (B) and inactivation (C) for wild type Nav1.2a, 

E805R, D814R, E821R and D827R. 

 

Figure 6: 

Activity of β-scorpion toxin on mutants sodium channels E805R, D814R, E821R and 

D827R. Comparison of the conductance-voltage relationships in the absence (closed 

circles) or in the presence of 50 nM Css IV without (open circles) or with (open triangles) 

a +50 mV, 1-ms prepulse that preceded the test pulse by 60 ms for E805R (A), D814R 

(B), E821R (C) and D827R (D) sodium channels. 

 

Figure 7: 

Effect of the charge-inversion double mutants D814R/R850E, D814R/R853E, 

E821R/R850E and E821R/R853E of rat brain Nav1.2a sodium channels. (A) Current 

traces for the charge-inversion double mutants activated by depolarisations in 5-mV 

increments form –90 to -20 mV. Voltage dependence of activation (B) and inactivation 

(C) for D814R/R850E, D814R/R853E, E821R/R850E and E821R/R853E. 
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Figure 8: 

Effect of the charge-inversion double mutants on Css IV activity on rat brain Nav1.2a 

sodium channels. Voltage dependence of activation for D814R/R850E (A) and 

E821R/R850E (B) in control (closed circles) or in the presence of 50 nM Css IV without 

(open circles) or with (open triangles) a +50 mV, 1-ms prepulse that preceded the test 

pulse by 60 ms. (C) Percentage of  peak current reduction in the presence of 50 nM, 200 

nM or 500 nM of toxin. Currents traces recorded in response to a test pulse to -60 mV in 

the absence or in the presence of 200 nM of Css IV for wild type Nav1.2 (D), 

D814R/R850E (E) and E821R/R850E (F) sodium channels. Voltage dependence of 

activation for D814C/R850Q (G) and E821C/R850Q (H) in control (closed circles) or in 

the presence of 50 nM Css IV (open triangles) with a +50 mV, 1-ms prepulse that 

preceded the test pulse by 60 ms. 

 
Figure 9: 

Effect of the charge-inversion double D814R/R853E and E821R/R853E mutants on Css 

IV activity on rat brain Nav1.2a sodium channels. Voltage dependence of activation for 

D814R/R853E (A) and E821R/R853E (B) in control (closed circles) or in the presence of 

50 nM Css IV without (open circles) or with (open triangles) a +50 mV, 1-ms prepulse 

that preceded the test pulse by 60 ms. 

 

Figure 10: 

Schematic representation of electrostatic interactions between charged residues in 

segments S2, S3 and S4 in domain II of sodium channels (A) or potassium channels (B)
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