C. A. Lewandowski, J. R. Marler, S. R. Levine, and T. Brott, Effects of tissue plasminogen activator for acute ischemic stroke at one year. National Institute of Neurological Disorders and Stroke Recombinant Tissue Plasminogen Activator Stroke Study Group, N Engl J Med, vol.340, pp.1781-1787, 1999.

C. Ayata and A. Ropper, Ischaemic brain oedema, Journal of Clinical Neuroscience, vol.9, issue.2, pp.113-124, 2002.
DOI : 10.1054/jocn.2001.1031

G. J. Del-zoppo, V. Kummer, R. Hamann, and G. , Ischaemic damage of brain microvessels: inherent risks for thrombolytic treatment in stroke, Journal of Neurology, Neurosurgery & Psychiatry, vol.65, issue.1, pp.1-9, 1998.
DOI : 10.1136/jnnp.65.1.1

T. Pfefferkorn and G. Rosenberg, Closure of the Blood-Brain Barrier by Matrix Metalloproteinase Inhibition Reduces rtPA-Mediated Mortality in Cerebral Ischemia With Delayed Reperfusion, Stroke, vol.34, issue.8, pp.2025-2030, 2003.
DOI : 10.1161/01.STR.0000083051.93319.28

S. Warach and L. Latour, Evidence of Reperfusion Injury, Exacerbated by Thrombolytic Therapy, in Human Focal Brain Ischemia Using a Novel Imaging Marker of Early Blood-Brain Barrier Disruption, Stroke, vol.35, issue.11_suppl_1, pp.2659-2661, 2004.
DOI : 10.1161/01.STR.0000144051.32131.09

N. G. Harris, V. Gauden, P. A. Fraser, S. R. Williams, and G. Parker, MRI measurement of blood-brain barrier permeability following spontaneous reperfusion in the starch microsphere model of ischemia, Magnetic Resonance Imaging, vol.20, issue.3, pp.221-230, 2002.
DOI : 10.1016/S0730-725X(02)00498-8

G. Gartshore, J. Patterson, and I. Macrae, Influence of Ischemia and Reperfusion on the Course of Brain Tissue Swelling and Blood???Brain Barrier Permeability in a Rodent Model of Transient Focal Cerebral Ischemia, Experimental Neurology, vol.147, issue.2, pp.353-360, 1997.
DOI : 10.1006/exnr.1997.6635

E. Preston and J. Webster, A two-hour window for hypothermic modulation of early events that impact delayed opening of the rat blood-brain barrier after ischemia, Acta Neuropathologica, vol.96, issue.5, pp.406-412, 2004.
DOI : 10.1007/s00401-004-0905-4

B. Schaller and R. Graf, Hypothermia and stroke: the pathophysiological background, Pathophysiology, vol.10, issue.1, pp.7-35, 2003.
DOI : 10.1016/j.pathophys.2003.09.001

A. Kastrup, T. Engelhorn, C. Beaulieu, A. De-crespigny, and M. Moseley, Dynamics of cerebral injury, perfusion, and blood-brain barrier changes after temporary and permanent middle cerebral artery occlusion in the rat, Journal of the Neurological Sciences, vol.166, issue.2, pp.91-99, 1999.
DOI : 10.1016/S0022-510X(99)00121-5

C. Petito, EARLY AND LATE MECHANISMS OF INCREASED VASCULAR PERMEABILITY FOLLOWING EXPERIMENTAL CEREBRAL INFARCTION, Journal of Neuropathology and Experimental Neurology, vol.38, issue.3, pp.222-234, 1979.
DOI : 10.1097/00005072-197905000-00003

E. Preston and J. Webster, Differential passage of [14C]sucrose and [3H]inulin across rat blood-brain barrier after cerebral ischemia, Acta Neuropathologica, vol.103, issue.3, pp.237-242, 2002.
DOI : 10.1007/s004010100458

E. C. Sa-de-camargo and W. J. Koroshetz, Neuroimaging of ischemia and infarction, NeuroRX, vol.45, issue.2, pp.265-276, 2005.
DOI : 10.1602/neurorx.2.2.265

I. Aoki, S. Naruse, and C. Tanaka, Manganese-enhanced magnetic resonance imaging (MEMRI) of brain activity and applications to early detection of brain ischemia, NMR in Biomedicine, vol.42, issue.8, pp.569-580, 2004.
DOI : 10.1002/nbm.941

A. C. Silva, J. H. Lee, I. Aoki, and A. Koretsky, Manganese-enhanced magnetic resonance imaging (MEMRI): methodological and practical considerations, NMR in Biomedicine, vol.21, issue.8, pp.532-543, 2004.
DOI : 10.1002/nbm.945

E. Z. Longa, P. R. Weinstein, S. Carlson, and R. Cummins, Reversible middle cerebral artery occlusion without craniectomy in rats, Stroke, vol.20, issue.1, pp.84-91, 1989.
DOI : 10.1161/01.STR.20.1.84

A. Haase, F. Snapshot, and . Mri, Snapshot flash mri. applications to t1, t2, and chemical-shift imaging, Magnetic Resonance in Medicine, vol.42, issue.1, pp.77-89, 1990.
DOI : 10.1002/mrm.1910130109

G. Paxinos and C. Watson, The Rat Brain in Stereotaxic Coordinates, Fourth Edition, 1998.

C. Chapon, L. Lemaire, F. Franconi, L. Marescaux, P. Legras et al., Assessment of myocardial viability in rats: Evaluation of a new method using superparamagnetic iron oxide nanoparticles and Gd-DOTA at high magnetic field, Magnetic Resonance in Medicine, vol.47, issue.4, pp.932-936, 2004.
DOI : 10.1002/mrm.20210

G. J. Stanisz and R. Henkelman, Gd-DTPA relaxivity depends on macromolecular content, Magnetic Resonance in Medicine, vol.7, issue.5, pp.665-667, 2000.
DOI : 10.1002/1522-2594(200011)44:5<665::AID-MRM1>3.0.CO;2-M

E. Stejskal and J. Tanner, Spin Diffusion Measurements: Spin Echoes in the Presence of a Time???Dependent Field Gradient, The Journal of Chemical Physics, vol.42, issue.1, pp.288-292, 1965.
DOI : 10.1063/1.1695690

M. I. Kettunen, O. H. Grohn, J. A. Lukkarinen, P. Vainio, M. J. Silvennoinen et al., Interrelations ofT1 and diffusion of water in acute cerebral ischemia of the rat, Magnetic Resonance in Medicine, vol.17, issue.6, pp.833-839, 2000.
DOI : 10.1002/1522-2594(200012)44:6<833::AID-MRM3>3.0.CO;2-F

R. J. Ordidge and D. Gadian, Early changes in water diffusion, perfusion, T1, and T2 during focal cerebral ischemia in the rat studied at 8.5 T, Magn Reson Med, vol.41, pp.479-485, 1999.

E. L. Barbier, L. Liu, E. Grillon, J. F. Payen, J. F. Lebas et al., Focal brain ischemia in rat: acute changes in brain tissueT1 reflect acute increase in brain tissue water content, NMR in Biomedicine, vol.52, issue.8, pp.499-506, 2005.
DOI : 10.1002/nbm.979

M. Hoehn-berlage, M. Eis, T. Back, K. Kohno, and K. Yamashita, Changes of relaxation times (T1, T2) and apparent diffusion coefficient after permanent middle cerebral artery occlusion in the rat: temporal evolution, regional extent, and comparison with histology, Magnetic Resonance in Medicine, vol.9, issue.6, pp.824-834, 1995.
DOI : 10.1002/mrm.1910340607

J. R. Ewing, Q. Jiang, M. Boska, Z. G. Zhang, S. L. Brown et al., T1 and magnetization transfer at 7 Tesla in acute ischemic infarct in the rat, Magnetic Resonance in Medicine, vol.14, issue.4, pp.696-705, 1999.
DOI : 10.1002/(SICI)1522-2594(199904)41:4<696::AID-MRM7>3.0.CO;2-5

W. Lin, R. Venkatesan, K. Gurleyik, Y. Y. He, W. J. Powers et al., An Absolute Measurement of Brain Water Content Using Magnetic Resonance Imaging in Two Focal Cerebral Ischemic Rat Models, Journal of Cerebral Blood Flow & Metabolism, vol.26, issue.1, pp.37-44, 2000.
DOI : 10.1016/S0006-8993(96)01383-2

M. I. Kettunen, O. H. Grohn, M. J. Silvennoinen, M. Penttonen, and R. A. Kauppinen, Quantitative Assessment of the Balance Between Oxygen Delivery and Consumption in the Rat Brain After Transient Ischemia With T2-BOLD Magnetic Resonance Imaging, Journal of Cerebral Blood Flow & Metabolism, vol.4, pp.262-270, 2002.
DOI : 10.1097/00004647-200203000-00003

M. J. Silvennoinen, M. I. Kettunen, and R. A. Kauppinen, Effects of hematocrit and oxygen saturation level on blood spin-lattice relaxation, Magnetic Resonance in Medicine, vol.39, issue.3, pp.568-571, 2003.
DOI : 10.1002/mrm.10370

R. Schmid-elsaesser, S. Zausinger, E. Hungerhuber, A. Baethmann, and H. J. Reulen, A Critical Reevaluation of the Intraluminal Thread Model of Focal Cerebral Ischemia : Evidence of Inadvertent Premature Reperfusion and Subarachnoid Hemorrhage in Rats by Laser-Doppler Flowmetry ?? Editorial Comment: Evidence of Inadvertent Premature Reperfusion and Subarachnoid Hemorrhage in Rats by Laser-Doppler Flowmetry, Stroke, vol.29, issue.10, pp.2162-2170, 1998.
DOI : 10.1161/01.STR.29.10.2162

R. Pluta, A. S. Lossinsky, H. M. Wisniewski, and M. J. Mossakowski, Early blood-brain barrier changes in the rat following transient complete cerebral ischemia induced by cardiac arrest, Brain Research, vol.633, issue.1-2, pp.41-52, 1994.
DOI : 10.1016/0006-8993(94)91520-2

S. Albayrak, Q. Zhao, B. K. Siesjo, and M. Smith, Effect of transient focal ischemia on blood-brain barrier permeability in the rat: correlation to cell injury, Acta Neuropathologica, vol.94, issue.2, pp.158-163, 1997.
DOI : 10.1007/s004010050688

P. S. Tofts and B. A. Berkowitz, Measurement of capillary permeability from the Gd enhancement curve: A comparison of bolus and constant infusion injection methods, Magnetic Resonance Imaging, vol.12, issue.1, pp.81-91, 1994.
DOI : 10.1016/0730-725X(94)92355-8

J. I. Sage, V. Uitert, R. L. Duffy, and T. , Early changes in blood brain barrier permeability to small molecules after transient cerebral ischemia, Stroke, vol.15, issue.1, pp.46-50, 1984.
DOI : 10.1161/01.STR.15.1.46

J. S. Crossgrove, D. D. Allen, B. L. Bukaveckas, S. S. Rhineheimer, and R. A. Yokel, Manganese Distribution Across the Blood???Brain Barrier, NeuroToxicology, vol.24, issue.1, pp.3-13, 2003.
DOI : 10.1016/S0161-813X(02)00089-X

Y. J. Lin and A. Koretsky, Manganese ion enhances T1-weighted MRI during brain activation: An approach to direct imaging of brain function, Magnetic Resonance in Medicine, vol.42, issue.3, pp.378-388, 1997.
DOI : 10.1002/mrm.1910380305

R. A. Knight, P. B. Barker, S. C. Fagan, Y. Li, M. A. Jacobs et al., Prediction of Impending Hemorrhagic Transformation in Ischemic Stroke Using Magnetic Resonance Imaging in Rats ?? Editorial Comment, Stroke, vol.29, issue.1, pp.144-151, 1998.
DOI : 10.1161/01.STR.29.1.144

C. Neumann-haefelin, G. Brinker, U. Uhlenkuken, F. Pillekamp, K. Hossmann et al., Prediction of Hemorrhagic Transformation After Thrombolytic Therapy of Clot Embolism: An MRI Investigation in Rat Brain, Stroke, vol.33, issue.5, pp.1392-1398, 2002.
DOI : 10.1161/01.STR.0000014619.59851.65