A. Galione, H. C. Lee, and W. B. Busa, Ca(2+)-induced Ca2+ release in sea urchin egg homogenates: modulation by cyclic ADP-ribose, Science, vol.253, issue.5024, pp.1143-1146, 1991.
DOI : 10.1126/science.1909457

A. H. Guse, Cyclic ADP-ribose, Cellular Signalling, vol.11, issue.5, pp.309-316, 1999.
DOI : 10.1016/S0898-6568(99)00004-2

URL : https://hal.archives-ouvertes.fr/hal-00479133

K. Nata, T. Sugimoto, A. Tohgo, T. Takamura, N. Noguchi et al., The structure of the Aplysia kurodai gene encoding ADP-ribosyl cyclase, a second-messenger enzyme, Gene, vol.158, issue.2, pp.213-218, 1995.
DOI : 10.1016/0378-1119(95)00095-N

G. S. Prasad, D. E. Mcree, E. A. Stura, D. G. Levitt, H. C. Lee et al., Crystal structure of Aplysia ADP ribosyl cyclase, a homologue of the bifunctional ectozyme CD38, Nature Structural Biology, vol.47, issue.11, pp.957-964, 1996.
DOI : 10.1016/0378-1119(95)00540-M

C. Munshi, R. Aarhus, R. Graeff, T. F. Walseth, D. Levitt et al., Identification of the Enzymatic Active Site of CD38 by Site-directed Mutagenesis, Journal of Biological Chemistry, vol.275, issue.28, pp.21566-21571, 2000.
DOI : 10.1074/jbc.M909365199

R. Graeff, C. Munshi, R. Aarhus, M. Johns, L. et al., A Single Residue at the Active Site of CD38 Determines Its NAD Cyclizing and Hydrolyzing Activities, Journal of Biological Chemistry, vol.276, issue.15, pp.12169-12173, 2001.
DOI : 10.1074/jbc.M011299200

M. Itoh, K. Ishihara, H. Tomizawa, H. Tanaka, Y. Kobune et al., Molecular Cloning of Murine BST-1 Having Homology with CD38 and Aplysia ADP-Ribosyl Cyclase, Biochemical and Biophysical Research Communications, vol.203, issue.2, pp.1309-1317, 1994.
DOI : 10.1006/bbrc.1994.2325

C. Dong, J. Wang, P. Neame, C. , and M. D. , The murine BP-3 gene encodes a relative of the CD38/NAD glycohydrolase family, International Immunology, vol.6, issue.9, pp.1353-1360, 1994.
DOI : 10.1093/intimm/6.9.1353

S. Yamamoto-katayama, M. Ariyoshi, K. Ishihara, T. Hirano, H. Jingami et al., Crystallographic studies on human BST-1/CD157 with ADP-ribosyl cyclase and NAD glycohydrolase activities, Journal of Molecular Biology, vol.316, issue.3, pp.711-723, 2002.
DOI : 10.1006/jmbi.2001.5386

F. Schuber and F. E. Lund, Structure and Enzymology of ADP-ribosyl Cyclases: Conserved Enzymes that Produce Multiple Calcium Mobilizing Metabolites, Current Molecular Medicine, vol.4, issue.3, pp.249-261, 2004.
DOI : 10.2174/1566524043360708

M. Howard, J. C. Grimaldi, J. F. Bazan, F. E. Lund, L. Santos-argumedo et al., Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38, Science, vol.262, issue.5136, pp.1056-1059, 1993.
DOI : 10.1126/science.8235624

E. Zocchi, L. Franco, L. Guida, U. Benatti, A. Bargellesi et al., A Single Protein Immunologically Identified as CD38 Displays NAD+ Glycohydrolase, ADP-Ribosyl Cyclase and Cyclic ADP-Ribose Hydrolase Activities at the Outer Surface of Human Erythrocytes, Biochemical and Biophysical Research Communications, vol.196, issue.3, pp.1459-1465, 1993.
DOI : 10.1006/bbrc.1993.2416

R. J. Summerhill, D. G. Jackson, and A. Galione, Human lymphocyte antigen CD38 catalyzes the production of cyclic ADP-ribose, FEBS Letters, vol.206, issue.2, pp.231-233, 1993.
DOI : 10.1016/0014-5793(93)80735-D

Y. Hirata, N. Kimura, K. Sato, Y. Ohsugi, S. Takasawa et al., ADP ribosyl cyclase activity of a novel bone marrow stromal cell surface molecule, BST-1, FEBS Letters, vol.1178, issue.2-3, pp.244-248, 1994.
DOI : 10.1016/0014-5793(94)01279-2

H. Kim, E. L. Jacobson, and M. K. Jacobson, Synthesis and degradation of cyclic ADP-ribose by NAD glycohydrolases, Science, vol.261, issue.5126, pp.1330-1333, 1993.
DOI : 10.1126/science.8395705

Y. Sano, K. Inamura, A. Miyake, S. Mochizuki, H. Yokoi et al., Immunocyte Ca2+ Influx System Mediated by LTRPC2, Science, vol.293, issue.5533, pp.1327-1330, 2001.
DOI : 10.1126/science.1062473

R. Aarhus, R. M. Graeff, D. M. Dickey, T. F. Walseth, L. et al., ADP-ribosyl Cyclase and CD38 Catalyze the Synthesis of a Calcium-mobilizing Metabolite from NADP+, Journal of Biological Chemistry, vol.270, issue.51, pp.30327-30333, 1995.
DOI : 10.1074/jbc.270.51.30327

I. Kato, Y. Yamamoto, M. Fujimura, N. Noguchi, S. Takasawa et al., CD38 Disruption Impairs Glucose-induced Increases in Cyclic ADP-ribose, [Ca2+] i , and Insulin Secretion, Journal of Biological Chemistry, vol.274, issue.4, pp.1869-1872, 1999.
DOI : 10.1074/jbc.274.4.1869

S. Partida-sanchez, S. Goodrich, K. Kusser, N. Oppenheimer, T. D. Randall et al., Regulation of Dendritic Cell Trafficking by the ADP-Ribosyl Cyclase CD38, Immunity, vol.20, issue.3, pp.279-291, 2004.
DOI : 10.1016/S1074-7613(04)00048-2

Y. Fukushi, I. Kato, S. Takasawa, T. Sasaki, B. H. Ong et al., Identification of Cyclic ADP-ribose-dependent Mechanisms in Pancreatic Muscarinic Ca2+ Signaling Using CD38 Knockout Mice, Journal of Biological Chemistry, vol.276, issue.1, pp.649-655, 2001.
DOI : 10.1074/jbc.M004469200

D. A. Deshpande, T. A. White, A. G. Guedes, C. Milla, T. F. Walseth et al., Altered Airway Responsiveness in CD38-Deficient Mice, American Journal of Respiratory Cell and Molecular Biology, vol.32, issue.2, pp.149-156, 2004.
DOI : 10.1165/rcmb.2004-0243OC

M. Thompson, H. Barata-da-silva, W. Zielinska, T. A. White, J. P. Bailey et al., Role of CD38 in myometrial Ca2+ transients: modulation by progesterone, AJP: Endocrinology and Metabolism, vol.287, issue.6, pp.1142-1148, 2004.
DOI : 10.1152/ajpendo.00122.2004

D. Engels, L. Chitsulo, A. Montresor, and L. Savioli, The global epidemiological situation of schistosomiasis and new approaches to control and research, Acta Tropica, vol.82, issue.2, pp.139-146, 2002.
DOI : 10.1016/S0001-706X(02)00045-1

W. J. Freebern, A. Osman, E. G. Niles, L. Christen, and L. , Identification of a cDNA Encoding a Retinoid X Receptor Homologue from Schistosoma mansoni: EVIDENCE FOR A ROLE IN FEMALE-SPECIFIC GENE EXPRESSION, Journal of Biological Chemistry, vol.274, issue.8, pp.4577-4585, 1999.
DOI : 10.1074/jbc.274.8.4577

W. Hu, Q. Yan, D. K. Shen, F. Liu, Z. D. Zhu et al., Evolutionary and biomedical implications of a Schistosoma japonicum complementary DNA resource, Nature Genetics, vol.35, issue.2, pp.139-147, 2003.
DOI : 10.1038/ng1236

D. G. Higgins, J. D. Thompson, and T. J. Gibson, [22] Using CLUSTAL for multiple sequence alignments, Methods Enzymol, vol.266, pp.383-402, 1996.
DOI : 10.1016/S0076-6879(96)66024-8

M. A. Marti-renom, A. C. Stuart, A. Fiser, R. Sanchez, F. Melo et al., Comparative Protein Structure Modeling of Genes and Genomes, Annual Review of Biophysics and Biomolecular Structure, vol.29, issue.1, pp.291-325, 2000.
DOI : 10.1146/annurev.biophys.29.1.291

J. D. Bendtsen, H. Nielsen, G. Von-heijne, and S. Brunak, Improved Prediction of Signal Peptides: SignalP 3.0, Journal of Molecular Biology, vol.340, issue.4, pp.783-795, 2004.
DOI : 10.1016/j.jmb.2004.05.028

L. Kall, A. Krogh, and E. L. Sonnhammer, A Combined Transmembrane Topology and Signal Peptide Prediction Method, Journal of Molecular Biology, vol.338, issue.5, pp.1027-1036, 2004.
DOI : 10.1016/j.jmb.2004.03.016

B. Eisenhaber, P. Bork, and F. Eisenhaber, Sequence properties of GPI-anchored proteins near the omega-site: constraints for the polypeptide binding site of the putative transamidase, Protein Engineering Design and Selection, vol.11, issue.12, pp.1155-1161, 1998.
DOI : 10.1093/protein/11.12.1155

J. H. Woo, Y. Y. Liu, A. Mathias, S. Stavrou, Z. Wang et al., Gene optimization is necessary to express a bivalent anti-human anti-T cell immunotoxin in Pichia pastoris, Protein Expression and Purification, vol.25, issue.2, pp.270-282, 2002.
DOI : 10.1016/S1046-5928(02)00009-8

H. M. Muller, C. D. Muller, and F. Schuber, glycohydrolase, an ecto-enzyme of calf spleen cells, Biochemical Journal, vol.212, issue.2, pp.459-464, 1983.
DOI : 10.1042/bj2120459

R. Graeff, L. , and H. C. , A novel cycling assay for cellular cADP-ribose with nanomolar sensitivity, Biochemical Journal, vol.361, issue.2, pp.379-384, 2002.
DOI : 10.1042/bj3610379

A. Osman, E. G. Niles, and P. T. Loverde, Expression of Functional Schistosoma mansoni Smad4: ROLE IN ERK-MEDIATED TRANSFORMING GROWTH FACTOR ?? (TGF-??) DOWN-REGULATION, Journal of Biological Chemistry, vol.279, issue.8, pp.6474-6486, 2004.
DOI : 10.1074/jbc.M310949200

H. C. Lee, Multiplicity of Ca2+ Messengers and Ca2+ Stores: A Perspective from Cyclic ADP-Ribose and NAADP, Current Molecular Medicine, vol.4, issue.3, pp.227-237, 2004.
DOI : 10.2174/1566524043360753

B. Eisenhaber, S. Maurer-stroh, M. Novatchkova, G. Schneider, and F. Eisenhaber, Enzymes and auxiliary factors for GPI lipid anchor biosynthesis and post-translational transfer to proteins, BioEssays, vol.97, issue.4, pp.367-385, 2003.
DOI : 10.1002/bies.10254

V. Berthelier, J. Tixier, H. Muller-steffner, F. Schuber, and P. Deterre, Human CD38 is an authentic NAD(P)+ glycohydrolase, Biochemical Journal, vol.330, issue.3, pp.1383-1390, 1998.
DOI : 10.1042/bj3301383

H. Muller-steffner, M. Muzard, N. Oppenheimer, and F. Schuber, Mechanistic Implications of Cyclic ADP-Ribose Hydrolysis and Methanolysis Catalyzed by Calf Spleen NAD+Glycohydrolase, Biochemical and Biophysical Research Communications, vol.204, issue.3, pp.1279-1285, 1994.
DOI : 10.1006/bbrc.1994.2601

C. L. Silva, D. L. Mendonca-silva, N. , and F. , Evidence for functional ryanodine receptors in Schistosoma mansoni and their putative role in the control of calcium homeostasis, Mem??rias do Instituto Oswaldo Cruz, vol.93, pp.269-270, 1998.
DOI : 10.1590/S0074-02761998000700051

T. A. Day, J. Haithcock, M. Kimber, and A. G. Maule, Functional ryanodine receptor channels in flatworm muscle fibres, Parasitology, vol.120, issue.4, pp.417-422, 2000.
DOI : 10.1017/S0031182099005594

N. Bai, H. C. Lee, and I. Laher, Emerging role of cyclic ADP-ribose (cADPR) in smooth muscle, Pharmacology & Therapeutics, vol.105, issue.2, pp.189-207, 2005.
DOI : 10.1016/j.pharmthera.2004.10.005

T. A. Day, N. Orr, J. L. Bennett, and R. A. Pax, Voltage-gated currents in muscle cells of Schistosoma mansoni, Parasitology, vol.102, issue.05, pp.471-477, 1993.
DOI : 10.2307/3283470

W. Mussie, E. Vande-waa, J. Pax, R. A. Fetterer, R. Bennett et al., Schistosoma mansoni: Calcium efflux and effects of calcium-free media on responses of the adult male musculature to praziquantel and other agents inducing contraction, Experimental Parasitology, vol.53, issue.2, pp.270-278, 1982.
DOI : 10.1016/0014-4894(82)90069-8

C. A. Redman, A. Robertson, P. G. Fallon, J. Modha, J. R. Kusel et al., Praziquantel: An urgent and exciting challenge, Parasitology Today, vol.12, issue.1, pp.14-20, 1996.
DOI : 10.1016/0169-4758(96)80640-5

A. B. Kohn, P. A. Anderson, J. M. Roberts-misterly, and R. M. Greenberg, Schistosome Calcium Channel ?? Subunits: UNUSUAL MODULATORY EFFECTS AND POTENTIAL ROLE IN THE ACTION OF THE ANTISCHISTOSOMAL DRUG PRAZIQUANTEL, Journal of Biological Chemistry, vol.276, issue.40, pp.36873-36876, 2001.
DOI : 10.1074/jbc.C100273200

P. T. Loverde, E. G. Niles, A. Osman, and W. Wu, male???female interactions, Canadian Journal of Zoology, vol.82, issue.2, pp.357-374, 2004.
DOI : 10.1139/z03-217

M. Seman, S. Adriouch, F. Haag, and F. Koch-nolte, Ecto-ADP-Ribosyltransferases (ARTs): Emerging Actors in Cell Communication and Signaling, Current Medicinal Chemistry, vol.11, issue.7, pp.857-872, 2004.
DOI : 10.2174/0929867043455611

M. Seman, S. Adriouch, F. Scheuplein, C. Krebs, D. Freese et al., NAD-Induced T Cell Death, Immunity, vol.19, issue.4, pp.571-582, 2003.
DOI : 10.1016/S1074-7613(03)00266-8

P. T. Loverde, Do Antioxidants Play a Role in Schistosome Host???Parasite Interactions?, Parasitology Today, vol.14, issue.7, pp.284-289, 1998.
DOI : 10.1016/S0169-4758(98)01261-7

H. , E. , F. , and W. /. Tdr, We also thank Dr Sigurdson, Director of the Confocal Microscopy and 3- Dimensional Imaging Facility, School of Medicine and Biomedical Sciences, SUNY at Buffalo for help with microscopy and Sharon Willard for expert technical assistance. formation was measured by HPLC as described in Fig. 3. In panel C, the membrane microsomes were incubated in the presence or absence of PI-PLC for two h. The supernatant and membrane fractions were collected separately and then incubated with 14 C-labeled NAD + . ADPR production was measured by HPLC and results are presented as % activity compared to the non-treated membrane fraction. The specific activity of non-treated membrane microsomes was 36 nmol/min/mg protein. D, Adult S. mansoni worms express an outer membrane NAD + glycohydrolase. Ten live adult S. mansoni worms were placed in single wells of a 96 well plate and were incubated in media (circles) or media containing ?-NAD + (squares) and conversion of ?-NAD + to fluorescent ?-ADPR was measured in a microplate fluorometer and is reported in RFU vs time. E, Adult S. mansoni worms express a GPI-anchored outer tegument NADase. Ten live adult S. mansoni worms were placed in single wells of a 96 well plate and were then incubated in the presence (diamonds and triangles) or absence (squares and circles) of PI-PLC for 2 h, Support for this work was provided by Trudeau Institute, NIH grants AI-43629 and AI-057996 (FEL) and AI-46762 (PTL), the Centre National de la Recherche Scientifique The media from each of the wells was removed and then incubated in the presence (circles and triangles) or absence (squares and diamonds) of ?-NAD + . Production of fluorescent ?-ADPR was measured in a microplate fluorometer and is reported as RFU over time