E. Reid, Science in motion: common molecular pathological themes emerge in the hereditary spastic paraplegias, Journal of Medical Genetics, vol.40, issue.2, pp.81-86, 2003.
DOI : 10.1136/jmg.40.2.81

C. Soderblom and C. Blackstone, Traffic accidents: Molecular genetic insights into the pathogenesis of the hereditary spastic paraplegias, Pharmacology & Therapeutics, vol.109, issue.1-2, pp.42-56, 2005.
DOI : 10.1016/j.pharmthera.2005.06.001

J. Hazan, N. Fonknechten, D. Mavel, C. Paternotte, D. Samson et al., Spastin, a new AAA protein, is altered in the most frequent form of autosomal dominant spastic paraplegia, Nature Genetics, vol.23, issue.3, pp.296-303, 1999.
DOI : 10.1038/15472

N. Fonknechten, D. Mavel, P. Byrne, C. S. Davoine, C. Cruaud et al., Spectrum of SPG4 mutations in autosomal dominant spastic paraplegia, Human Molecular Genetics, vol.9, issue.4, pp.637-644, 2000.
DOI : 10.1093/hmg/9.4.637

J. C. Lindsey, M. E. Lusher, C. J. Mcdermott, K. D. White, E. Reid et al., Mutation analysis of the spastin gene (SPG4) in patients with hereditary spastic paraparesis, Journal of Medical Genetics, vol.37, issue.10, pp.759-765, 2000.
DOI : 10.1136/jmg.37.10.759

I. K. Svenson, A. E. Ashley-koch, P. C. Gaskell, T. J. Riney, W. J. Cumming et al., Identification and Expression Analysis of Spastin Gene Mutations in Hereditary Spastic Paraplegia, The American Journal of Human Genetics, vol.68, issue.5, pp.1077-1085, 2001.
DOI : 10.1086/320111

C. Patrono, C. Casali, A. Tessa, A. Cricchi, D. Fortini et al., Missense and splice site mutations in SPG4 suggest loss-of-function in dominant spastic paraplegia, Journal of Neurology, vol.249, issue.2, pp.200-205, 2002.
DOI : 10.1007/PL00007865

I. A. Meijer, C. K. Hand, P. Cossette, D. A. Figlewicz, and G. A. Rouleau, Spectrum of SPG4 Mutations in a Large Collection of North American Families With Hereditary Spastic Paraplegia, Archives of Neurology, vol.59, issue.2, pp.281-286, 2002.
DOI : 10.1001/archneur.59.2.281

A. G. Yip, A. Durr, D. A. Marchuk, A. Ashley-koch, A. Hentati et al., Meta-analysis of age at onset in spastin-associated hereditary spastic paraplegia provides no evidence for a correlation with mutational class, Journal of Medical Genetics, vol.40, issue.9, p.106, 2003.
DOI : 10.1136/jmg.40.9.e106

C. Depienne, C. Tallaksen, J. Y. Lephay, B. Bricka, S. Poea-guyon et al., Spastin mutations are frequent in sporadic spastic paraparesis and their spectrum is different from that observed in familial cases, Journal of Medical Genetics, vol.43, issue.3, pp.259-265, 2006.
DOI : 10.1136/jmg.2005.035311

D. Charvin, C. Cifuentes-diaz, N. Fonknechten, V. Joshi, J. Hazan et al., Mutations of SPG4 are responsible for a loss of function of spastin, an abundant neuronal protein localized in the nucleus, Human Molecular Genetics, vol.12, issue.1, pp.71-78, 2003.
DOI : 10.1093/hmg/ddg004

A. Errico, A. Ballabio, and E. I. Rugarli, Spastin, the protein mutated in autosomal dominant hereditary spastic paraplegia, is involved in microtubule dynamics, Human Molecular Genetics, vol.11, issue.2, pp.153-163, 2002.
DOI : 10.1093/hmg/11.2.153

A. N. Lupas and J. Martin, AAA proteins, Current Opinion in Structural Biology, vol.12, issue.6, pp.746-753, 2002.
DOI : 10.1016/S0959-440X(02)00388-3

F. J. Ahmad, W. F. Yu, J. Mcnally, and P. W. Baas, An Essential Role for Katanin in Severing Microtubules in the Neuron, The Journal of Cell Biology, vol.14, issue.2, pp.305-315, 1999.
DOI : 10.1083/jcb.122.2.349

A. Karabay, W. Yu, J. M. Solowska, D. H. Baird, and P. W. Baas, Axonal Growth Is Sensitive to the Levels of Katanin, a Protein That Severs Microtubules, Journal of Neuroscience, vol.24, issue.25, pp.5778-5788, 2004.
DOI : 10.1523/JNEUROSCI.1382-04.2004

M. Nicolai, C. Lasbleiz, and J. M. Dura, mushroom body development, Journal of Neurobiology, vol.97, issue.3, pp.291-302, 2003.
DOI : 10.1002/neu.10277

A. Errico, P. Claudiani, M. D-'addio, and E. I. Rugarli, Spastin interacts with the centrosomal protein NA14, and is enriched in the spindle pole, the midbody and the distal axon, Human Molecular Genetics, vol.13, issue.18, pp.2121-2132, 2004.
DOI : 10.1093/hmg/ddh223

K. J. Evans, E. R. Gomes, S. M. Reisenweber, G. G. Gundersen, and B. P. Lauring, Linking axonal degeneration to microtubule remodeling by Spastin-mediated microtubule severing, The Journal of Cell Biology, vol.62, issue.4, pp.599-606, 2005.
DOI : 10.1083/jcb.200302169

H. Patel, H. Cross, C. Proukakis, R. Hershberger, P. Bork et al., SPG20 is mutated in Troyer syndrome, an hereditary spastic paraplegia, Nature Genetics, vol.31, pp.347-348, 2002.
DOI : 10.1038/ng937

E. Reid, J. Connell, T. L. Edwards, S. Duley, S. E. Brown et al., The hereditary spastic paraplegia protein spastin interacts with the ESCRT-III complex-associated endosomal protein CHMP1B, Human Molecular Genetics, vol.14, issue.1, pp.19-38, 2005.
DOI : 10.1093/hmg/ddi003

C. M. Sanderson, J. W. Connell, T. L. Edwards, N. A. Bright, S. Duley et al., Spastin and atlastin, two proteins mutated in autosomal-dominant hereditary spastic paraplegia, are binding partners, Human Molecular Genetics, vol.15, issue.2, pp.307-318, 2006.
DOI : 10.1093/hmg/ddi447

A. U. Mannan, J. Boehm, S. M. Sauter, A. Rauber, P. C. Byrne et al., Spastin, the most commonly mutated protein in hereditary spastic paraplegia interacts with Reticulon 1 an endoplasmic reticulum protein, Neurogenetics, vol.73, issue.2, pp.93-103, 2006.
DOI : 10.1007/s10048-006-0034-4

A. U. Mannan, P. Krawen, S. M. Sauter, J. Boehm, A. Chronowska et al., ZFYVE27 (SPG33), a Novel Spastin-Binding Protein, Is Mutated in Hereditary Spastic Paraplegia, The American Journal of Human Genetics, vol.79, issue.2, pp.351-357, 2006.
DOI : 10.1086/504927

N. Trotta, G. Orso, M. G. Rossetto, A. Daga, and K. Broadie, The Hereditary Spastic Paraplegia Gene, spastin, Regulates Microtubule Stability to Modulate Synaptic Structure and Function, Current Biology, vol.14, issue.13, pp.1135-1147, 2004.
DOI : 10.1016/j.cub.2004.06.058

J. D. Wood, J. A. Landers, M. Bingley, C. J. Mcdermott, V. Thomas-mcarthur et al., The microtubule-severing protein Spastin is essential for axon outgrowth in the zebrafish embryo, Human Molecular Genetics, vol.15, issue.18, pp.2763-2771, 2006.
DOI : 10.1093/hmg/ddl212

V. L. Billat, E. Mouisel, N. Roblot, and J. Melki, Inter- and intrastrain variation in mouse critical running speed, Journal of Applied Physiology, vol.98, issue.4, pp.1258-1263, 2005.
DOI : 10.1152/japplphysiol.00991.2004

P. W. Baas and M. M. Black, Individual microtubules in the axon consist of domains that differ in both composition and stability, The Journal of Cell Biology, vol.111, issue.2, pp.495-509, 1990.
DOI : 10.1083/jcb.111.2.495

A. Brown, Y. Li, T. Slaughter, and M. M. Black, Composite microtubules of the axon: quantitative analysis of tyrosinated and acetylated tubulin along individual axonal microtubules, J. Cell Sci, vol.104, pp.339-352, 1993.

I. Griffiths, M. Klugmann, T. Anderson, D. Yool, C. Thomson et al., Axonal Swellings and Degeneration in Mice Lacking the Major Proteolipid of Myelin, Science, vol.280, issue.5369, pp.1610-1613, 1998.
DOI : 10.1126/science.280.5369.1610

H. S. Barra, C. A. Arce, and C. E. Argarana, Posttranslational tyrosination/detyrosination of tubulin, Molecular Neurobiology, vol.4, issue.6, pp.133-153, 1988.
DOI : 10.1007/BF02935343

K. Ersfeld, J. Wehland, U. Plessmann, H. Dodemont, V. Gerke et al., Characterization of the tubulin-tyrosine ligase, The Journal of Cell Biology, vol.120, issue.3, pp.725-732, 1993.
DOI : 10.1083/jcb.120.3.725

G. G. Gundersen, M. H. Kalnoski, and J. C. Bulinski, Distinct populations of microtubules: Tyrosinated and nontyrosinated alpha tubulin are distributed differently in vivo, Cell, vol.38, issue.3, pp.779-789, 1984.
DOI : 10.1016/0092-8674(84)90273-3

T. E. Kreis, Microtubules containing detyrosinated tubulin are less dynamic, EMBO J, vol.6, pp.2597-2606, 1987.

J. Wehland and K. Weber, Turnover of the carboxy-terminal tyrosine of alpha-tubulin and means of reaching elevated levels of detyrosination in living cells, J. Cell Sci, vol.88, pp.185-203, 1987.

W. Yu, F. J. Ahmad, and P. W. Baas, Microtubule fragmentation and partitioning in the axon during collateral branch formation, J. Neurosci, vol.14, pp.5872-5884, 1994.

E. W. Dent, J. L. Callaway, G. Szebenyi, P. W. Baas, and K. Kalil, Reorganization and movement of microtubules in axonal growth cones and developing interstitial branches, J. Neurosci, vol.19, pp.8894-8908, 1999.

N. R. Cashman, H. D. Durham, J. K. Blusztajn, K. Oda, T. Tabira et al., Neuroblastoma ?? spinal cord (NSC) hybrid cell lines resemble developing motor neurons, Developmental Dynamics, vol.319, issue.3, pp.209-221, 1992.
DOI : 10.1002/aja.1001940306

M. A. Welte, Bidirectional Transport along Microtubules, Current Biology, vol.14, issue.13, pp.525-537, 2004.
DOI : 10.1016/j.cub.2004.06.045

F. Ferreirinha, A. Quattrini, M. Pirozzi, V. Valsecchi, G. Dina et al., Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport, Journal of Clinical Investigation, vol.113, issue.2, pp.231-242, 2004.
DOI : 10.1172/JCI200420138

C. H. Xia, E. A. Roberts, L. S. Her, X. Liu, D. S. Williams et al., Abnormal neurofilament transport caused by targeted disruption of neuronal kinesin heavy chain KIF5A, The Journal of Cell Biology, vol.1, issue.1, pp.55-66, 2003.
DOI : 10.1101/gad.862101

G. B. Stokin, C. Lillo, T. L. Falzone, R. G. Brusch, E. Rockenstein et al., Axonopathy and Transport Deficits Early in the Pathogenesis of Alzheimer's Disease, Science, vol.307, issue.5713, pp.1282-1288, 2005.
DOI : 10.1126/science.1105681

G. Lennon, C. Auffray, M. Polymeropoulos, and M. B. Soares, The I.M.A.G.E. Consortium: An Integrated Molecular Analysis of Genomes and Their Expression, Genomics, vol.33, issue.1, pp.151-152, 1996.
DOI : 10.1006/geno.1996.0177

T. Frugier, F. D. Tiziano, C. Cifuentes-diaz, P. Miniou, N. Roblot et al., Nuclear targeting defect of SMN lacking the C-terminus in a mouse model of spinal muscular atrophy, Human Molecular Genetics, vol.9, issue.5, pp.849-858, 2000.
DOI : 10.1093/hmg/9.5.849

L. C. Ronn, I. Ralets, B. P. Hartz, M. Bech, A. Berezin et al., A simple procedure for quantification of neurite outgrowth based on stereological principles, Journal of Neuroscience Methods, vol.100, issue.1-2, pp.25-32, 2000.
DOI : 10.1016/S0165-0270(00)00228-4

D. Simon, H. Seznec, A. Gansmuller, N. Carelle, P. Weber et al., Friedreich Ataxia Mouse Models with Progressive Cerebellar and Sensory Ataxia Reveal Autophagic Neurodegeneration in Dorsal Root Ganglia, Journal of Neuroscience, vol.24, issue.8, 1987.
DOI : 10.1523/JNEUROSCI.4549-03.2004