S. S. Andersen, Balanced regulation of microtubule dynamics during the cell cycle: a contemporary view, BioEssays, vol.9, issue.1, pp.53-60, 1999.
DOI : 10.1002/(SICI)1521-1878(199901)21:1<53::AID-BIES7>3.0.CO;2-L

S. S. Andersen, Spindle assembly and the art of regulating microtubule dynamics by MAPs and Stathmin/Op18, Trends in Cell Biology, vol.10, issue.7, pp.261-267, 2000.
DOI : 10.1016/S0962-8924(00)01786-4

P. R. Andreassen and R. L. Margolis, Microtubule dependency of p34cdc2 inactivation and mitotic exit in mammalian cells, The Journal of Cell Biology, vol.127, issue.3, pp.789-802, 1994.
DOI : 10.1083/jcb.127.3.789

E. Bailly, M. Doree, P. Nurse, and M. Bornens, p34cdc2 is located in both nucleus and cytoplasm; part is centrosomally associated at G2/M and enters vesicles at anaphase, EMBO J, vol.8, pp.3985-3995, 1989.

A. Blangy, H. A. Lane, P. Herin, M. Harper, M. Kress et al., Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo, Cell, vol.83, pp.1159-1169, 1995.

D. G. Bosc, E. Slominski, C. Sichler, and D. W. Litchfield, Phosphorylation of Casein Kinase II by p34cdc2: IDENTIFICATION OF PHOSPHORYLATION SITES USING PHOSPHORYLATION SITE MUTANTS IN VITRO, Journal of Biological Chemistry, vol.270, issue.43, pp.25872-25878, 1995.
DOI : 10.1074/jbc.270.43.25872

R. E. Carazo-salas, O. J. Gruss, I. W. Mattaj, and E. Karsenti, Ran-GTP coordinates regulation of microtubule nucleation and dynamics during mitotic-spindle assembly, Nature Cell Biology, vol.3, issue.3, pp.228-234, 2001.
DOI : 10.1038/35060009

L. Cassimeris, The oncoprotein 18/stathmin family of microtubule destabilizers, Current Opinion in Cell Biology, vol.14, issue.1, pp.18-24, 2002.
DOI : 10.1016/S0955-0674(01)00289-7

N. Caudron, I. Arnal, E. Buhler, D. Job, and O. Valiron, Microtubule Nucleation from Stable Tubulin Oligomers, Journal of Biological Chemistry, vol.277, issue.52, pp.50973-50979, 2002.
DOI : 10.1074/jbc.M209753200

N. Caudron, O. Valiron, Y. Usson, P. Valiron, J. et al., A reassessment of the factors affecting microtubule assembly and disassembly in Vitro, Journal of Molecular Biology, vol.297, issue.1, pp.211-220, 2000.
DOI : 10.1006/jmbi.2000.3554

URL : https://hal.archives-ouvertes.fr/hal-00192542

S. Charrasse, T. Lorca, M. Doree, and C. Larroque, The Xenopus XMAP215 and Its Human Homologue TOG Proteins Interact with Cyclin B1 to Target p34cdc2 to Microtubules during Mitosis, Experimental Cell Research, vol.254, issue.2, pp.249-256, 2000.
DOI : 10.1006/excr.1999.4740

H. P. Cho, Y. Liu, M. Gomez, J. Dunlap, M. Tyers et al., The Dual-Specificity Phosphatase CDC14B Bundles and Stabilizes Microtubules, Molecular and Cellular Biology, vol.25, issue.11, pp.4541-4551, 2005.
DOI : 10.1128/MCB.25.11.4541-4551.2005

G. Drewes, A. Ebneth, and E. M. Mandelkow, MAPs, MARKs and microtubule dynamics, Trends in Biochemical Sciences, vol.23, issue.8, pp.307-311, 1998.
DOI : 10.1016/S0968-0004(98)01245-6

O. Filhol, C. Cochet, P. Wedegaertner, G. N. Gill, C. et al., Coexpression of both .alpha. and .beta. subunits is required for assembly of regulated casein kinase II, Biochemistry, vol.30, issue.46, pp.11133-11140, 1991.
DOI : 10.1021/bi00110a016

A. Fourest-lieuvin, Purification of tubulin from limited volumes of cultured cells, Protein Expression and Purification, vol.45, issue.1, pp.183-190, 2005.
DOI : 10.1016/j.pep.2005.05.011

URL : https://hal.archives-ouvertes.fr/inserm-00380060

N. Galjart and F. Perez, A plus-end raft to control microtubule dynamics and function, Current Opinion in Cell Biology, vol.15, issue.1, pp.48-53, 2003.
DOI : 10.1016/S0955-0674(02)00007-8

R. Heald and E. Nogales, Microtubule dynamics, J. Cell Sci, vol.115, pp.3-4, 2002.

J. Hesse, M. Thierauf, and H. Ponstingl, Tubulin sequence region beta 155?174 is involved in binding exchangeable guanosine triphosphate, J. Biol. Chem, vol.262, pp.15472-15475, 1987.

T. Higuchi and F. Uhlmann, Stabilization of microtubule dynamics at anaphase onset promotes chromosome segregation, Nature, vol.12, issue.7022, pp.171-176, 2005.
DOI : 10.1093/emboj/16.18.5537

J. K. Holmes and M. J. Solomon, A Predictive Scale for Evaluating Cyclin-dependent Kinase Substrates: A COMPARISON OF p34cdc2 AND p33cdk2, Journal of Biological Chemistry, vol.271, issue.41, pp.25240-25246, 1996.
DOI : 10.1074/jbc.271.41.25240

M. A. Jordan, D. Thrower, W. , and L. , Effects of vinblastine, podophyllotoxin and nocodazole on mitotic spindles. Implications for the role of microtubule dynamics in mitosis, J. Cell Sci, vol.102, pp.401-416, 1992.

K. Kinoshita, B. Habermann, and A. A. Hyman, XMAP215: a key component of the dynamic microtubule cytoskeleton, Trends in Cell Biology, vol.12, issue.6, pp.267-273, 2002.
DOI : 10.1016/S0962-8924(02)02295-X

J. C. Labbé, J. P. Capony, D. Caput, J. C. Cavadore, J. Derancourt et al., MPF from starfish oocytes at first meiotic metaphase is a heterodimer containing one molecule of cdc2 and one molecule of cyclin B, EMBO J, vol.8, pp.3053-3058, 1989.

A. Lieuvin, J. C. Labbé, M. Dorée, J. , and D. , Intrinsic microtubule stability in interphase cells, The Journal of Cell Biology, vol.124, issue.6, pp.985-996, 1994.
DOI : 10.1083/jcb.124.6.985

D. W. Litchfield, B. Luscher, F. J. Lozeman, R. N. Eisenman, and E. G. Krebs, Phosphorylation of casein kinase II by p34cdc2 in vitro and at mitosis, 1992.

J. Lowe, H. Li, K. H. Downing, and E. Nogales, Refined structure of ????-tubulin at 3.5 ?? resolution, Journal of Molecular Biology, vol.313, issue.5, pp.1045-1057, 2001.
DOI : 10.1006/jmbi.2001.5077

T. H. Macrae, Tubulin Post-Translational Modifications. Enzymes and Their Mechanisms of Action, European Journal of Biochemistry, vol.67, issue.2, pp.265-278, 1997.
DOI : 10.1016/0014-5793(95)00373-H

H. Maekawa and E. Schiebel, Cdk1-Clb4 controls the interaction of astral microtubule plus ends with subdomains of the daughter cell cortex, Genes & Development, vol.18, issue.14, 2004.
DOI : 10.1101/gad.298704

H. Maekawa, T. Usui, M. Knop, and E. Schiebel, Yeast Cdk1 translocates to the plus end of cytoplasmic microtubules to regulate bud cortex interactions, The EMBO Journal, vol.22, issue.3, pp.438-449, 2003.
DOI : 10.1093/emboj/cdg063

D. Masson and T. E. Kreis, Binding of E-MAP-115 to microtubules is regulated by cell cycle- dependent phosphorylation, The Journal of Cell Biology, vol.131, issue.4, pp.1015-1024, 1995.
DOI : 10.1083/jcb.131.4.1015

N. Matsumoto-taniura, F. Pirollet, R. Monroe, L. Gerace, and J. M. Westendorf, Identification of novel M phase phosphoproteins by expression cloning., Molecular Biology of the Cell, vol.7, issue.9, pp.1455-1469, 1996.
DOI : 10.1091/mbc.7.9.1455

L. Meijer, A. Borgne, O. Mulner, J. P. Chong, J. J. Blow et al., Biochemical and Cellular Effects of Roscovitine, a Potent and Selective Inhibitor of the Cyclin-Dependent Kinases cdc2, cdk2 and cdk5, European Journal of Biochemistry, vol.1, issue.1-2, pp.527-536, 1997.
DOI : 10.1016/S0968-0004(00)88948-3

T. Mitchison and M. Kirschner, Dynamic instability of microtubule growth, Nature, vol.61, issue.5991, pp.237-242, 1984.
DOI : 10.1038/312237a0

O. Mulner-lorillon, P. Cormier, J. C. Labbe, M. Doree, R. Poulhe et al., M-phase-specific cdc2 protein kinase phosphorylates the beta subunit of casein kinase II, 1990.

E. A. Nigg, Mitotic kinases as regulators of cell division and its checkpoints, Nature Reviews Molecular Cell Biology, vol.2, issue.1, pp.21-32, 2001.
DOI : 10.1038/35048096

M. Ohsugi, N. Tokai-nishizumi, K. Shiroguchi, Y. Y. Toyoshima, J. Inoue et al., Cdc2-mediated phosphorylation of Kid controls its distribution to spindle and chromosomes, The EMBO Journal, vol.22, issue.9, pp.2091-2103, 2003.
DOI : 10.1093/emboj/cdg208

K. Ookata, S. Hisanaga, J. C. Bulinski, H. Murofushi, H. Aizawa et al., Cyclin B interaction with microtubule-associated protein 4 (MAP4) targets p34cdc2 kinase to microtubules and is a potential regulator of M-phase microtubule dynamics, The Journal of Cell Biology, vol.128, issue.5, pp.849-862, 1995.
DOI : 10.1083/jcb.128.5.849

J. B. Rattner, J. Lew, W. , and J. H. , p34cdc2 Kinase is localized to distinct domains within the mitotic apparatus, Cell Motility and the Cytoskeleton, vol.343, issue.3, pp.227-235, 1990.
DOI : 10.1002/cm.970170309

K. Riabowol, G. Draetta, L. Brizuela, D. Vandre, and D. Beach, The cdc2 kinase is a nuclear protein that is essential for mitosis in mammalian cells, Cell, vol.57, issue.3, pp.393-401, 1989.
DOI : 10.1016/0092-8674(89)90914-8

A. Roussel and C. Cambillau, The TURBO-FRODO graphics package. In: Silicon Graphics Geometry Partners Directory, 1991.

K. E. Sawin and T. J. Mitchison, Mutations in the kinesin-like protein Eg5 disrupting localization to the mitotic spindle., Proc. Natl. Acad. Sci. USA 92, pp.4289-4293, 1995.
DOI : 10.1073/pnas.92.10.4289

B. T. Schaar, K. Kinoshita, and S. K. Mcconnell, Doublecortin Microtubule Affinity Is Regulated by a Balance of Kinase and Phosphatase Activity at the Leading Edge of Migrating Neurons, Neuron, vol.41, issue.2, pp.203-213, 2004.
DOI : 10.1016/S0896-6273(03)00843-2

B. Trinczek, M. Brajenovic, A. Ebneth, and G. Drewes, MARK4 Is a Novel Microtubule-associated Proteins/Microtubule Affinity-regulating Kinase That Binds to the Cellular Microtubule Network and to Centrosomes, Journal of Biological Chemistry, vol.279, issue.7, pp.5915-5923, 2004.
DOI : 10.1074/jbc.M304528200

J. A. Ubersax, E. L. Woodbury, P. N. Quang, M. Paraz, J. D. Blethrow et al., Targets of the cyclin-dependent kinase Cdk1, Nature, vol.425, issue.6960, pp.859-864, 2003.
DOI : 10.1038/nature02062

R. J. Vasquez, D. L. Gard, C. , and L. , Phosphorylation by CDK1 regulates XMAP215 function in vitro, Cell Motility and the Cytoskeleton, vol.134, issue.4, pp.310-321, 1999.
DOI : 10.1002/(SICI)1097-0169(1999)43:4<310::AID-CM4>3.0.CO;2-J

F. Verde, M. Dogterom, E. Stelzer, E. Karsenti, and S. Leibler, Control of microtubule dynamics and length by cyclin A- and cyclin B- dependent kinases in Xenopus egg extracts, The Journal of Cell Biology, vol.118, issue.5, pp.1097-1108, 1992.
DOI : 10.1083/jcb.118.5.1097

F. Verde, J. C. Labbé, M. Dorée, and E. Karsenti, Regulation of microtubule dynamics by cdc2 protein kinase in cell-free extracts of Xenopus eggs, Nature, vol.343, issue.6255, pp.233-238, 1990.
DOI : 10.1038/343233a0

S. Westermann, W. , and K. , Post-translational modifications regulate microtubule function, Nature Reviews Molecular Cell Biology, vol.4, issue.12, pp.938-947, 2003.
DOI : 10.1038/nrm1260

S. P. Wheatley, E. H. Hinchcliffe, M. Glotzer, A. A. Hyman, G. Sluder et al., CDK1 Inactivation Regulates Anaphase Spindle Dynamics and Cytokinesis In Vivo, The Journal of Cell Biology, vol.15, issue.2, pp.385-393, 1997.
DOI : 10.1016/0076-6879(82)85038-6

T. Wittmann, A. Hyman, and A. Desai, The spindle: a dynamic assembly of microtubules and motors, Nature Cell Biology, vol.3, issue.1, pp.28-34, 2001.
DOI : 10.1038/35050669

N. Yoshida, K. Haga, and T. Haga, Identification of sites of phosphorylation by G-protein-coupled receptor kinase 2 in beta-tubulin, European Journal of Biochemistry, vol.128, issue.6, pp.1154-1163, 2003.
DOI : 10.1074/jbc.272.50.31576