A. H. Guse, Cyclic ADP-ribose, Cellular Signalling, vol.11, issue.5, pp.309-325, 1999.
DOI : 10.1016/S0898-6568(99)00004-2

URL : https://hal.archives-ouvertes.fr/hal-00479133

H. Higashida, M. Hashii, S. Yokoyama, N. Hoshi, X. L. Chen et al., Cyclic ADP-ribose as a second messenger revisited from a new aspect of signal transduction from receptors to ADP-ribosyl cyclase, Pharmacology & Therapeutics, vol.90, issue.2-3, pp.283-96, 2001.
DOI : 10.1016/S0163-7258(01)00142-5

G. A. Rutter, Calcium signalling: NAADP comes out of the shadows, Biochemical Journal, vol.373, issue.1, pp.3-4, 2003.
DOI : 10.1042/bj20030472COM

N. P. Kinnear, F. X. Boittin, J. M. Thomas, A. Galione, and A. M. Evans, Lysosome-Sarcoplasmic Reticulum Junctions: A TRIGGER ZONE FOR CALCIUM SIGNALING BY NICOTINIC ACID ADENINE DINUCLEOTIDE PHOSPHATE AND ENDOTHELIN-1, Journal of Biological Chemistry, vol.279, issue.52, 2004.
DOI : 10.1074/jbc.M406132200

W. Dammermann and A. H. Guse, Functional Ryanodine Receptor Expression Is Required for NAADP-mediated Local Ca2+ Signaling in T-lymphocytes, Journal of Biological Chemistry, vol.280, issue.22, pp.21394-21403, 2005.
DOI : 10.1074/jbc.M413085200

A. L. Perraud, A. Fleig, C. A. Dunn, L. A. Bagley, P. Launay et al., ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology, Nature, vol.411, issue.6837, pp.595-604, 2001.
DOI : 10.1038/35079100

M. Kolisek, A. Beck, A. Fleig, and R. Penner, Cyclic ADP-Ribose and Hydrogen Peroxide Synergize with ADP-Ribose in the Activation of TRPM2 Channels, Molecular Cell, vol.18, issue.1, pp.61-70, 2005.
DOI : 10.1016/j.molcel.2005.02.033

T. F. Walseth, R. Aarhus, R. J. Zeleznikar, . Jr, and H. C. Lee, Determination of endogenous levels of cyclic ADP-ribose in rat tissues, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1094, issue.1, pp.113-133, 1991.
DOI : 10.1016/0167-4889(91)90032-S

S. Y. Hua, T. Tokimasa, S. Takasawa, Y. Furuya, M. Nohmi et al., Cyclic ADP-ribose modulates Ca2+ release channels for activation by physiological Ca2+ entry in bullfrog sympathetic neurons, Neuron, vol.12, issue.5, pp.1073-1082, 1994.
DOI : 10.1016/0896-6273(94)90315-8

R. M. Empson and A. Galione, Cyclic ADP-ribose Enhances Coupling between Voltage-gated Ca2+ Entry and Intracellular Ca2+ Release, Journal of Biological Chemistry, vol.272, issue.34, pp.20967-70, 1997.
DOI : 10.1074/jbc.272.34.20967

M. Hashii, Y. Minabe, and H. Higashida, cADP-ribose potentiates cytosolic Ca 2+ elevation and Ca 2+ entry via L-type voltage-activated Ca 2+ channels in NG108-15 neuronal cells, Biochem. J. 345 Pt, vol.2, pp.207-222, 2000.

T. Budde, F. Sieg, K. H. Braunewell, E. D. Gundelfinger, and H. C. Pape, Ca2+-Induced Ca2+ Release Supports the Relay Mode of Activity in Thalamocortical Cells, Neuron, vol.26, issue.2, pp.483-92, 2000.
DOI : 10.1016/S0896-6273(00)81180-0

C. Verderio, S. Bruzzone, E. Zocchi, E. Fedele, U. Schenk et al., Evidence of a role for cyclic ADP-ribose in calcium signalling and neurotransmitter release in cultured astrocytes, Journal of Neurochemistry, vol.13, issue.3, pp.646-57, 2001.
DOI : 10.1046/j.1471-4159.2001.00455.x

M. Reyes-harde, R. Empson, B. V. Potter, A. Galione, and P. K. Stanton, Evidence of a role for cyclic ADP-ribose in long-term synaptic depression in hippocampus, Proc. Natl, 1999.
DOI : 10.1073/pnas.96.7.4061

H. Higashida, S. Yokoyama, M. Hashii, M. Taketo, M. Higashida et al., Muscarinic Receptor-mediated Dual Regulation of ADP-ribosyl Cyclase in NG108-15 Neuronal Cell Membranes, Journal of Biological Chemistry, vol.272, issue.50, 1997.
DOI : 10.1074/jbc.272.50.31272

K. Morita, S. Kitayama, and T. Dohi, Stimulation of Cyclic ADP-ribose Synthesis by Acetylcholine and Its Role in Catecholamine Release in Bovine Adrenal Chromaffin Cells, Journal of Biological Chemistry, vol.272, issue.34, 1997.
DOI : 10.1074/jbc.272.34.21002

H. Morikawa, K. Khodakhah, and J. T. Williams, Two intracellular pathways mediate metabotropic glutamate receptor-induced Ca 2+ mobilization in dopamine neurons, J. Neurosci, vol.23, pp.149-57, 2003.

F. Schuber and F. E. Lund, Structure and Enzymology of ADP-ribosyl Cyclases: Conserved Enzymes that Produce Multiple Calcium Mobilizing Metabolites, Current Molecular Medicine, vol.4, issue.3, 2004.
DOI : 10.2174/1566524043360708

D. L. Glick, M. R. Hellmich, S. Beushausen, P. Tempst, H. Bayley et al., Primary structure of a molluscan egg-specific NADase, a second-messenger enzyme., Molecular Biology of the Cell, vol.2, issue.3, 1991.
DOI : 10.1091/mbc.2.3.211

D. J. States, T. F. Walseth, and H. C. Lee, Similarities in amino acid sequences of Aplysia ADP-ribosyl cyclase and human lymphocyte antigen CD38, Trends in Biochemical Sciences, vol.17, issue.12, p.495, 1992.
DOI : 10.1016/0968-0004(92)90337-9

M. Itoh, K. Ishihara, H. Tomizawa, H. Tanaka, Y. Kobune et al., Molecular Cloning of Murine BST-1 Having Homology with CD38 and Aplysia ADP-Ribosyl Cyclase, Biochemical and Biophysical Research Communications, vol.203, issue.2, pp.1309-1326, 1994.
DOI : 10.1006/bbrc.1994.2325

T. Koguma, S. Takasawa, A. Tohgo, T. Karasawa, Y. Furuya et al., Cloning and characterization of cDNA encoding rat ADP-ribosyl cyclase / cyclic ADP-ribose hydrolase (homologue to human CD38) from islets of Langerhans, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1223, issue.1, pp.160-162, 1994.
DOI : 10.1016/0167-4889(94)90087-6

/. Nad-+, -glycohydrolase in brain from CD38-deficient mice, J. Biol. Chem, vol.278, pp.40670-40678
URL : https://hal.archives-ouvertes.fr/hal-00003140

T. G. Smart, A. M. Hosie, and P. S. Miller, Zn2+ Ions: Modulators of Excitatory and Inhibitory Synaptic Activity, The Neuroscientist, vol.70, issue.1, pp.432-474, 2004.
DOI : 10.1177/1073858404263463

D. W. Choi and J. Y. Koh, ZINC AND BRAIN INJURY, Annual Review of Neuroscience, vol.21, issue.1, pp.347-75, 1998.
DOI : 10.1146/annurev.neuro.21.1.347

S. Bhatnagar and S. Taneja, Zinc and cognitive development, British Journal of Nutrition, vol.16, issue.S2, pp.139-184, 2001.
DOI : 10.1016/S0002-9378(99)70236-X

G. R. Phillips, J. K. Huang, Y. Wang, H. Tanaka, L. Shapiro et al., The Presynaptic Particle Web, Neuron, vol.32, issue.1, pp.63-77, 2001.
DOI : 10.1016/S0896-6273(01)00450-0

R. Graeff and H. C. Lee, A novel cycling assay for cellular cADP-ribose with nanomolar sensitivity, Biochemical Journal, vol.361, issue.2, pp.379-384, 2002.
DOI : 10.1042/bj3610379

T. F. Walseth, L. Wong, R. M. Graeff, and H. C. Lee, [26] Bioassay for determining endogenous levels of cyclic ADP-ribose, Methods Enzymol, vol.280, pp.287-94, 1997.
DOI : 10.1016/S0076-6879(97)80120-6

A. Augustin, H. Muller-steffner, and F. Schuber, Molecular cloning and functional expression of bovine spleen ecto-NAD+ glycohydrolase: structural identity with human CD38, Biochemical Journal, vol.345, issue.1, pp.43-52, 2000.
DOI : 10.1042/bj3450043

C. Cakir-kiefer, H. Muller-steffner, N. Oppenheimer, and F. Schuber, Kinetic competence of the cADP-ribose-CD38 complex as an intermediate in the CD38/NAD + glycohydrolase-catalysed reactions: implication for CD38 signalling, Biochem. J, vol.358, pp.399-406, 2001.

E. Mocchegiani, C. Bertoni-freddari, F. Marcellini, and M. Malavolta, Brain, aging and neurodegeneration: Role of zinc ion availability, Progress in Neurobiology, vol.75, issue.6, pp.367-90, 2005.
DOI : 10.1016/j.pneurobio.2005.04.005

E. Brailoiu and M. D. Miyamoto, Inositol trisphosphate and cyclic adenosine diphosphate-ribose increase quantal transmitter release at frog motor nerve terminals: possible involvement of smooth endoplasmic reticulum, Neuroscience, vol.95, issue.4, pp.927-958, 2000.
DOI : 10.1016/S0306-4522(99)00509-6

J. Bouwman, A. S. Maia, P. G. Camoletto, G. Posthuma, E. W. Roubos et al., Quantification of synapse formation and maintenance in vivo in the absence of synaptic release, Neuroscience, vol.126, issue.1, pp.115-141, 2004.
DOI : 10.1016/j.neuroscience.2004.03.027

I. Kukimoto, S. Hoshino, K. Kontani, K. Inageda, H. Nishina et al., Stimulation of ADP-Ribosyl Cyclase Activity of the Cell Surface Antigen CD38 by Zinc Ions Resulting from Inhibition of Its NAD+ Glycohydrolase Activity, European Journal of Biochemistry, vol.259, issue.1, pp.177-82, 1996.
DOI : 10.1006/bbrc.1994.2325

Y. Hirata, N. Kimura, K. Sato, Y. Ohsugi, S. Takasawa et al., ADP ribosyl cyclase activity of a novel bone marrow stromal cell surface molecule, BST-1, FEBS Letters, vol.1178, issue.2-3, pp.1-244, 1994.
DOI : 10.1016/0014-5793(94)01279-2

A. Takeda, Movement of zinc and its functional significance in the brain, Brain Research Reviews, vol.34, issue.3, 2000.
DOI : 10.1016/S0165-0173(00)00044-8

C. E. Outten, O. Halloran, and T. V. , Femtomolar Sensitivity of Metalloregulatory Proteins Controlling Zinc Homeostasis, Science, vol.292, issue.5526, pp.2488-92, 2001.
DOI : 10.1126/science.1060331