G. Cohen, Caspases: the executioners of apoptosis, Biochemical Journal, vol.326, issue.1, pp.1-16, 1997.
DOI : 10.1042/bj3260001

N. Thornberry, The caspase family of cysteine proteases, British Medical Bulletin, vol.53, issue.3, pp.478-490, 1997.
DOI : 10.1093/oxfordjournals.bmb.a011625

N. Thornberry and Y. Lazebnik, Caspases: Enemies Within, Science, vol.281, issue.5381, pp.1312-1316, 1998.
DOI : 10.1126/science.281.5381.1312

S. Kumar, Caspase function in programmed cell death, Cell Death and Differentiation, vol.13, issue.1, pp.32-43, 2007.
DOI : 10.1038/sj.cdd.4402060

D. Green and J. Reed, Mitochondria and Apoptosis, Science, vol.281, issue.5381, pp.1309-1312, 1998.
DOI : 10.1126/science.281.5381.1309

B. Mignotte and J. Vayssiere, Mitochondria and apoptosis, European Journal of Biochemistry, vol.252, issue.1, pp.1-15, 1998.
DOI : 10.1046/j.1432-1327.1998.2520001.x

N. Danial and S. Korsmeyer, Cell Death, Cell, vol.116, issue.2, pp.205-219, 2004.
DOI : 10.1016/S0092-8674(04)00046-7

S. Nagata and T. Suda, Fas and Fas ligand: lpr and gld mutations, Immunology Today, vol.16, issue.1, pp.39-43, 1995.
DOI : 10.1016/0167-5699(95)80069-7

N. Thornberry, H. Bull, J. Calaycay, K. Chapman, A. Howard et al., A novel heterodimeric cysteine protease is required for interleukin-1??processing in monocytes, Nature, vol.356, issue.6372, pp.768-774, 1992.
DOI : 10.1038/356768a0

H. Li, H. Zhu, C. Xu, and J. Yuan, Cleavage of BID by Caspase 8 Mediates the Mitochondrial Damage in the Fas Pathway of Apoptosis, Cell, vol.94, issue.4, pp.491-501, 1998.
DOI : 10.1016/S0092-8674(00)81590-1

R. Levy, Genetic regulation of preimplantation embryo survival, Int Rev Cytol, vol.210, pp.1-37, 2001.
DOI : 10.1016/S0074-7696(01)10002-1

K. Hardy, S. Spanos, D. Becker, P. Iannelli, R. Winston et al., From cell death to embryo arrest: Mathematical models of human preimplantation embryo development, Proceedings of the National Academy of Sciences, vol.98, issue.4, pp.1655-1660, 2001.
DOI : 10.1073/pnas.98.4.1655

A. De-pol, F. Vaccina, A. Foraboscu, E. Cavazzuti, and L. Marzoni, Apoptosis of germ cells during human prenatal oogenesis, Human Reproduction, vol.12, issue.10, pp.2235-2241, 1997.
DOI : 10.1093/humrep/12.10.2235

T. Vaskivuo, M. Anttonen, R. Herva, H. Billig, M. Dorland et al., Survival of human ovarian follicles from fetal to adult life: apoptosis, apoptosis-related proteins, and transcription factor GATA-4, J Clin Endocrinol Metab, vol.86, issue.7, pp.3421-3429, 2001.

M. Pepling and A. Spradling, Mouse Ovarian Germ Cell Cysts Undergo Programmed Breakdown to Form Primordial Follicles, Developmental Biology, vol.234, issue.2, pp.339-351, 2001.
DOI : 10.1006/dbio.2001.0269

V. Ratts, J. Flaws, R. Kolp, C. Sorenson, and J. Tilly, Ablation of bcl-2 gene expression decreases the numbers of oocytes and primordial follicles established in the post-natal female mouse gonad, Endocrinology, vol.136, issue.8, pp.3665-3668, 1995.

J. Pru and J. Tilly, Programmed Cell Death in the Ovary: Insights and Future Prospects Using Genetic Technologies, Molecular Endocrinology, vol.15, issue.6, pp.845-853, 2001.
DOI : 10.1210/mend.15.6.0646

S. Quenby, M. Gazvani, C. Brazeau, J. Neilson, L. et al., Oncogenes and tumour suppressor genes in first trimester human fetal gonadal development, Molecular Human Reproduction, vol.5, issue.8, pp.737-741, 1999.
DOI : 10.1093/molehr/5.8.737

M. Albamonte, M. Willis, M. Albamonte, F. Jensen, M. Espinosa et al., The developing human ovary: immunohistochemical analysis of germ-cell-specific VASA protein, BCL-2/BAX expression balance and apoptosis, Human Reproduction, vol.23, issue.8, pp.1895-1901, 2008.
DOI : 10.1093/humrep/den197

M. Fenwick and P. Hurst, Immunohistochemical localization of active caspase-3 in the mouse ovary: growth and atresia of small follicles, Reproduction, vol.124, issue.5, pp.659-665, 2002.
DOI : 10.1530/rep.0.1240659

T. Matikainen, G. Perez, T. Zheng, T. Kluzak, B. Rueda et al., Caspase-3 Gene Knockout Defines Cell Lineage Specificity for Programmed Cell Death Signaling in the Ovary, Endocrinology, vol.142, issue.6, pp.2468-2480, 2001.
DOI : 10.1210/en.142.6.2468

G. Feldmann, J. Benifla, and P. Madelenat, Apoptosis of granulosa cells as a predictive marker of in vitro fertilization success ?, Gynecol Obstet Fertil, vol.347, pp.8-547, 2006.

L. Bergeron, G. Perez, G. Macdonald, L. Shi, Y. Sun et al., Defects in regulation of apoptosis in caspase-2-deficient??mice, Genes & Development, vol.12, issue.9, pp.1304-1314, 1998.
DOI : 10.1101/gad.12.9.1304

S. Martins-da-silva, R. Bayne, N. Cambray, P. Hartley, A. Mcneilly et al., Expression of activin subunits and receptors in the developing human ovary: activin A promotes germ cell survival and proliferation before primordial follicle formation, Developmental Biology, vol.266, issue.2, pp.334-345, 2004.
DOI : 10.1016/j.ydbio.2003.10.030

S. Dolci, M. Pesce, D. Felici, and M. , Combined action of stem cell factor, leukemia inhibitory factor, and cAMP on in vitro proliferation of mouse primordial germ cells, Molecular Reproduction and Development, vol.64, issue.2, pp.134-139, 1993.
DOI : 10.1002/mrd.1080350206

N. Spears, M. Molinek, L. Robinson, N. Fulton, H. Cameron et al., The role of neurotrophin receptors in female germ-cell survival in mouse and human, Development, vol.130, issue.22, pp.5481-5491, 2003.
DOI : 10.1242/dev.00707

G. Perez and J. Tilly, Cumulus cells are required for the increased apoptotic potential in oocytes of aged mice, Human Reproduction, vol.12, issue.12, pp.2781-2783, 1997.
DOI : 10.1093/humrep/12.12.2781

J. Tilly, Commuting the death sentence: how oocytes strive to survive, Nature Reviews Molecular Cell Biology, vol.2, issue.11, pp.838-848, 2001.
DOI : 10.1038/35099086

J. Wu, L. Zhang, and X. Wang, Maturation and apoptosis of human oocytes in vitro are age-related, Fertility and Sterility, vol.74, issue.6, pp.1137-1141, 2000.
DOI : 10.1016/S0015-0282(00)01597-1

D. Boone, J. Carnegie, P. Rippstein, and B. Tsang, Induction of apoptosis in equine chorionic gonadotropin (eCG)-primed rat ovaries by anti-eCG antibody, Biol Reprod, vol.57, pp.20-27, 1997.

P. Hurst, J. Mora, and M. Fenwick, Caspase-3, TUNEL and ultrastructural studies of small follicles in adult human ovarian biopsies, Human Reproduction, vol.21, issue.8, pp.1974-1980, 2006.
DOI : 10.1093/humrep/del109

J. Kim, D. Boone, A. Auyeung, and B. Tsang, Granulosa Cell Apoptosis Induced at the Penultimate Stage of Follicular Development is Associated with Increased Levels of Fas and Fas Ligand in the Rat Ovary1, Biology of Reproduction, vol.58, issue.5, pp.1170-1176, 1998.
DOI : 10.1095/biolreprod58.5.1170

R. Pomar, F. Roelen, B. Slot, K. Van-tol, H. Colenbrander et al., Role of Fas-Mediated Apoptosis and Follicle-Stimulating Hormone on the Developmental Capacity of Bovine Cumulus Oocyte Complexes In Vitro1, Biology of Reproduction, vol.71, issue.3, pp.790-796, 2004.
DOI : 10.1095/biolreprod.104.028613

Q. Chen, T. Yano, H. Matsumi, Y. Osuga, N. Yano et al., Cross-Talk between Fas/Fas Ligand System and Nitric Oxide in the Pathway Subserving Granulosa Cell Apoptosis: A Possible Regulatory Mechanism for Ovarian Follicle Atresia, Endocrinology, vol.146, issue.2, pp.808-815, 2005.
DOI : 10.1210/en.2004-0579

A. Malamitsi-puchner, A. Sarandakou, S. Baka, N. Vrachnis, E. Kouskouni et al., Soluble Fas concentrations in the follicular fluid and oocyte-cumulus complex culture medium from women undergoing in vitro fertilization: Association with oocyte maturity, fertilization, and embryo quality, Journal of the Society for Gynecologic Investigation, vol.11, issue.8, pp.566-569, 2004.
DOI : 10.1016/j.jsgi.2004.05.009

K. Lee, B. Joo, Y. Na, M. Yoon, O. Choi et al., Relationships between concentrations of tumor necrosis factor-alpha and nitric oxide in follicular fluid and oocyte quality, Journal of Assisted Reproduction and Genetics, vol.17, issue.4, pp.222-228, 2000.
DOI : 10.1023/A:1009495913119

M. Zolti, Z. Ben-rafael, R. Meirom, M. Shemesh, D. Bider et al., Cytokine involvement in oocytes and early embryos, Fertility and Sterility, vol.56, issue.2, pp.265-272, 1991.
DOI : 10.1016/S0015-0282(16)54483-5

A. Maeda, N. Inoue, F. Matsuda-minehata, Y. Goto, Y. Cheng et al., The Role of Interleukin-6 in the Regulation of Granulosa Cell Apoptosis During Follicular Atresia in Pig Ovaries, Journal of Reproduction and Development, vol.53, issue.3, pp.481-490, 2007.
DOI : 10.1262/jrd.18149

M. Kim and J. Tilly, Current concepts in Bcl-2 family member regulation of female germ cell development and survival, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1644, issue.2-3, pp.3-205, 2004.
DOI : 10.1016/j.bbamcr.2003.10.012

C. Lin, C. Chen, and Y. Lin, Ceramide in Apoptotic Signaling and Anticancer Therapy, Current Medicinal Chemistry, vol.13, issue.14, pp.1609-1616, 2006.
DOI : 10.2174/092986706777441986

C. Knudson, K. Tung, W. Tourtellotte, G. Brown, and S. Korsmeyer, Bax-Deficient Mice with Lymphoid Hyperplasia and Male Germ Cell Death, Science, vol.270, issue.5233, pp.96-99, 1995.
DOI : 10.1126/science.270.5233.96

J. Tilly, K. Tilly, and G. Perez, The genes of cell death and cellular susceptibility to apoptosis in the ovary: a hypothesis, Cell Death and Differentiation, vol.4, issue.3, pp.180-187, 1997.
DOI : 10.1038/sj.cdd.4400238

Y. Wang, P. Rippstein, and B. Tsang, Role and Gonadotrophic Regulation of X-Linked Inhibitor of Apoptosis Protein Expression During Rat Ovarian Follicular Development In Vitro1, Biology of Reproduction, vol.68, issue.2, pp.610-619, 2003.
DOI : 10.1095/biolreprod.102.007807

A. Schimmer, Inhibitor of Apoptosis Proteins: Translating Basic Knowledge into Clinical Practice, Cancer Research, vol.64, issue.20, pp.7183-7190, 2004.
DOI : 10.1158/0008-5472.CAN-04-1918

S. Assou, T. Anahory, V. Pantesco, L. Carrour, T. Pellestor et al., The human cumulus-oocyte complex gene-expression profile, Human Reproduction, vol.21, issue.7, pp.1705-1719, 2006.
DOI : 10.1093/humrep/del065

URL : https://hal.archives-ouvertes.fr/inserm-00130809

K. Yacobi, A. Wojtowicz, A. Tsafriri, and A. Gross, Gonadotropins Enhance Caspase-3 and -7 Activity and Apoptosis in the Theca-Interstitial Cells of Rat Preovulatory Follicles in Culture, Endocrinology, vol.145, issue.4, pp.1943-1951, 2004.
DOI : 10.1210/en.2003-1395

W. Murdoch and M. Gottsch, Proteolytic Mechanisms in the Ovulatory Folliculo-Luteal Transformation, Connective Tissue Research, vol.44, issue.1, pp.50-57, 2003.
DOI : 10.1080/03008200390151963

J. Pereda, S. Cheviakoff, and H. Croxatto, Ultrastructure of a 4-cell human embryo developed in vivo, Human Reproduction, vol.4, issue.6, pp.680-688, 1989.
DOI : 10.1093/oxfordjournals.humrep.a136967

J. Holte, L. Berglund, K. Milton, C. Garello, G. Gennarelli et al., Construction of an evidence-based integrated morphology cleavage embryo score for implantation potential of embryos scored and transferred on day 2 after oocyte retrieval, Human Reproduction, vol.22, issue.2, pp.548-557, 2007.
DOI : 10.1093/humrep/del403

L. Scott, A. Finn, . Leary-'t, S. Mclellan, and J. Hill, Morphologic parameters of early cleavage-stage embryos that correlate with fetal development and delivery: prospective and applied data for increased pregnancy rates, Human Reproduction, vol.22, issue.1, pp.230-270, 2007.
DOI : 10.1093/humrep/del358

T. Della-ragione, G. Verheyen, E. Papanikolaou, L. Van-landuyt, P. Devroey et al., Developmental stage on day-5 and fragmentation rate on day-3 can influence the implantation potential of top-quality blastocysts in IVF cycles with single embryo transfer, Reprod Bio l Endocrinol, vol.5, issue.2, 2007.

T. Ebner, C. Yaman, M. Moser, M. Sommergruber, W. Polz et al., Embryo fragmentation in vitro and its impact on treatment and pregnancy outcome, Fertility and Sterility, vol.76, issue.2, pp.281-285, 2001.
DOI : 10.1016/S0015-0282(01)01904-5

M. Alikani, G. Calderon, G. Tomkin, J. Garrisi, M. Kokot et al., Cleavage anomalies in early human embryos and survival after prolonged culture in-vitro, Human Reproduction, vol.15, issue.12, pp.2634-2643, 2000.
DOI : 10.1093/humrep/15.12.2634

J. Van-blerkom, P. Davis, and A. S. , A microscopic and biochemical study of fragmentation phenotypes in stage-appropriate human embryos, Human Reproduction, vol.16, issue.4, pp.719-729, 2001.
DOI : 10.1093/humrep/16.4.719

M. Antczak and J. Van-blerkom, Temporal and spatial aspects of fragmentation in early human embryos: possible effects on developmental competence and association with the differential elimination of regulatory proteins from polarized domains, Human Reproduction, vol.14, issue.2, pp.429-447, 1999.
DOI : 10.1093/humrep/14.2.429

A. Trounson and A. Sathananthan, The application of electron microscopy in the evaluation of two- to four-cell human embryos cultured in vitro for embryo transfer, Journal of In Vitro Fertilization and Embryo Transfer, vol.303, issue.3, pp.153-165, 1984.
DOI : 10.1007/BF01139208

K. Hardy, Appoptosis in the human embryo, J Reprod Fert, vol.4, pp.125-134, 1999.

A. Jurisicova, S. Varmuza, and R. Casper, Programmed cell death and human embryo fragmentation, Molecular Human Reproduction, vol.2, issue.2, pp.93-98, 1995.
DOI : 10.1093/molehr/2.2.93

URL : http://molehr.oxfordjournals.org/cgi/content/short/2/2/93

K. Hardy, Cell death in the mammalian blastocyst, Molecular Human Reproduction, vol.3, issue.10, pp.919-925, 1997.
DOI : 10.1093/molehr/3.10.919

K. Hardy, J. Stark, and R. Winston, Maintenance of the Inner Cell Mass in Human Blastocysts from Fragmented Embryos, Biology of Reproduction, vol.68, issue.4, pp.1165-1169, 2003.
DOI : 10.1095/biolreprod.102.010090

A. Jurisicova, M. Antenos, S. Varmuza, J. Tilly, and R. Casper, Expression of apoptosis-related genes during human preimplantation embryo development: potential roles for the Harakiri gene product and Caspase-3 in blastomere fragmentation, Molecular Human Reproduction, vol.9, issue.3, pp.133-141, 2003.
DOI : 10.1093/molehr/gag016

R. Levy, M. Benchaib, H. Cordonier, and J. Guerin, Apoptosis in the pre-implantation embryo, Contracept Fertil Sex, vol.267, pp.8-536, 1998.

K. Moley, M. Chi, C. Knudson, S. Korsmeyer, and M. Mueckler, Hyperglycemia induces apoptosis in pre-implantation embryos through cell death effector pathways, Nature Medicine, vol.2, issue.12, pp.1421-1424, 1998.
DOI : 10.1002/(SICI)1098-2795(199606)44:2<171::AID-MRD5>3.3.CO;2-A

G. Exley, C. Tang, A. Mcelhinny, and C. Warner, Expression of Caspase and BCL-2 Apoptotic Family Members in Mouse Preimplantation Embryos1, Biology of Reproduction, vol.61, issue.1, pp.231-239, 1999.
DOI : 10.1095/biolreprod61.1.231

A. Metcalfe, H. Hunter, D. Bloor, B. Lieberman, H. Picton et al., Expression of 11 members of the BCL-2 family of apoptosis regulatory molecules during human preimplantation embryo development and fragmentation, Molecular Reproduction and Development, vol.15, issue.1, pp.35-50, 2004.
DOI : 10.1002/mrd.20055

C. Warner, W. Cao, G. Exley, A. Mcelhinny, M. Alikani et al., Genetic regulation of egg and embryo survival, Human Reproduction, vol.13, issue.suppl 3, pp.178-190, 1998.
DOI : 10.1093/humrep/13.suppl_3.178

S. Spanos, S. Rice, P. Karagiannis, D. Taylor, D. Becker et al., Caspase activity and expression of cell death genes during development of human preimplantation embryos, Reproduction, vol.124, issue.3, pp.353-363, 2002.
DOI : 10.1530/rep.0.1240353

F. Li and M. Brattain, Role of the SurvivinGene in Pathophysiology, The American Journal of Pathology, vol.169, issue.1, pp.1-11, 2006.
DOI : 10.2353/ajpath.2006.060121

M. Johnson and E. Howerth, Survivin: A Bifunctional Inhibitor of Apoptosis Protein, Veterinary Pathology, vol.14, issue.7, pp.599-607, 2004.
DOI : 10.1354/vp.41-6-599

A. Uren, L. Wong, M. Pakusch, K. Fowler, F. Burrows et al., Survivin and the inner centromere protein INCENP show similar cell-cycle localization and gene knockout phenotype, Current Biology, vol.10, issue.21, pp.1319-1328, 2000.
DOI : 10.1016/S0960-9822(00)00769-7

K. Kawamura, N. Sato, J. Fukuda, H. Kodama, J. Kumagai et al., Survivin acts as an antiapoptotic factor during the development of mouse preimplantation embryos, Developmental Biology, vol.256, issue.2, pp.331-341, 2003.
DOI : 10.1016/S0012-1606(02)00135-5

O. Neill-'c, The potential roles for embryotrophic ligands in preimplantation embryo development, Human Reproduction Update, vol.14, issue.3, pp.275-288, 2008.
DOI : 10.1093/humupd/dmn002

M. Bedaiwy, A. Shahin, A. Abulhassan, J. Goldberg, R. Sharma et al., Differential expression of follicular fluid cytokines: relationship to subsequent pregnancy in IVF cycles, Reproductive BioMedicine Online, vol.15, issue.3, pp.321-325, 2007.
DOI : 10.1016/S1472-6483(10)60346-X

S. Spanos, D. Becker, R. Winston, and K. Hardy, Anti-Apoptotic Action of Insulin-Like Growth Factor-I During Human Preimplantation Embryo Development, Biology of Reproduction, vol.63, issue.5, pp.1413-1420, 2000.
DOI : 10.1095/biolreprod63.5.1413

C. Chen, M. Mrksich, S. Huang, G. Whitesides, and D. Ingber, Geometric Control of Cell Life and Death, Science, vol.276, issue.5317, pp.1425-1428, 1997.
DOI : 10.1126/science.276.5317.1425

M. Bissell, D. Radisky, A. Rizki, V. Weaver, and O. Petersen, The organizing principle: microenvironmental influences in the normal and malignant breast, Differentiation, vol.70, issue.9-10, pp.10-537, 2002.
DOI : 10.1046/j.1432-0436.2002.700907.x

D. Ingber, Mechanical Signaling and the Cellular Response to Extracellular Matrix in Angiogenesis and Cardiovascular Physiology, Circulation Research, vol.91, issue.10, pp.877-887, 2002.
DOI : 10.1161/01.RES.0000039537.73816.E5

D. Radisky, J. Muschler, and M. Bissell, Order and Disorder: The Role of Extracellular Matrix in Epithelial Cancer, Cancer Investigation, vol.56, issue.9, pp.139-153, 2002.
DOI : 10.1091/mbc.10.9.2817

D. Walpita and E. Hay, OPINIONStudying actin-dependent processes in tissue culture, Nature Reviews Molecular Cell Biology, vol.3, issue.2, pp.137-141, 2002.
DOI : 10.1038/nrm727

V. Weaver, O. Peterson, F. Wang, C. Larabell, P. Briand et al., Reversion of the Malignant Phenotype of Human Breast Cells in Three-Dimensional Culture and In Vivo by Integrin Blocking Antibodies, The Journal of Cell Biology, vol.142, issue.1, pp.231-245, 1997.
DOI : 10.1073/pnas.92.16.7411

V. Weaver, S. Lelievre, J. Lakins, M. Chrenek, J. Jones et al., ??4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium, Cancer Cell, vol.2, issue.3, pp.205-216, 2002.
DOI : 10.1016/S1535-6108(02)00125-3

J. Downward, PI 3-kinase, Akt and cell survival, Seminars in Cell & Developmental Biology, vol.15, issue.2, pp.177-182, 2004.
DOI : 10.1016/j.semcdb.2004.01.002

K. Hardy and S. Spanos, Growth factor expression and function in the human and mouse preimplantation embryo, Journal of Endocrinology, vol.172, issue.2, pp.221-236, 2002.
DOI : 10.1677/joe.0.1720221

R. Roberts, S. Franks, and K. Hardy, Culture environment modulates maturation and metabolism of human oocytes, Human Reproduction, vol.17, issue.11, pp.2950-2956, 2002.
DOI : 10.1093/humrep/17.11.2950

O. Hovatta, R. Silye, R. Abir, T. Krausz, and R. Winston, Extracellular matrix improves survival of both stored and fresh human primordial and primary ovarian follicles in long-term culture, Human Reproduction, vol.12, issue.5, pp.1032-1036, 1997.
DOI : 10.1093/humrep/12.5.1032

S. Downs and A. Utecht, Metabolism of Radiolabeled Glucose by Mouse Oocytes and Oocyte-Cumulus Cell Complexes1, Biology of Reproduction, vol.60, issue.6, pp.1446-1452, 1999.
DOI : 10.1095/biolreprod60.6.1446

R. Roberts, J. Stark, A. Iatropoulou, D. Becker, S. Franks et al., Energy Substrate Metabolism of Mouse Cumulus-Oocyte Complexes: Response to Follicle-Stimulating Hormone Is Mediated by the Phosphatidylinositol 3-Kinase Pathway and Is Associated with Oocyte Maturation1, Biology of Reproduction, vol.71, issue.1, pp.199-209, 2004.
DOI : 10.1095/biolreprod.103.023549

Y. Hoshino, M. Yokoo, N. Yoshida, H. Sasada, H. Matsumoto et al., Phosphatidylinositol 3-kinase and Akt participate in the FSH-induced meiotic maturation of mouse oocytes, Molecular Reproduction and Development, vol.39, issue.3, pp.77-86, 2004.
DOI : 10.1002/mrd.20150

M. Shimada, J. Ito, Y. Yamashita, T. Okazaki, and N. Isobe, Phosphatidylinositol 3-kinase in cumulus cells is responsible for both suppression of spontaneous maturation and induction of gonadotropin-stimulated maturation of porcine oocytes, Journal of Endocrinology, vol.179, issue.1, pp.25-34, 2003.
DOI : 10.1677/joe.0.1790025

P. Blondin and M. Sirard, Oocyte and follicular morphology as determining characteristics for developmental competence in bovine oocytes, Molecular Reproduction and Development, vol.33, issue.1, pp.54-62, 1995.
DOI : 10.1002/mrd.1080410109

J. Dong, D. Albertini, K. Nishimori, T. Kumar, N. Lu et al., Growth differentiation factor-9 is required during early ovarian folliculogenesis, Nature, vol.383, issue.6600, pp.531-535, 1996.
DOI : 10.1038/383531a0

M. Hayashi, E. Mcgee, G. Min, C. Klein, U. Rose et al., Recombinant Growth Differentiation Factor-9 (GDF-9) Enhances Growth and Differentiation of Cultured Early Ovarian Follicles, Endocrinology, vol.140, issue.3, pp.1236-1244, 1999.
DOI : 10.1210/en.140.3.1236

E. Nilsson and M. Skinner, Growth and Differentiation Factor-9 Stimulates Progression of Early Primary but Not Primordial Rat Ovarian Follicle Development1, Biology of Reproduction, vol.67, issue.3, pp.1018-1024, 2002.
DOI : 10.1095/biolreprod.101.002527

X. Gueripel, V. Brun, and A. Gougeon, Oocyte Bone Morphogenetic Protein 15, but not Growth Differentiation Factor 9, Is Increased During Gonadotropin-Induced Follicular Development in the Immature Mouse and Is Associated with Cumulus Oophorus Expansion1, Biology of Reproduction, vol.75, issue.6, pp.836-843, 2006.
DOI : 10.1095/biolreprod.106.055574

K. Mcnatty, K. Reader, P. Smith, D. Heath, and J. Juengel, Control of ovarian follicular development to the gonadotrophin-dependent phase: a 2006 perspective, Reproduction in Domestic Ruminants, vol.6, issue.1, pp.55-68, 2007.
DOI : 10.5661/RDR-VI-55

J. Hreinsson, J. Scott, C. Rasmussen, M. Swahn, A. Hsueh et al., Growth Differentiation Factor-9 Promotes the Growth, Development, and Survival of Human Ovarian Follicles in Organ Culture, The Journal of Clinical Endocrinology & Metabolism, vol.87, issue.1, pp.316-321, 2002.
DOI : 10.1210/jcem.87.1.8185

B. Lackey, S. Gray, and D. Henricks, The insulin-like growth factor (IGF) system and gonadotropin regulation: actions and interactions, Cytokine & Growth Factor Reviews, vol.10, issue.3-4, pp.4-201, 1999.
DOI : 10.1016/S1359-6101(99)00013-1

T. Woodward, J. Xie, J. Fendrick, and S. Haslam, Proliferation of Mouse Mammary Epithelial Cells in Vitro: Interactions among Epidermal Growth Factor, Insulin-Like Growth Factor I, Ovarian Hormones, and Extracellular Matrix Proteins, Endocrinology, vol.141, issue.10, pp.3578-3586, 2000.
DOI : 10.1210/en.141.10.3578

G. Weber, A. Moore, and C. Sullivan, In vitro actions of insulin-like growth factor-I on ovarian follicle maturation in white perch (Morone americana), General and Comparative Endocrinology, vol.151, issue.2, pp.180-187, 2007.
DOI : 10.1016/j.ygcen.2007.01.007

S. Gasca, F. Pellestor, S. Assou, V. Loup, T. Anahory et al., Identifying new human oocyte marker genes: a microarray approach, Reproductive BioMedicine Online, vol.14, issue.2
DOI : 10.1016/S1472-6483(10)60785-7

URL : https://hal.archives-ouvertes.fr/inserm-00131300

D. Brison and R. Schultz, Increased Incidence of Apoptosis in Transforming Growth Factor ??-Deficient Mouse Blastocysts1, Biology of Reproduction, vol.59, issue.1, pp.136-144, 1998.
DOI : 10.1095/biolreprod59.1.136

K. Morgan, K. Wiemer, N. Steuerwald, D. Hoffman, W. Maxson et al., Fertilization and early embryology: Use of videocinematography to assess morphological qualities of conventionally cultured and cocultured embryos, Human Reproduction, vol.10, issue.9, pp.2371-2376, 1995.
DOI : 10.1093/oxfordjournals.humrep.a136301

M. Kane, P. Morgan, and C. Coonan, Peptide growth factors and preimplantation development, Human Reproduction Update, vol.3, issue.2, pp.137-157, 1997.
DOI : 10.1093/humupd/3.2.137

URL : http://humupd.oxfordjournals.org/cgi/content/short/3/2/137

M. Teruel and R. Smith, Effect of embryo density and growth factors on in vitro preimplantation development of mouse embryos, Acta Physiol Pharmacol Ther Latinoam, vol.47, issue.2, pp.87-96, 1997.

G. Dunglison, D. Barlow, and I. Sargent, Leukaemia inhibitory factor significantly enhances the blastocyst formation rates of human embryos cultured in serum-free medium, Human Reproduction, vol.11, issue.1, pp.191-196, 1996.
DOI : 10.1093/oxfordjournals.humrep.a019016

K. Martin, D. Barlow, and I. Sargent, Heparin-binding epidermal growth factor significantly improves human blastocyst development and hatching in serum-free medium, Human Reproduction, vol.13, issue.6, pp.1645-1652, 1998.
DOI : 10.1093/humrep/13.6.1645

D. Keefe, S. Franco, L. Liu, J. Trimarchi, B. Cao et al., Telomere length predicts embryo fragmentation after in vitro fertilization in women???Toward a telomere theory of reproductive aging in women, American Journal of Obstetrics and Gynecology, vol.192, issue.4, pp.1256-1260, 2005.
DOI : 10.1016/j.ajog.2005.01.036

S. Cupisti, C. Conn, E. Fragouli, K. Whalley, J. Mills et al., Sequential FISH analysis of oocytes and polar bodies reveals aneuploidy mechanisms, Prenatal Diagnosis, vol.88, issue.8, pp.663-668, 2003.
DOI : 10.1002/pd.665