. Kreutzberg, Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function, Brain Research Reviews, vol.30, pp.77-105, 1999.

W. J. Streit, J. R. Conde, S. E. Fendrick, B. E. Flanary, and C. L. Mariani, Role of microglia in the central nervous system's immune response, Neurol Res, vol.27, pp.685-691, 2005.

A. Roy, Y. K. Fung, X. Liu, and K. Pahan, Up-regulation of Microglial CD11b Expression by Nitric Oxide, Journal of Biological Chemistry, vol.281, issue.21, pp.14971-14980, 2006.
DOI : 10.1074/jbc.M600236200

H. L. Weiner and D. Frenkel, Immunology and immunotherapy of Alzheimer's disease, Nature Reviews Immunology, vol.6, issue.6, pp.404-416, 2006.
DOI : 10.1038/nri1881

D. W. Donnan and . Howells, Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brainderived neurotrophic factor and glial cell line-derived neurotrophic factor, J Neurosci, vol.19, pp.1708-1716, 1999.

M. Schwartz, Macrophages and Microglia in Central Nervous System Injury: Are They Helpful or Harmful?, Journal of Cerebral Blood Flow & Metabolism, vol.23, issue.4, pp.385-394, 2003.
DOI : 10.1097/01.WCB.0000061881.75234.5E

D. M. Paresce, R. N. Ghosh, and F. R. Maxfield, Microglial Cells Internalize Aggregates of the Alzheimer's Disease Amyloid ??-Protein Via a Scavenger Receptor, Neuron, vol.17, issue.3, pp.553-565, 1996.
DOI : 10.1016/S0896-6273(00)80187-7

K. M. Boje and P. K. Arora, Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death, Brain Research, vol.587, issue.2, pp.250-256, 1992.
DOI : 10.1016/0006-8993(92)91004-X

E. G. Mcgeer and P. L. Mcgeer, The importance of inflammatory mechanisms in alzheimer disease, Experimental Gerontology, vol.33, issue.5, pp.371-378, 1998.
DOI : 10.1016/S0531-5565(98)00013-8

G. Halliday, S. R. Robinson, C. Shepherd, and J. Kril, Alzheimer's Disease And Inflammation: A Review Of Cellular And Therapeutic Mechanisms, Clinical and Experimental Pharmacology and Physiology, vol.66, issue.1-2, 2000.
DOI : 10.1016/S0006-8993(96)01085-2

Y. S. Kim and T. H. Joh, Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson's disease, Experimental & Molecular Medicine, vol.38, issue.4, pp.333-347, 2006.
DOI : 10.1038/emm.2006.40

R. Schluesener, J. M. Meyermann, and . Schwab, CD14 expression by activated parenchymal microglia/macrophages and infiltrating monocytes following human traumatic brain injury, Acta Neuropathology, vol.103, pp.541-549, 2002.

. Takahata, Rapid and widespread microglial activation induced by traumatic brain injury in rat brain slices, Journal of Neurotrauma, vol.17, pp.185-192, 2000.

G. W. Kreutzberg, Microglia: a sensor for pathological events in the CNS, Trends in Neurosciences, vol.19, issue.8, pp.312-318, 1996.
DOI : 10.1016/0166-2236(96)10049-7

M. Dihne, F. Block, H. Korr, and R. Topper, Time course of glial proliferation and glial apoptosis following excitotoxic CNS injury, Brain Research, vol.902, issue.2, pp.178-189, 2001.
DOI : 10.1016/S0006-8993(01)02378-2

J. M. Vela, A. Yanez, B. Gonzalez, and B. Castellano, Time Course of Proliferation and Elimination of Microglia/Macrophages in Different Neurodegenerative Conditions, Journal of Neurotrauma, vol.19, issue.11, pp.1503-1520, 2002.
DOI : 10.1089/089771502320914723

B. Bonetti, J. Pohl, Y. L. Gao, and C. S. Raine, Cell death during autoimmune demyelination: effector but not target cells are eliminated by apoptosis, J Immunol, vol.159, pp.5733-5741, 1997.

J. Gehrmann and R. B. Banati, Microglial Turnover in the Injured CNS: Activated Microglia Undergo Delayed DNA Fragmentation Following Peripheral Nerve Injury, Journal of Neuropathology and Experimental Neurology, vol.54, issue.5, pp.680-688, 1995.
DOI : 10.1097/00005072-199509000-00010

C. A. White, P. A. Mccombe, and M. P. Pender, Microglia are more susceptible than macrophages to apoptosis in the central nervous system in experimental autoimmune encephalomyelitis through a mechanism not involving Fas (CD95), International Immunology, vol.10, issue.7, pp.935-941, 1998.
DOI : 10.1093/intimm/10.7.935

J. Lee, J. Hur, P. Lee, J. Y. Kim, N. Cho et al., Dual Role of Inflammatory Stimuli in Activation-induced Cell Death of Mouse Microglial Cells: INITIATION OF TWO SEPARATE APOPTOTIC PATHWAYS VIA INDUCTION OF INTERFERON REGULATORY FACTOR-1 AND CASPASE-11, Journal of Biological Chemistry, vol.276, issue.35, pp.32956-32965, 2001.
DOI : 10.1074/jbc.M104700200

P. Lee, J. Lee, S. Kim, M. S. Lee, H. Yagita et al., NO as an autocrine mediator in the apoptosis of activated microglial 42, 2001.

B. Liu, K. Wang, H. M. Gao, B. Mandavilli, J. Y. Wang et al., Molecular consequences of activated microglia in the brain: overactivation induces apoptosis, Journal of Neurochemistry, vol.77, issue.1, pp.182-189, 2001.
DOI : 10.1046/j.1471-4159.2001.t01-1-00216.x

L. Mayo and R. Stein, Characterization of LPS and interferon-?? triggered activation-induced cell death in N9 and primary microglial cells: induction of the mitochondrial gateway by nitric oxide, Cell Death and Differentiation, vol.64, issue.1, pp.183-186, 2007.
DOI : 10.1038/sj.cdd.4401989

F. Schuber and F. E. Lund, Structure and Enzymology of ADP-ribosyl Cyclases: Conserved Enzymes that Produce Multiple Calcium Mobilizing Metabolites, Current Molecular Medicine, vol.4, issue.3, pp.249-261, 2004.
DOI : 10.2174/1566524043360708

A. Funaro, E. Ferrero, K. Mehta, and F. Malavasi, Schematic Portrait of Human CD38 and Related Molecules, Chemical Immunology, vol.75, pp.256-273, 2000.
DOI : 10.1159/000058773

R. Fliegert, A. Gasser, and A. H. Guse, Regulation of calcium signalling by adenine-based second messengers, Biochemical Society Transactions, vol.35, issue.1, pp.109-114, 2007.
DOI : 10.1042/BST0350109

F. E. Randall, R. Lund, F. Murray, M. C. Schuber, and . Howard, Mice deficient for the ecto-nicotinamide adenine dinucleotide glycohydrolase CD38 exhibit altered humoral immune responses, Blood, vol.92, pp.1324-1333, 1998.

E. Lund, N. Oppenheimer, F. Haag, and F. Koch-nolte, CD38 controls ADP-ribosyltransferase-2-catalyzed ADP-ribosylation of T cell surface proteins, J Immunol, vol.174, pp.3298-3305, 2005.

D. Randall and F. E. Lund, Cyclic ADP-ribose production by CD38 regulates intracellular calcium release, extracellular calcium influx and chemotaxis in neutrophils and is required for bacterial clearance in vivo, Nat Med, vol.7, pp.1209-1216, 2001.

P. Donini and . Ricciardi-castagnoli, Monokine production by microglial cell clones, Eur J Immunol, vol.19, pp.1443-1448, 1989.

F. E. Lund, H. Muller-steffner, H. Romero-ramirez, M. E. Moreno-garcia, S. Partida-sanchez et al., CD38 induces apoptosis of a murine pro-B leukemic cell line by a tyrosine kinase-dependent but ADP-ribosyl cyclase- and NAD glycohydrolase-independent mechanism, International Immunology, vol.18, issue.7, pp.1029-1042, 2006.
DOI : 10.1093/intimm/dxl037

J. Saura, J. M. Tusell, and J. Serratosa, High-yield isolation of murine microglia by mild trypsinization, Glia, vol.115, issue.3, pp.183-189, 2003.
DOI : 10.1002/glia.10274

D. Waard, M. Ronjat, and M. J. Moutin, The CD38-independent ADPribosyl cyclase from mouse brain synaptosomes: a comparative study of neonate and adult brain, Biochem J, vol.395, pp.417-426, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00380055

R. Shiloh and . Elkon, EXPANDER--an integrative program suite for microarray data analysis, BMC Bioinformatics, vol.6, p.232, 2005.

F. Pattyn, P. Robbrecht, A. De-paepe, F. Speleman, and J. Vandesompele, RTPrimerDB: the real-time PCR primer and probe database, major update 2006, Nucleic Acids Research, vol.34, issue.90001, pp.684-688, 2006.
DOI : 10.1093/nar/gkj155

. Ashery, Tomosyn inhibits priming of large dense-core vesicles in a calcium-dependent manner, Proc Natl Acad Sci, vol.101, pp.2578-2583, 2004.

G. Grynkiewicz, M. Poenie, and R. Y. Tsien, A new generation of Ca2+ indicators with greatly improved fluorescence properties, J Biol Chem, vol.260, pp.3440-3450, 1985.

H. C. Lee, Enzymatic Functions and Structures of CD38 and Homologs, Chemical Immunology, vol.75, pp.39-59, 2000.
DOI : 10.1159/000058774

C. Howard, CD38: a new paradigm in lymphocyte activation and signal transduction, Immunological Reviews, vol.161, pp.79-93, 1998.

. Howard, CD38 signaling in B lymphocytes is controlled by its ectodomain but occurs independently of enzymatically generated ADP-ribose or cyclic ADP-ribose, J Immunol, vol.162, pp.2693-2702, 1999.

A. Gregorini, M. Tomasetti, C. Cinti, D. Colomba, and S. Colomba, CD38 expression enhances sensitivity of lymphoma T and B cell lines to biochemical and receptor-mediated apoptosis, Cell Biology International, vol.30, issue.9, pp.727-732, 2006.
DOI : 10.1016/j.cellbi.2006.05.004

M. Kumagai, E. Coustan-smith, D. J. Murray, O. Silvennoinen, K. G. Murti et al., Ligation of CD38 suppresses human B lymphopoiesis, Journal of Experimental Medicine, vol.181, issue.3, pp.1101-1110, 1995.
DOI : 10.1084/jem.181.3.1101

O. Silvennoinen, H. Nishigaki, A. Kitanaka, M. Kumagai, C. Ito et al., CD38 signal transduction in human B cell precursors. Rapid induction of tyrosine phosphorylation, activation of syk tyrosine kinase, and phosphorylation of phospholipase Cgamma and phosphatidylinositol 3-kinase, J Immunol, vol.156, pp.100-107, 1996.

R. Rizzuto, P. Pinton, D. Ferrari, M. Chami, G. Szabadkai et al., Calcium and apoptosis: facts and hypotheses, Oncogene, vol.22, issue.53, pp.8619-8627, 2003.
DOI : 10.1038/sj.onc.1207105

A. H. Guse, Second messenger function and the structure-activity relationship of cyclic adenosine diphosphoribose (cADPR), FEBS Journal, vol.3, issue.18, pp.4590-4597, 2005.
DOI : 10.1016/0167-4889(93)90199-Y

T. A. White, M. S. Kannan, and T. F. Walseth, Intracellular calcium signaling through the CADPR pathway is agonist specific in porcine airway smooth muscle, The FASEB Journal, vol.17, pp.482-484, 2003.
DOI : 10.1096/fj.02-0622fje

A. Hoffmann, O. Kann, C. Ohlemeyer, U. K. Hanisch, and H. Kettenmann, Elevation of basal intracellular calcium as a central element in the activation of brain macrophages (microglia): suppression of receptor-evoked calcium signaling and control of release function, J Neurosci, vol.23, pp.4410-4419, 2003.

T. Moller, Calcium signaling in microglial cells, Glia, vol.12, issue.Pt 3, pp.184-194, 2002.
DOI : 10.1002/glia.10152

K. Farber and H. Kettenmann, Functional role of calcium signals for microglial function, Glia, vol.255, issue.7, pp.656-665, 2006.
DOI : 10.1002/glia.20412

M. Parkhouse, T. F. Walseth, and H. C. Lee, Formation and hydrolysis of cyclic ADP-ribose catalyzed by lymphocyte antigen CD38, Science, vol.262, pp.1056-1059, 1993.

H. C. Lee, Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP)-mediated Calcium Signaling, Journal of Biological Chemistry, vol.280, issue.40, pp.33693-33696, 2005.
DOI : 10.1074/jbc.R500012200

N. Murphy, J. M. Oppenheimer, F. E. Wang, and . Lund, Chemotaxis and calcium responses of phagocytes to formyl peptide receptor ligands is differentially regulated by cyclic ADP ribose, J Immunol, vol.172, pp.1896-1906, 2004.

A. Funaro, G. C. Spagnoli, C. M. Ausiello, M. Alessio, S. Roggero et al., Involvement of the multilineage CD38 molecule in a unique pathway of cell activation and proliferation, J Immunol, vol.145, pp.2390-2396, 1990.

C. Sancho, F. Grossi, and . Malavasi, Signaling through CD38 induces NK cell activation, Int Immunol, vol.13, pp.397-409, 2001.

M. Parkhouse, C. C. Goodnow, and M. C. Howard, Signaling through murine CD38 is impaired in antigen receptor-unresponsive B cells, Eur J Immunol, vol.25, pp.1338-1345, 1995.

. Hauschildt, NAD degradation and regulation of CD38 expression by human monocytes/macrophages, Eur J Biochem, vol.268, pp.5601-5608, 2001.

C. Ceni, H. Muller-steffner, F. Lund, N. Pochon, A. Schweitzer et al., Evidence for an Intracellular ADP-ribosyl Cyclase/NAD+-glycohydrolase in Brain from CD38-deficient Mice, Journal of Biological Chemistry, vol.278, issue.42, pp.40670-40678, 2003.
DOI : 10.1074/jbc.M301196200

L. J. Lawson, V. H. Perry, P. Dri, and S. Gordon, Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain, Neuroscience, vol.39, issue.1, pp.151-170, 1990.
DOI : 10.1016/0306-4522(90)90229-W

G. A. Hohenegger, H. Ashamu, B. V. Schulze-koops, G. W. Potter, and . Mayr, Regulation of calcium signalling in T lymphocytes by the second messenger cyclic ADP-ribose, Nature, vol.398, pp.70-73, 1999.

Y. Sano, K. Inamura, A. Miyake, S. Mochizuki, H. Yokoi et al., Immunocyte Ca2+ Influx System Mediated by LTRPC2, Science, vol.293, issue.5533, pp.1327-1330, 2001.
DOI : 10.1126/science.1062473

. Scharenberg, ADP-ribose gating of the calcium-permeable LTRPC2 channel revealed by Nudix motif homology, Nature, vol.411, pp.595-599, 2001.

Y. Imoto and . Mori, LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death, Mol Cell, vol.9, pp.163-173, 2002.

G. S. Young, E. Choleris, F. E. Lund, and J. B. Kirkland, Decreased cADPR and increased NAD+ in the Cd38???/??? mouse, Biochemical and Biophysical Research Communications, vol.346, issue.1, pp.188-192, 2006.
DOI : 10.1016/j.bbrc.2006.05.100

P. Aksoy, T. A. White, M. Thompson, and E. N. Chini, Regulation of intracellular levels of NAD: A novel role for CD38, Biochemical and Biophysical Research Communications, vol.345, issue.4, pp.1386-1392, 2006.
DOI : 10.1016/j.bbrc.2006.05.042

A. Zocchi and . Flora, Cyclic ADP-ribose is a second messenger in the lipopolysaccharide-stimulated activation of murine N9 microglial cell line, 2006.

M. Schwartz, O. Butovsky, W. Bruck, and U. K. Hanisch, Microglial phenotype: is the commitment reversible?, Trends in Neurosciences, vol.29, issue.2, pp.68-74, 2006.
DOI : 10.1016/j.tins.2005.12.005