S. K. Dutcher, The tubulin fraternity: alpha to eta, Current Opinion in Cell Biology, vol.13, issue.1
DOI : 10.1016/S0955-0674(00)00173-3

M. A. Jordan and L. Wilson, Microtubules and actin filaments: dynamic targets for cancer chemotherapy, Current Opinion in Cell Biology, vol.10, issue.1, pp.123-130, 1998.
DOI : 10.1016/S0955-0674(98)80095-1

M. C. Wani, H. L. Taylor, M. E. Wall, P. Coggon, and A. T. Mcphail, Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia, Journal of the American Chemical Society, vol.93, issue.9, pp.2325-2327, 1971.
DOI : 10.1021/ja00738a045

I. S. Johnson, H. F. Wreight, and G. H. Svoboda, Experimental basis for clinical evaluation of anti tumor principles derived from Vinca rosea Linn, J. Lab. Clin. Med, vol.54, p.830, 1959.

L. Wilson and M. A. Jordan, Microtubule dynamics: taking aim at a moving target, Chemistry & Biology, vol.2, issue.9, pp.569-573, 1995.
DOI : 10.1016/1074-5521(95)90119-1

M. A. Jordan, Mechanism of Action of Antitumor Drugs that Interact with Microtubules and Tubulin, Current Medicinal Chemistry-Anti-Cancer Agents, vol.2, issue.1, pp.1-17, 2002.
DOI : 10.2174/1568011023354290

M. A. Jordan, K. Wendell, S. Gardiner, and W. B. Derry, Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death, Cancer Res, vol.56, pp.816-825, 1996.

J. G. Chen, C. P. Yang, M. Cammer, and S. B. Horwitz, Gene expression and mitotic exit induced by microtubule-stabilizing drugs, Cancer Res, vol.63, pp.7891-7899, 2003.

S. V. Ambudkar, C. Kimchi-sarfaty, Z. E. Sauna, and M. M. Gottesman, P-glycoprotein: from genomics to mechanism, Oncogene, vol.22, issue.47, pp.7468-7485, 2003.
DOI : 10.1038/sj.onc.1206948

M. Kavallaris, A. S. Tait, B. J. Walsh, and L. He, Multiple microtubule alterations are associated with Vinca alkaloid resistance in human leukemia cells, Cancer Res, pp.61-5803, 2001.

H. Hagiwara and Y. Sunada, Mechanism of taxane neurotoxicity, Breast Cancer, vol.7, issue.1, pp.82-85, 2004.
DOI : 10.1007/BF02968008

K. W. Wood, W. D. Cornwell, and J. R. Jackson, Past and future of the mitotic spindle as an oncology target, Current Opinion in Pharmacology, vol.1, issue.4, pp.370-377, 2001.
DOI : 10.1016/S1471-4892(01)00064-9

M. A. Jordan and L. Wilson, Microtubules as a target for anticancer drugs, Nature Reviews Cancer, vol.4, issue.4, pp.253-265, 2004.
DOI : 10.1038/nrc1317

C. Zhu, J. Zhao, M. Bibikova, and J. D. Leverson, Functional Analysis of Human Microtubule-based Motor Proteins, the Kinesins and Dyneins, in Mitosis/Cytokinesis Using RNA Interference, Molecular Biology of the Cell, vol.16, issue.7, pp.3187-3199, 2005.
DOI : 10.1091/mbc.E05-02-0167

N. Hirokawa and R. Takemura, Kinesin superfamily proteins and their various functions and dynamics, Experimental Cell Research, vol.301, issue.1, pp.50-59, 2004.
DOI : 10.1016/j.yexcr.2004.08.010

H. Miki, M. Setou, K. Kaneshiro, and N. Hirokawa, All kinesin superfamily protein, KIF, genes in mouse and human, Proc. Natl. Acad. Sci, pp.7004-7011, 2001.
DOI : 10.1073/pnas.111145398

D. T. Miyamoto, Z. E. Perlman, T. J. Mitchison, and M. Shirasu-hiza, Dynamics of the mitotic spindle ? potential therapeutic targets, Prog. Cell Cycle Res, vol.5, pp.349-360, 2003.

G. Bergnes, K. Brejc, and L. Belmont, Mitotic Kinesins: Prospects for Antimitotic Drug Discovery, Current Topics in Medicinal Chemistry, vol.5, issue.2, pp.127-145, 2005.
DOI : 10.2174/1568026053507697

A. Blangy, H. A. Lane, P. Herin, and M. Harper, Phosphorylation by p34cdc2 regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo, Cell, vol.83, pp.1159-1169, 1995.

C. M. Whitehead and J. B. Rattner, Expanding the role of HsEg5 within the mitotic and post-mitotic phases of the cell cycle, J. Cell Sci, vol.111, pp.2551-2561, 1998.

L. Ferhat, C. Cook, M. Chauviere, and M. Harper, Expression of the mitotic motor protein Eg5 in postmitotic neurons: Implications for neuronal development, J. Neurosci, vol.18, pp.7822-7835, 1998.

D. Weil, L. Garcon, M. Harper, and D. Dumenil, Targeting the kinesin Eg5 to monitor siRNA transfection in mammalian cells, Biotechniques, vol.33, pp.1244-1248, 2002.

R. Sakowicz, J. T. Finer, C. Beraud, and A. Crompton, Antitumor Activity of a Kinesin Inhibitor, Cancer Research, vol.64, issue.9, pp.3276-3280, 2004.
DOI : 10.1158/0008-5472.CAN-03-3839

K. D. Paull, C. M. Lin, L. Malspeis, and E. Hamel, Identification of novel antimitotic agents acting at the tubulin level by computer-assisted evaluation of differential cytotoxicity data, Cancer Res, vol.52, pp.3892-3900, 1992.

S. Debonis, D. A. Skoufias, G. Robin, and L. Lebeau, In vitro screening for inhibitors of the human mitotic kinesin Eg5 with antimitotic and antitumor activities, Mol. Cancer Ther, vol.3, pp.1079-1090, 2004.

Y. Yan, V. Sardana, B. Xu, and C. Homnick, Inhibition of a Mitotic Motor Protein: Where, How, and Conformational Consequences, Journal of Molecular Biology, vol.335, issue.2, pp.547-554, 2003.
DOI : 10.1016/j.jmb.2003.10.074

T. U. Mayer, T. M. Kapoor, S. J. Haggarty, and R. W. King, Small Molecule Inhibitor of Mitotic Spindle Bipolarity Identified in a Phenotype-Based Screen, Science, vol.286, issue.5441, pp.971-974, 1999.
DOI : 10.1126/science.286.5441.971

D. A. Skoufias, S. Debonis, Y. Saoudi, and L. Lebeau, Strityl-L-cysteine is a reversible, tight binding inhibitor of the human kinesin Eg5 that specifically blocks mitotic progression, J. Biol. Chem, vol.30, pp.17559-17569, 2006.

B. Thiede and T. Rudel, Proteome analysis of apoptotic cells, Mass Spectrometry Reviews, vol.290, issue.5, pp.333-349, 2004.
DOI : 10.1002/mas.10079

N. Machuy, B. Thiede, K. Rajalingam, and C. Dimmler, A Global Approach Combining Proteome Analysis and Phenotypic Screening with RNA Interference Yields Novel Apoptosis Regulators, Molecular & Cellular Proteomics, vol.4, issue.1, pp.44-55, 2005.
DOI : 10.1074/mcp.M400089-MCP200

J. Klose and U. Kobalz, Two-dimensional electrophoresis of proteins: An updated protocol and implications for a functional analysis of the genome, Electrophoresis, vol.8, issue.1, pp.1034-1059, 1995.
DOI : 10.1002/elps.11501601175

B. Thiede, F. Siejak, C. Dimmler, P. R. Jungblut, and T. Rudel, A two dimensional electrophoresis database of a human Jurkat T-cell line, Electrophoresis, vol.21, issue.13, pp.2713-2720, 2000.
DOI : 10.1002/1522-2683(20000701)21:13<2713::AID-ELPS2713>3.0.CO;2-U

G. Candiano, M. Bruschi, L. Musante, and L. Santucci, Blue silver: A very sensitive colloidal Coomassie G-250 staining for proteome analysis, ELECTROPHORESIS, vol.25, issue.9, pp.1327-1333, 2004.
DOI : 10.1002/elps.200305844

P. R. Jungblut and R. Seifert, Analysis of high-resolution two-dimensional electrophoresis of differentiation-dependent alterations in cytosolic protein pattern of HL-60 leukemic cells, Journal of Biochemical and Biophysical Methods, vol.21, issue.1, pp.47-58, 1990.
DOI : 10.1016/0165-022X(90)90044-D

B. Thiede, W. Hohenwarter, A. Krah, and J. Mattow, Peptide mass fingerprinting, Methods, vol.35, issue.3, pp.237-247, 2005.
DOI : 10.1016/j.ymeth.2004.08.015

D. N. Perkins, D. J. Pappin, D. M. Creasy, and J. S. Cottrell, Probability-based protein identification by searching sequence databases using mass spectrometry data, Electrophoresis, vol.447, issue.18, pp.3551-3567, 1999.
DOI : 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2

A. W. Murray, M. J. Solomon, and M. W. Kirschner, The role of cyclin synthesis and degradation in the control of maturation promoting factor activity, Nature, vol.339, issue.6222, pp.280-286, 1989.
DOI : 10.1038/339280a0

M. J. Hendzel, Y. Wei, M. A. Mancini, and A. Van-hooser, Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation, Chromosoma, vol.106, issue.6, pp.348-360, 1997.
DOI : 10.1007/s004120050256

S. S. Taylor, D. Hussein, Y. Wang, S. Elderkin, and C. J. Morrow, Kinetochore localisation and phosphorylation of the mitotic checkpoint components Bub1 and BubR1 are differentially regulated by spindle events in human cells, J. Cell Sci, vol.114, pp.4385-4395, 2001.

A. O. Walter, W. Seghezzi, W. Korver, J. Sheung, and E. Lees, The mitotic serine/threonine kinase Aurora2/AIK is regulated by phosphorylation and degradation, Oncogene, vol.19, issue.42, pp.4906-4916, 2000.
DOI : 10.1038/sj.onc.1203847

I. Leizerman, R. Avunie-masala, M. Elkabets, A. Fich, and L. Gheber, Differential effects of monastrol in two human cell lines, Cellular and Molecular Life Sciences, vol.61, issue.16, pp.61-2060, 2004.
DOI : 10.1007/s00018-004-4074-3

A. I. Marcus, U. Peters, S. L. Thomas, and S. Garrett, Mitotic Kinesin Inhibitors Induce Mitotic Arrest and Cell Death in Taxol-resistant and -sensitive Cancer Cells, Journal of Biological Chemistry, vol.280, issue.12, pp.11569-11577, 2005.
DOI : 10.1074/jbc.M413471200

W. Tao, V. J. South, Y. Zhang, and J. P. Davide, Induction of apoptosis by an inhibitor of the mitotic kinesin KSP requires both activation of the spindle assembly checkpoint and mitotic slippage, Cancer Cell, vol.8, issue.1, pp.49-59, 2005.
DOI : 10.1016/j.ccr.2005.06.003

D. Xiao, J. T. Pinto, G. G. Gundersen, and I. B. Weinstein, Effects of a series of organosulfur compounds on mitotic arrest and induction of apoptosis in colon cancer cells, Molecular Cancer Therapeutics, vol.4, issue.9, pp.1388-1398, 2005.
DOI : 10.1158/1535-7163.MCT-05-0152

T. Rich, R. L. Allen, and A. H. Wyllie, Defying death after DNA damage, Nature, vol.407, pp.777-783, 2000.

T. Kuwana and D. D. Newmeyer, Bcl-2-family proteins and the role of mitochondria in apoptosis, Current Opinion in Cell Biology, vol.15, issue.6, pp.691-699, 2003.
DOI : 10.1016/j.ceb.2003.10.004

K. M. Debatin and P. H. Krammer, Death receptors in chemotherapy and cancer, Oncogene, vol.23, issue.16, pp.2950-2966, 2004.
DOI : 10.1038/sj.onc.1207558

P. Van-damme, L. Martens, J. Van-damme, and K. Hugelier, Caspase-specific and nonspecific in vivo protein processing during Fas-induced apoptosis, Nature Methods, vol.267, issue.10, pp.771-777, 2005.
DOI : 10.1046/j.1525-1373.1999.d01-11.x

J. Frydman and J. Hohfeld, Chaperones get in touch: the Hip-Hop connection, Trends in Biochemical Sciences, vol.22, issue.3, pp.87-92, 1997.
DOI : 10.1016/S0968-0004(97)01005-0

J. Hohfeld, Regulation of the heat shock conjugate Hsc70 in the mammalian cell: The characterization of the anti-apoptotic protein BAG-1 provides novel insights, Biol. Chem, vol.379, pp.269-274, 1998.

U. A. Bommer and B. J. Thiele, The translationally controlled tumour protein (TCTP), The International Journal of Biochemistry & Cell Biology, vol.36, issue.3, pp.379-385, 2004.
DOI : 10.1016/S1357-2725(03)00213-9

H. Liu, H. W. Peng, Y. S. Cheng, H. S. Yuan, and H. F. Yang-yen, Stabilization and Enhancement of the Antiapoptotic Activity of Mcl-1 by TCTP, Molecular and Cellular Biology, vol.25, issue.8, pp.3117-3126, 2005.
DOI : 10.1128/MCB.25.8.3117-3126.2005

Y. Yang, F. Yang, Z. Xiong, and Y. Yan, An N-terminal region of translationally controlled tumor protein is required for its antiapoptotic activity, Oncogene, vol.97, issue.30, pp.4778-4788, 2005.
DOI : 10.1038/sj.onc.1208666

M. P. Paronetto, T. Achsel, A. Massiello, C. E. Chalfant, and C. Sette, The RNA-binding protein Sam68 modulates the alternative splicing of Bcl-x, The Journal of Cell Biology, vol.19, issue.7, pp.929-939, 2007.
DOI : 10.1074/jbc.274.41.29202

Y. Gachet, S. Tournier, M. Lee, and A. Lazaris-karatzas, The growth-related, translationally controlled protein P23 has properties of a tubulin binding protein and associates transiently with microtubules during the cell cycle, J. Cell. Sci, vol.112, pp.1257-1271, 1999.

F. R. Yarm, Plk Phosphorylation Regulates the Microtubule-Stabilizing Protein TCTP, Molecular and Cellular Biology, vol.22, issue.17, pp.6209-6221, 2002.
DOI : 10.1128/MCB.22.17.6209-6221.2002

S. Fumagalli, N. F. Totty, J. J. Hsuan, and S. A. Courtneidge, A target for Src in mitosis, Nature, vol.368, issue.6474, pp.871-874, 1994.
DOI : 10.1038/368871a0

S. J. Taylor and D. Shalloway, An RNA-binding protein associated with Src through its SH2 and SH3 domains in mitosis, Nature, vol.368, issue.6474, pp.867-871, 1994.
DOI : 10.1038/368867a0

C. Obuse, O. Iwasaki, T. Kiyomitsu, and G. Goshima, A conserved Mis12 centromere complex is linked to heterochromatic HP1 and outer kinetochore protein Zwint-1, Nature Cell Biology, vol.11, issue.11, pp.1135-1141, 2004.
DOI : 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2

C. Gerner, J. Gotzmann, U. Fröhwein, and C. Schamberger, Proteome analysis of nuclear matrix proteins during apoptotic chromatin condensation, Cell Death and Differentiation, vol.9, issue.6, pp.671-681, 2002.
DOI : 10.1038/sj.cdd.4401010

S. S. Andersen, A. J. Ashford, R. Tournebize, and O. Gavet, Mitotic chromatin regulates phosphorylation of Stath- min/Op18, Nature, vol.389, issue.6651, pp.640-643, 1997.
DOI : 10.1038/39382

S. Gu, Y. Du, J. Chen, and Z. Liu, Large-Scale Quantitative Proteomic Study of PUMA-Induced Apoptosis Using Two-Dimensional Liquid Chromatography???Mass Spectrometry Coupled with Amino Acid-Coded Mass Tagging, Journal of Proteome Research, vol.3, issue.6, pp.1191-1200, 2004.
DOI : 10.1021/pr049893a

B. Thiede, A. Kretschmer, T. Rudel, and M. De, Quantitative proteome analysis of CD95 (Fas/Apo-1)-induced apoptosis by stable isotope labeling with amino acids in cell culture, 2-DE and MALDI-MS, PROTEOMICS, vol.16, issue.2, pp.614-622, 2006.
DOI : 10.1002/pmic.200500120

N. M. Verrills, N. L. Liem, T. Y. Liaw, and B. D. Hood, Proteomic analysis reveals a novel role for the actin cytoskeleton in vincristine resistant childhood leukemia ??? Anin vivo study, PROTEOMICS, vol.1010, issue.5, pp.1681-1694, 2006.
DOI : 10.1002/pmic.200500417