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Bronchopulmonary dysplasia of the premature neonate and emphysema of the adult 

lung are common diseases that are characterized by increased airspace size and 

respiratory insufficiency and that presently lack efficient treatment. Although the 

former leads to impaired alveolar development and the latter to alveolar destruction, 

they have striking similarities in their pathophysiology, including the precipitating 

effect of oxidative stress, sustained inflammation, enhanced apoptosis, protease-

antiprotease imbalance, elastic fiber deterioration, and altered microvascularization. 

This review aims to comparatively analyzing their molecular mechanisms to try 

identify common therapeutic targets. The recent discovery that alveolar 

developmental and maintenance programs share the same signal molecules and 

pathways, together with considerable increase in their understanding, have facilitated 

the development of common innovative strategies that have started to be tested in 

experimental models and pilot clinical studies.  
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Introduction 

Bronchopulmonary dysplasia and emphysema: two public health problems 

Optimization of gas-exchange surface area is achieved by the subdivision of terminal 

airspaces of the lungs, called saccules, by very thin partition walls, the alveolar septa. These 

are lined by attenuated epithelium that allows respiratory gases to diffuse between air and 

the subjacent blood microvessels to which it is tightly apposed. Bronchopulmonary dysplasia 

(BPD) and emphysema are both characterized by pathologic evidence of deficit in alveolar 

number and increased airspace size, leading to reduction of exchange-surface-to-volume 

ratio and respiratory insufficiency. Presently, both conditions lack specific treatment to 

restore alveolar structure or even to prevent progression of the lesions. The complexities and 

difficulties in solving the problem arise from the fact that they are multifactorial diseases, with 

prolonged insults hampering the repair process. 

BPD, which occurs postnatally either in very low birth-weight (VLBW) premature neonates 

as the result of multiple environmental injuries to the immature lung, or as a consequence of 

pre- or postnatal infection, is principally characterized by impaired alveolar and microvascular 

development (alveolar development is essentially postnatal in humans) [1]. BPD is the most 

common chronic respiratory disease in premature infants and affects about one third of those 

with VLBW [2].  

Emphysema designates the permanent destruction of alveolar walls, which represents the 

alveolar component of chronic obstructive pulmonary disease It is a common disease that 

affects millions of people in the world and is most often a consequence of tobacco smoking, 

although in rare cases it is due to genetic defects (3, 4). Destructive lesions are associated 

with extracellular matrix (ECM) remodeling, including elastin disruption and increased 

collagen content [3].  

 

Why compare BPD and emphysema? 

BPD impairs alveolar formation, whereas emphysema results from progressive destruction of 

existing septa. However, both share a number of features in their pathophysiology: not only 

do they have some of the same precipitating factors, including oxidative stress, sustained 

inflammation, and protease-antiprotease imbalance, there is growing evidence of other 

similarities. It has thus been shown that the maintenance of adult alveolar tissue is placed 

under an active control mechanisms, that this maintenance program and alveolar growth 

share a number of pathways, and last, that numerous alterations in these pathways are 

common to both disorders.  

The objective of this review is to comparatively analyze the known molecular mechanisms 

underlying both diseases with the goal of exploring possible common therapeutic 
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approaches. This reflection is timely because the understanding of the pathophysiological 

mechanisms underlying BPD and emphysema has considerably progressed, and because 

knowledge about the control mechanisms of alveolar development and maintenance has 

tremendously increased in recent years. Nevertheless, the role the roles of some regulatory 

molecules and pathways have not yet been established precisely and have not been 

demonstrated to be rigorously the same in alveolar construct as in maintenance. These 

aspects are discussed with emphasis for the most promising potential targets. 

 

Alveolar development and alveolar plasticity in the adult lung 

Up to the formation of saccules, lung morphogenesis proceeds by dichotomous branching of 

the epithelial tubule. Formation of definitive alveoli (alveolarization or alveologenesis) 

involves a different process known as secondary septation (Figure 1). It consists in the 

surge, from the saccular wall, of crests (secondary septa), the growth of whichleads to 

saccule subdivision and enlargement of the exchange area. This seems to be triggered by 

elastic fibers deposited in the matrix of primary septa by a sub-class of interstitial cells 

designated myofibroblasts. Primary and secondary septa initially contain a double layer of 

capillary vessels. Their maturation, which is an integral part of alveolarization, involves the 

thinning of septa and the fusion of capillary vessels into a single central layer (Figure 1). 

Alveolarization implies integrated interactions between lung cell types and mutually regulated 

networks involving growth factors, transcription regulators and the ECM [5]. It may occur pre- 

or postnatally depending on the species. 

The formerly accepted concept that the addition of new alveoli becomes impossible after 

capillary fusion has been challenged recently. Alveoli are actually added beyond maturation 

of septa in several rodent and primate species, and a recent investigation identified local 

duplication of the capillary network as the mechanism allowing new septa to be raised from 

mature septa [6]. This late alveolarization also accounts for adult lung plasticity, that is, the 

remodeling of mature lung architecture, including neoformation of alveoli for the adjustment 

of gas-exchange surface area to oxygen needs. This has been observed under different 

experimental conditions [7, 8], and suggests that in the future it might be possible to 

influence the reshaping of human lung structure.  

 

Comparative cell and molecular mechanisms of BPD and emphysema 

Lung histological features in BPD and emphysema 

Initially described as an iatrogenic complication of neonatal respiratory distress syndrome 

(RDS), BPD was characterized by squamous metaplasia of airways, extensive fibrosis, and 

alternate zones of overdistended or collapsed alveoli. The disease has evolved considerably 



 4 

with the use of prenatal corticosteroids and surfactant therapy to prevent RDS, advances in 

ventilation techniques and survival in greater proportion of VLBW infants. Airway lesions 

have almost disappeared, whereas diffuse reduction of alveolar development has persisted. 

This “new” BPD is characterized by combination of alveolar simplification and dysmorphic 

microvascular network with minimal to moderate fibrosis [1].  

There are two main morphological forms of emphysema [4]. Centrilobular emphysema is 

characterized by focal destruction of respiratory bronchioles and the central portion of acini 

surrounded by areas of grossly normal tissue, whereas panacinar emphysema involves 

alveolar destruction in a quite uniform manner. In both forms, alveolar wall destruction and 

permanent airspace enlargement are accompanied by elastin fragmentation and paucity of 

blood vessels. Fibrosis is generally absent. 

 
The role of oxidative stress 

Although oxygen supplementation is no longer considered as an absolute requirement to 

develop BPD, it remains routine practice in neonatal intensive care and contributes to lung 

injury. A number of markers of increased peroxidation have been found in tracheal effluent 

from neonates who later developed BPD and have been shown to correlate with the 

occurrence of the disease, which emphasizes their role as injury initiators (9). Premature 

infants are all the more exposed because antioxidant defense mechanisms mature late in 

pregnancy. Importantly, hyperoxia alone is sufficient to mimic most of the pathologic findings 

of BPD, including impaired septation, in neonatal animals from various species, even in the 

absence of premature delivery (reviewed in Ref. [5]). This involves reduced expression levels 

of various mediators known to have crucial roles in alveolar septation [5, 10-12]. 

Epithelial injury by free-radical oxidants present in cigarette smoke or produced by lung 

cells are also believed to have a prominent role in the pathophysiology of COPD. Enhanced 

4-hydroxy-2-nonenal (4-HNE)-modified proteins, which reflect lipid peroxidation, were found 

in airway cells, alveolar cells, and polymorphonuclear neutrophils (PMNs), and were shown 

to correlate with severity of the disease [13]. Another oxidative stress marker, 8-isoprostane, 

was increased about twofold in COPD smokers compared with healthy smokers, who had 

themselves over twofold higher levels than nonsmokers [14]. A decrease in antioxidant 

systems, particularly the powerful heme oxygenase-1 (HO-1), was also described in severe 

COPD (15).  

 

The role of inflammation  

Pulmonary inflammatory response has a central role in the etiology of both diseases [4, 16]. 

In BPD, inflammation resulting from mechanical ventilation, oxygen toxicity, or pre- or 

postnatal infection leads to much higher and persisting numbers of PMNs and macrophages 
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in bronchoalveolar lavage (BAL) fluid [16]. Blocking the influx of PMNs prevented hyperoxia-

induced developmental disorders in neonatal rats, suggesting that PMNs have a crucial 

pathogenic role [17). PMN and macrophage infiltration has similarly been evidenced in the 

emphysematous lung of smokers [3, 4]. 

Recruitment of neutrophils results from considerably increased concentrations of a variety 

of pro-inflammatory chemotactic and chemokinetic factors in BPD [16] as well as in 

COPD/emphysema [4], whereas anti-inflammatory cytokines are decreased [18, 19]. 

However, some differences might exist between the diseases. The pro-inflammatory 

cytokines tumor necrosis factor-α (TNF-α), interleukin (IL)-1, IL-6, and IL-8 are increased in 

both diseases, but IL-17 has been reported to have a role in COPD only [4]. 

 

Protease/anti-protease imbalance and ECM remodeling 

The observations that (i) emphysema can be induced by tracheal elastase instillation, (ii) α1-

antitrypsin (an antiprotease) familial deficiency can lead to early-onset emphysema and (iii) 

α1-antitrypsin deficiency can be induced by cigarette smoke led early researchers to 

postulate that protease-antiprotease imbalance is a leading cause in emphysema. Soon 

after, this was postulated in BPD also.  

Increased BAL levels of neutrophil-elastase and cathepsins (lysosomal proteases) have 

indeed been found in BPD [20]. Although increased activity of these enzymes has also 

received support in emphysema, the extent of lung destruction appears relatively 

independent of neutrophils in the latter and is instead directly related to the number of 

alveolar macrophages [21] the proteolytic activity of which is essentially mediated by matrix 

metalloproteinases (MMPs). Increased BAL concentration and increased macrophage and 

tissue expression of MMPs 1, 2, 9, and 12 have been found in patients with emphysema [22]. 

The absence of emphysema-like phenotype in MMP-12-deficient mice exposed to cigarette 

smoke supports a crucial pathogenic role for this MMP [23]. 

Imbalance between MMPs and their natural tissue inhibitors (TIMPs) in BAL has also 

been repeatedly reported in BPD. Low MMP-2 and increased MMP-9 activities [24], and high 

MMP-9:TIMP-1 ratio [25] have been associated with development of BPD. The role of MMP-

9 in BPD pathophysiology is controversial, however, because MPP-9-/- mouse pups have 

been reported to present milder pulmonary effects of hyperoxia [26], but conversely to have 

worsened IL-1-induced lung disease [27]. A noteworthy difference between diseases resides 

in the presence of sustained predominant MMP activity in emphysema, whereas in BPD, 

after the initial destructive phase when high MMP activity predominates, the following repair 

phase is characterized by predominant TIMP activities, which favors ECM accumulation.  
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Importantly, MMPs also have an essential role in normal alveolarization. Thus, activity of 

membrane type 1 MMP (MMP-14) is absolute requirement for septation [28]. The related 

MMP-16 has recently been involved also, and is reduced in experimental models of BPD 

[29]. However, their mechanism(s) of action remain(s) imperfectly understood. 

 

Apoptosis and cell senescence 

In both diseases, signals resulting from oxidative stress, inflammation, and 

protease/antiprotease imbalance with subsequent matrix degradation converge toward cell 

damage and promotion of apoptosis of epithelial cells, and subsequently of endothelial cells 

[30, 31]. However, the elevated number of apoptotic cells in emphysema has been 

suspected to result from impaired clearance of apoptotic cells rather than increased rate of 

apoptosis. 

Ceramide, a lipid-signaling molecule that favors recruitment of signaling molecules for 

transducing stress-related signals is a mediator that might link leading causes with apoptosis. 

Recently, upregulation of ceramide was shown to cause emphysema in mice through the 

promotion of apoptosis, and the inhibition of ceramide synthesis was found to prevent 

experimental emphysema. Furthermore, the fact that human emphysematous lungs exhibit 

significant ceramide expression levels underscores this molecule as an interesting target to 

prevent airspace enlargement [32]. Investigation is nevertheless needed to further evaluate 

its value, and it is not known whether it is involved in BPD. 

Cell senescence, a state of permanent growth arrest that leads to enlarged, flattened, and 

granular cell morphology with specific labeling features, might also contribute to emphysema. 

Recent studies have evidenced both replicative senescence, which depends on the number 

of times a cell population divides, and accelerated senescence secondary to exposure to 

different kinds of stress in all parenchymal cells of patients with emphysema [33].  

 
Elastic fiber destruction and disrupted assembly 

The elastic fiber is issued from the crosslinkage of tropoelastin by lysyl oxidase (LOX) and 

related enzymes on a scaffold of microfibrils (fibulins, fibrillins). Expression of components 

and enzymes must be coordinated so that the correct temporal sequence of assembly can 

be followed. This represents a major difficulty in the perspective of restoring elastic fibers, 

because in the adult lung, elastogenesis most often results in the production of elastin that 

does not organize into functional 3D fibers [34].  

In BPD and models, increased excretion of elastin degradation products, desmosines, 

has been shown [35], and despite increased overall elastogenesis, there is evidence for 

disordered deposition of septal elastin, with paucity of elastic fibers that display abnormal 

structure and fail to locate at the tip of growing septa [35, 36]. By contrast, elastic lamellae of 
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blood vessels appear normal [36]. Mechanical ventilation, a triggering factor of BPD, has 

been found to uncouple synthesis and assembly of elastin in newborn mice, which might in 

turn participate to septation failure [37]. 

In contrast to normal lung in which elastin is exceedingly stable, emphysema is associated 

with elastin degradation and desmosine excretion proportional to lung function decline [38]. 

Elastic fiber structure is altered with fragmented appearance (3), which is reminiscent of 

BPD. Elastin degradation is therefore a common feature to BPD and emphysema, and 

although elastin synthesis is present, elastic fiber assembly seems to be disrupted in both 

conditions. 

Using genetically modified mouse strains that express elastin at different levels, it was 

recently shown that not only lung development was adversely affected in mice with lowest 

levels, and further, that animals with intermediate levels, although initially developing normal 

alveoli, developed worse emphysema than mice with normal levels when exposed to 

cigarette smoke [39]. An emphysema-like phenotype has also been described in mice 

lacking LOX [40], fibrillin-1 [41] or fibulin-5 [42]. Deficient elastogenesis therefore seems to 

predispose to emphysema and to increase susceptibility to smoke injury. 

In addition to elastic fiber destruction, collagen degradation products, especially 

proline-glycine-proline peptide, have important roles in COPD pathogenesis and might 

represent a new target for prevention of emphysema [43]. 

 

Impaired microvascular development and maintenance  

Normal pulmonary function implies the coordinated development of alveolar epithelium and 

capillaries [44]. This requires correct spatial and temporal expression of angiogenic factors, 

primarily vascular endothelial growth factor (VEGF), which is principally produced by alveolar 

epithelial type II cells. Postnatal inhibition of VEGF-receptor (VEGFR) in newborn rats or 

mice simultaneously impaired vascular growth and alveolar septation [45], thus evidencing 

the dependence of alveolarization upon normal angiogenesis. Alveolar cell apoptosis and air 

space enlargement following VEGFR blockade [46] or inducible lung-targeted deletion of 

VEGF [47] in adult animals highlighted their involvement in the lung maintenance program 

also. Consistently, reduced expression of VEGF and VEGFR2 was demonstrated in the 

emphysematous lung [48].  

The BPD lung exhibits dysmorphic microvessels embedded in thickened alveolar walls 

[49]. The previously proposed paradigm that microvascular growth arrest due to decreased 

angiogenic mediators [49] is a major pathogenic factor may not be completely accurate, 

however, since marked angiogenesis has been reported in long-term ventilated infants [50]. 

A number of data nevertheless support the view that angiogenesis is dysregulated. 
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Determination of VEGF levels in tracheal aspirates has led to conflicting data. In fact, 

changes appear to be dependent on the timing of measurements, since an initial spike 

followed by a decline and then a subsequent rise have recently been described [51]. 

Consistent with the presence of, at least transient, VEGF decrease in BPD infants, endotoxin 

exposure in lambs [52] or mechanical ventilation with supplemental oxygen in mice [53] 

reduced pulmonary VEGF and VEGFR2 expression. Reciprocally, exogenous VEGF 

improved alveolarization in hyperoxia-exposed newborn rats [54]. This illustrates its 

therapeutic potential, although it should be used cautiously since VEGF excess may be 

detrimental for lung development [51, 55]. 

Other factors appear to be involved in complex interrelationships leading to angiogenic 

disorders of BPD. Elevated levels of the anti-angiogenic mediator endostatin in tracheal 

aspirates from infants with BPD [56] suggest that imbalance between pro- and anti-

angiogenic factors may account for disturbed angiogenesis. Last, endoglin, a transforming 

growth factor β coreceptor that was previously implicated as an important regulator of 

angiogenesis in various neoplastic and nonneoplastic conditions, and angiopoietin 2, a 

complex regulator of vascular remodelling that mught induce both vessel sprouting and 

vessel regression depending on VEGF availability and that seems to be implicated in 

hyperoxia-induced cell death [57], are also both increased in BPD [58, 59] and may be 

involved in microvascular dysangiogenesis. There is thus far no report of similar changes in 

emphysema. 

 

Figure 2 schematically integrates the causes and pathophysiological mechanisms 

involved in the occurrence of BDP and emphysema. Similarities and differences in 

pathological mechanisms are recapitulated in Table 1. In addition, the fact that in various 

genetically engineered mouse models, disturbed alveolarization was followed by later 

occurrence of emphysema allows one to raise the assumption of a predisposition to develop 

emphysema acquired in infancy. Supporting this view, young adult survivors of BPD may be 

left with residual structural and functional lung abnormalities, including emphysema [60].  

 

Therapeutic implications 

Targeting oxidative stress, inflammation and proteases 

Lowering oxidative injury and inflammation has been attempted in BPD and COPD with 

mitigated results. Corticosteroids lower inflammatory reaction in the postnatal lung, but 

because of their severe deleterious neurological side effects, they must be used warily. 

However, a recent report found that entirely avoiding the use of corticosteroids increased the 

incidence of BPD [61]. Antioxidants, exogenous anti-oxidant enzymes, mast-cell stabilizers, 
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and α1-proteinase inhibitors displayed no clinical benefit. Although nitric oxide (NO), which is 

both a factor with anti-inflammatory properties and a downstream effector of VEGF, improved 

alveolarization in experimental BPD [62], discrepant findings have been reported for inhaled 

NO: reduced death and BPD rates were reported in mildly sick preterm infants but, 

conversely, worsening outcome was reported in very ill VLBW infants [63]. Pentoxifylline, a 

peripheral vasodilator with anti-inflammatory effects, reduced the risk of BPD by 23% in a 

pilot study [64]. Blocking the CXC chemokine receptor CXCR2 has been shown to reduce 

oxygen-radical formation, to prevent neutrophil influx, and to preserve alveolarization in 

hyperoxia-exposed newborn rats [65].  

Several approaches to restore antioxidant defenses in COPD or emphysema have been 

developed in experimental models (Table 2). Curcumin [66], statins [67, 68] and adenovirus-

mediated expression of HO-1 [69] have been successfully used to restore HO-1 levels and 

attenuate emphysema in mice.  

Other potential targets are phosphodiesterases (PDE), the enzymes that degrade the 

second messengers cyclic adenosine and guanosine monophospate (cAMP and cGMP). The 

latter, among a variety of actions, exert inhibitory effects on many inflammatory cells. Two 

PDE4 inhibitors were recently reported to prolong survival and to reduce alveolar fibrin 

deposition, lung inflammation, vascular leakage, and protein efflux in BAL in preterm rats 

exposed to hyperoxia [70], although restoration of alveolarization failed and overall growth 

was markedly reduced [71]. Other PDE4 inhibitors attenuated smoke-induced emphysema in 

mice, through reduction of macrophage density, prevention of MMP-12 increase, and 

protection against apoptosis [72, 73]. PDE5 inhibition preserved alveolar growth and 

angiogenesis in hyperoxia-induced injury in rat pups [74]. 

Last, protease inhibition revealed preventing effects in animal models of emphysema [75, 

76]. These different trials are summarized in Table 2. Considering the adverse side effects 

sometimes observed, they call for further investigation. 

 

Retinoids for the prevention and treatment of BPD and emphysema 

Numerous studies have underscored the key role of retinoic acid (RA), a vitamin A derivate, 

in alveolarization. Whereas RA increased alveolar number in newborn rats [77], deletion of 

RA receptors (RARs) resulted in disrupted alveolar formation [78]. Whereas corticosteroids 

accelerate microvascular fusion and block septation, RA prevents these effects, which 

suggests regulatory role of the latter in early mechanisms of alveolarization and of 

corticosteroids in the later maturation step.  

The therapeutic value of retinoids is supported by clinical and experimental findings. In 

VLBW infants, low plasma retinol represents a predictive factor for developing BPD [79]. 

Likewise, inverse relationship between plasma retinol and the emphysematous decay of lung 
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function indicated a role in alveolar maintenance [80]. Exogenous RA partially restored 

alveolar architecture in rats and mice with failed septation induced by various means [81-83], 

as well as in elastase-induced emphysema [84]. However, other investigations performed in 

rodents [85] or primates [86} have conversely reported an absence if effect. 

A recent meta-analysis of clinical trials of vitamin A supplementation showed modest 

reduction of BPD rate and morbidity in VLBW infants [87]. In emphysema, despite the 

numerous encouraging experimental data, no definitive clinical benefits of RA treatment have 

been observed in pilot studies [88]. The RA isoform used, dosage and drug 

pharmacokinetics are certainly major issues [89]. Moreover, the expression of Cellular RA-

Binding Protein 2 (CRABP2), which modulates binding to RARs and transcriptional activity, is 

decreased in patients with emphysema. This was in turn responsible for a decrease of RA-

induced elastin synthesis by lung fibroblasts, suggesting that insufficient CRABP2 could 

account in part for the lack of clinical benefits of RA treatment [90]. Lastly, in experimental 

pneumonectomy, RA failed to increase alveolar surface area per lung volume despite 

enlargement of septal tissue and capillary volume in remaining lung, including reinitiation of 

double capillary layers [91]. This distortion clearly indicated that other stimuli are required 

simultaneously for induction of harmonious septal growth.  

 

Role and potential therapeutic value of growth factors  

In addition to VEGF, which is considered above, various growth factors are involved in the 

control mechanisms of alveolarization, most especially platelet-derived growth factor A, 

which is necessary for myofibroblast migration and proper location [92], hepatocyte growth 

factor (HGF), the inhibition of which reduced alveolarization[(93], and fibroblast growth factor 

(FGF) signaling through FGF receptor (FGFR) 3 and FGFR4, which are simultaneously 

required for septation [94]. Several FGF ligands could be involved in septation, including 

FGF18, the expression of which peaks during septation [95] and was decreased by 

hyperoxia [12]. FGF18 and FGF2 were found to inversely control the expression of elastic 

fiber components in myofibroblasts [95]. Although FGF7 (or keratinocyte growth factor) binds 

another FGFR, high FGF7 concentrations in tracheal effluents from premature infants 

predicted the absence of BPD [96], which might relate to the protective properties of this 

factor for alveolar epithelium. Last, fibroblasts isolated from human emphysematous lung 

have been found to present markedly reduced basal production of HGF and lowered 

production of FGF7 in response to stimuli [97]. 

Supplementation of a variety of growth factors, including VEGF, HGF, and FGF7, has 

been attempted in models of BPD and emphysema [51, 54, 98-10] (Table 2). Because, in 

addition to its erythropoietic functions, erythropoietin (EPO) is an endothelial cell mitogen, its 

effects have also been explored [83] (Table 2). Findings suggest therapeutic potential, 
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although trials have not yet left the field of animal investigation and negative results have 

sometimes been obtained. Moreover, limitations to the therapeutic use of growth factors 

reside in the risk that some might induce fibrosis and enhance the risk of tumorigenesis. 

Senescence of fibroblasts in emphysema represents another difficulty that might not 

necessarily be overcome by pharmacological approaches and may necessitate an additional 

and/or an alternative strategy, for instance cell therapy. 

 

Identifying novel targets by gene profiling analysis 

Better understanding of the intimate molecular developmental mechanisms might be 

achieved by large-scale gene profiling studies. Using this approach, it was determined that 

corticosteroid-induced septation failure is largely due to angiogenesis blockade consecutive 

to downregulation of VEGFR2, which was prevented by RA [102]. Comparison of rat lung 

gene expression before, during and after septation allowed the identification of genes that 

were upregulated during septation and downregulated thereafter, whereas others were 

downregulated during septation and upregulated during the step of microvascular maturation 

and wall thinning [103]. Importantly, septation-impairing treatments down regulated 

expression in the former group and enhanced expression in the second group, which points 

out the necessity of a sequential and coordinated control of their expression [103].  

In adult mice, a recent study identified genes down regulated by calorie restriction and/or 

rapidly up regulated after refeeding, two treatments that reduce and increase alveolar 

number, respectively [104]. The presence of genes encoding proteins (e.g. VEGF, fibulins, 

RA receptors, MMPs)  that have important roles during development is of particular 

importance because it demonstrates that developmental events and late alveolarization, and 

hence regeneration, actually share common molecular mechanisms. These findings support 

the hypothesis that regeneration may be achieved if pathways operative during development 

could be “rewakened”.  

 

Concluding remarks 

Similarities in the pathogenesis of BPD and emphysema are striking. Despite a few 

specific differences, the mechanisms of lung injury and subsequent molecular cascades 

involved in one disease are also involved in the other. Most importantly, recent findings 

indicated that developmental and maintenance programs of alveolar structures share the 

same signals and pathways. This suggests that emphysema is not solely a destructive 

process, but is also characterized by impairment of mechanisms devoid to maintenance and 

repair of alveoli, and that these mechanisms are the same as those impaired in BPD. This 

allows a variety of molecules identified in these pathways to be considered as potential tools 
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and/or targets in the therapeutic objectives of restoring disordered developmental 

mechanisms, preventing alveolar loss, and hopefully, reinitiating alveolarization mechanisms 

in the adult lung.  

However, some limitations in the conclusions that can be drawn for this comparison 

however deserve emphasis. Although similar signaling molecules and pathways are relevant 

for the pathogenesis of both diseases, they should not be assumed to always have the same 

biological effects, because emphysema occurs in a lung with completed structure whereas 

BPD occurs in a developing organ. The possibility that maturational differences exist for 

regulatory molecules and signaling pathways is actually supported by a variety of 

observations [51, 105, 106]. Consequently, extrapolation of data from experimental models 

of BPD to emphysema, and reciprocally, should not be assumed systematically and should 

be independently and accurately tested in each instance. This is crucial to undertake before 

specific diagnostic or therapeutic approaches can be designed to target either of these 

diseases. 

Nevertheless, the presently available data indicate promising directions. Alleviating the 

injuries that alter lung parenchymal structures in both diseases is a primary objective. 

However, this might be insufficient to permit alveolar repair. Although there remain 

outstanding questions (Box 1), particularly with regard to genetic susceptibility, the recent 

identification of major players in alveolar development and maintenance make it possible for 

the first time to consider developing innovative treatments. Retinoids will certainly have a 

crucial role, although they might be insufficient and will probably require the cooperation of 

other signaling molecules. Clearly, factors involved in the control of elastic fiber synthesis 

and microvascular development are essential and should be considered simultaneously. 

However, because involved regulatory molecules are probably far from being all identified, 

further basic investigation will be needed to reach a more comprehensive understanding of 

the control mechanisms of alveolar development. 
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Figure 1. Schematic representation of saccular (a) and alveolar (b) structures. Air-blood barriers that allow 

respiratory gases to diffuse are formed by tight apposition of capillary endothelium to saccular/alveolar epithelium 

(for simplification, vessels have been represented in only one half of the alveolar picture). The alveolarization 

process (arrow) consists of (i) the subdivision of saccular air space by surge and growth of secondary septa, 

which leads to considerable increase of exchange surface area, and (ii) the maturation of septa with fusion of 

capillary vessels into a single central layer and thinning of septa. In the human lung, alveolar formation starts 

during the last gestational weeks, but at full-term birth, the lung is still mostly comprised of undivided saccules, 

and the process extends at least over the first two postnatal years. VLBW premature infants are born with a lung 

in late-canalicular (previous stage preceding saccule formation that marks the absolute limit of viability with 

formation of the first air-blood barriers) or early-saccular stage. 
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Figure 2. Integration of pathogenic mechanisms in bronchopulmonary dysplasia (BPD) and emphysema. The 

respective leading causes of each disease induce common consequences, including oxidative stress and 

inflammation, which in turn cause protease/antiprotease imbalance, apoptosis and/or cell senescence. This 

results in impairment of alveolar developmental (BPD) or maintenance (emphysema) programs, including 

development and/or stability of elastic fibers and the microvascular network, leading to paucity of alveolar septa 

and airspace enlargement. The doted line separates specific features of each of the diseases; medial position of 

text or interruption of the line at the level of pathogenic mechanisms indicates features shared by the diseases. 

Original light-microscopy pictures from O.B.: 5-µm-thick paraffin sections of lung parenchyma from autopsy 

specimens (developing lungs) or surgical resections (adult lungs). Lung tissue was stained with Hart’s resorcin-

fuchsin stain for elastin and counterstained with tartrazine. The final magnification is the same for all four pictures 

(scale bars represent 200 µm). Normal developing and adult lungs are shown on the far lest and far right, 

respectively. 
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Glossary 
 
Acinus: the morphofunctional unit of the lung constituted by the alveolar channels, alveolar sacs and alveoli 
originating from a same respiratory bronchiole. 
 
Alveolus: anatomical structure of the lung forming a hollow cavity that represents the smallest unit structure of 
pulmonary parenchyma. Neighbor alveoli share the same walls. There are 300 to 500 million alveoli in the adult 
human lung (but at most 50 million of alveoli and undivided saccules at birth) for a total surface area of about 
100m2 of which capillary vessels (air-blood barriers) cover about 70%. 
 
Apoptosis: programmed cell death. A process that involves a series of biochemical events (notably activation of 
the degrading enzymes caspases) and cell morphological changes, including blebbing, membrane detachment, 
and characteristic nuclear and DNA fragmentation. Contrary to necrosis, which represents traumatic cell death 
from acute injury, apoptosis does not induce inflammatory reaction. Apoptosis is a normal process in living 
organisms, but which can be pathologically enhanced. 
 
CXC chemokines: regulatory peptides in which the two N-terminal cysteines (C) are separated by one amino-
acyl residue, represented in this name by X. 
 
Cytokines: diffusible signaling molecules (proteins, peptides, or glycoproteins) used in cellular communication. 
The term historically designated (and is still often used restrictively to designate) immunomodulating agents 
(interleukins [ILs], tumor necrosis factors [TNFs], interferons, etc.), although it can apply to other mediators. 
 
Elastase: an enzyme that breaks elastin and collagen. In humans, there are two elastase genes that encode 
pancreatic elastase and neutrophil elastase, respectively. 
 
Elastic fibers: complex extracellular microscopic structures comprised of a scaffold of microfibrillar proteins onto 
which the elastic protein elastin is polymerized from its soluble precursor tropoelastin. 
 
Extracellular matrix (ECM): the extracellular part of tissues providing structural support to cells. It is composed 
of specific proteins (collagens, elastin, fibronectins, laminins, etc.) and proteoglycans (carbohydrate and protein 
combination). ECM includes interstitial matrix (connective tissues) and basement membranes (or basal laminae, 
beneath epithelia). 
 
Fibrosis: pathological development of excess fibrous connective tissue and excess proliferation of interstitial cells 
(fibroblasts). In the lung, fibrosis may be idiopathic or associated with other pathological processes.  
 
Growth factors: diffusible mediators of cell-cell interactions (naturally occurring proteins or peptides) capable of 
stimulating cell proliferation and differentiation. 
 
Macrophages: resident phagocytic cells. They derivate from circulating monocytes (white blood cells). Contrary 
to polymorphonuclear neutrophils, they are present in the healthy alveolus in the absence of inflammation. 
 
Matrix metalloproteinases (MMPs): zinc-dependent, secreted or membrane-linked enzymes (endopeptidases) 
belonging to the metzincin superfamily. They are capable of degrading all kinds of extracellular matrix proteins but 
are also known to cleave cell-surface receptors, to release apoptotic ligands and cytokines/chemokines, and to 
activate/inactivate the latter. They are involved in control of cell proliferation, migration, differentiation, 
angiogenesis, apoptosis and host defense. 
 
Polymorphonuclear neutrophils (PMNs): the most common type of granulocytes (or granular leukocytes, the 
most abundant white blood cells characterized by the presence of secretory granules in the cytoplasm). PMNs are 
able to perform phagocytosis and to release cytokines; they invade tissues during inflammatory reaction. 
 
Proteases: enzymes (naturally occurring proteins) able to perform protein degradation (proteolysis). There exists 
a great variety of proteases. 
 
Respiratory distress syndrome (RDS): acute respiratory disease of the neonatal infant with immediate onset, 
caused by lung surfactant deficiency. It results most often from premature delivery and is combated by exogenous 
surfactant and mechanical ventilation with possibly increased inspired oxygen fraction (also known as hyaline 
membrane disease). 
 
Retinoids: a family of molecules comprising vitamin A (retinol and retinyl esters) and its active metabolites retinal 
(involved in vision), and the various isoforms of retinoic acid (RA). RA binds specific receptors in cell cytoplasm, 
and the formed complex is translocated then to the nucleus, where it acts as a transcription factor through binding 
to specific DNA regulatory sequences.  
 
Tissue inhibitors of metalloproteinases (TIMPs): four naturally occurring specific inhibitors of MMPs. The rate 
of extracellular matrix remodeling depends on the balance between MMP and TIMP activities. 
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Box 1. Outstanding questions 
 

Genetic susceptibility 

 BPD and emphysema do not occur in all VLBW infants or in all smokers, respectively, despite the presence of 

similar circumstances. There is growing evidence that the risk of developing these diseases is largely dependent 

on genetic susceptibility, and various gene polymorphisms are suspected to be involved. This aspect should be 

documented further to better identify at-risk subjects and to develop more efficient preventive approaches and 

treatments. 

 

Developmental vs maintenance programs 
As shown in this review, it is now established that the alveolar development and maintenance programs share a 

number of molecules and pathways, but it is not fully understood whether these have precisely the same 

biological effects in the developing and adult lung. The existence of specific differences, suggested by recent 

findings, should be explored further before trying to define new common therapeutic strategies in these diseases. 

 

Relative inefficiency of retinoids 
Despite the considerable amount of experimental data supporting the central role of retinoic acid in triggering 

alveolar development and maintaining alveolar structure, clinical trials using retinoids have been rather 

disappointing. The reasons are probably multiple (nature and biological availability of the used molecules, 

protocol and route of delivery, deficit in binding proteins or receptors, multifactorial control of biological 

mechanisms, difficulty to reinitiate coordinated production of elastic fiber components and fiber assembly, etc.), 

and better understanding these represents a challenge to optimize the therapeutic use of retinoids. 
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Table 1. Summary of similarities and differences between known cellular and 
molecular pathophysiological mechanisms in bronchopulmonary dysplasia (BPD) and 
emphysemaa  
 

 
  BPD 

 
Emphysema 

 
References 

Leading causes Oxidative stress 
 

+ + [1, 3, 4, 8, 
12, 13] 

 Inhaled toxic substances 
or particles 

- + [107, 108] 

 Mechanical injury 
 

+ ± [1, 4] 

 Infections 
 

± - [1] 

 Directly associated genetic 
disorders 

- + [3] 

 Risk-associated gene 
polymorphisms  

+ + [2] 

Histological features Airspace enlargement 
 

+ + [1- 4] 

 Elastic fiber destruction/ 
disrupted assembly 

+ + [37-41] 

 Extracellular matrix remodeling 
 

+ + [1- 4] 

 Diminished microvasular bed 
 

± + [52-54] 

 Dysmorphic capillary vessels 
 

+ - 1, 52-54 

 Interstitial fibrosis 
 

± -  [1, 4] 

Inflammatory 
process 

Alveolar recruitment of 
Neutrophils/Macrophages 

+ + [16, 18, 19] 

 Increased pro-inflammatory 
cytokines/chemokines 

+ + [4, 16] 

 Decreased anti-inflammatory 
cytokines 

+ + [20, 21] 

Protease/anti-
protease imbalance 

Increased neutrophil elastase 
and cathepsins 

+ ± [19, 22, 109] 

 Increased MMP (1, 2, 9, 12,…) 
activity  

+ + [23, 25, 26, 
109] 

 Decreased TIMP (1, 3) activity 
 

+ + [26, 110] 

Cell death and 
Impaired cell 
functions 

Apoptosis + + [31, 32] 

 Accelerated cell senescence 
 

? + [34, 35] 

Altered signaling/ 
pathways 

Retinoid insufficiency 
 

+ ± [87, 88] 

 Disturbed expression of growth 
factors (VEGF and angiogenic 
regulators, FGFs, HGF,…) 

+ + [52, 53, 55, 
60, 62,  63, 
101, 102] 

 

a + indicates presence, - indicates absence, ± indicates mild character or variability 
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Table 2. Principal pharmacological strategies used to attempt preventing or reversing 
airspace enlargement and associated disorders in BPD, emphysema, or their animal 
models. 
 

in BPD or models in Emphysema models  
TREATMENTS 

Positive effects Absence of 
effects 

or adverse effects 

Positive effects Absence of 
effects 

Inhaled Nitric Oxide (NO) and 

NO donors 

 

NO donor in 
hyperoxia-exposed 
rats: on mediator 
expression [12] 
  
NO in preterm lamb 
[62]  
 

NO donor in 
hyperoxia-exposed 
rats: on alveolar 
septation [12] 
 
NO, adverse 
effects in VLBW 
infants [63] 

Unknown Unknown 

Anti-inflammatory approaches 
(chemokine antagonists) 
 
and 
 
Anti-oxidant approaches 
(curcumin, statins, HO1) 

antichemokine or 
receptor blockade in 
hyperoxia-exposed 
rats [17, 65] 
 
pentoxyfilline in 
VLBW infants[64] 
 

No adverse effects 
observed 
 

inhibitory peptide in 
mouse model [43] 
 
curcumin [66], 
simvastatin [67], 
lovastatin [68], or 
HO-1 [69] in mouse 
models 

Unknown 

Protease inhibitors 
 

Unknown Unknown MMP inhibitor in 
guinea pig model 
[76] 

Unknown 

Phosphodiesterase inhibitors 
 

rolipram or 
piclamilast in 
hyperoxia-exposed 
rats: on 
inflammation  
[70, 71]  
sildenafil in 
hyperoxia-exposed 
rats [74], 

rolipram in 
hyperoxia-exposed 
rats: on alveolar 
septation [71] 

GPD-1116 [72] or 
roflumilast [73] in 
mouse models 
 

Unknown 

Ceramide synthesis inhibitor  

and ceramide inhibition 
 

Not tested Not tested fumonisin B1, 
myriocin, 
sphingosine-1P 
analog, and 
ceramide-
neutralizing antibody 
in mouse model [32] 

Unknown 

Retinoids  

 

RA in hyperoxic 
model in rats [82] 
RA in angiogenic 
inhibition in mice 
[83] 
 

vitamin A in 
premature 
baboons [86]  
 

RA in rats and mice 
with or without 
inhibited alveolar 
septation [77, 81]  

RA in mouse 
models [85] 
 

Growth factor  

supplementation 
 

VEGF [54] or 
FGF7 [98] in 
hyperoxia-exposed 
rats  
HGF [99] or 
EPO [83] in mouse 
models 

VEGF injurious in 
mouse prenatal 
lung [51] 

 
FGF7 in mouse 
model, preventive 
[101] 
HGF in rats [100] 
 

 
FGF7 in mouse 
model, curative 
[101] 
 

 

 


