B. B. Kahn, T. Alquier, D. Carling, and D. G. , AMP-activated protein kinase: Ancient energy gauge provides clues to modern understanding of metabolism, Cell Metabolism, vol.1, issue.1, pp.15-25, 2005.
DOI : 10.1016/j.cmet.2004.12.003

M. J. Sanders, P. O. Grondin, B. D. Hegarty, M. A. Snowden, and D. Carling, Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade, Biochemical Journal, vol.403, issue.1, pp.139-187, 2007.
DOI : 10.1042/BJ20061520

URL : https://hal.archives-ouvertes.fr/hal-00478681

M. Suter, U. Riek, R. Tuerk, U. Schlattner, T. Wallimann et al., Dissecting the Role of 5'-AMP for Allosteric Stimulation, Activation, and Deactivation of AMP-activated Protein Kinase, Journal of Biological Chemistry, vol.281, issue.43, pp.281-32207, 2006.
DOI : 10.1074/jbc.M606357200

URL : https://hal.archives-ouvertes.fr/inserm-00390888

J. F. Wojtaszewski, J. B. Birk, C. Frosig, M. Holten, H. Pilegaard et al., 5???AMP activated protein kinase expression in human skeletal muscle: effects of strength training and type 2 diabetes, The Journal of Physiology, vol.99, issue.2, pp.564-563, 2005.
DOI : 10.1113/jphysiol.2005.082669

J. B. Birk and J. F. Wojtaszewski, Predominant ??2/??2/??3 AMPK activation during exercise in human skeletal muscle, The Journal of Physiology, vol.108, issue.3, pp.1021-1053, 2006.
DOI : 10.1113/jphysiol.2006.120972

J. T. Treebak, J. B. Birk, A. J. Rose, B. Kiens, E. A. Richter et al., AS160 phosphorylation is associated with activation of alpha2beta2gamma1-but not alpha2beta2gamma3-AMPK trimeric complex in skeletal muscle during exercise in humans, American journal of physiology, vol.292, issue.3, pp.715-737, 2007.

K. Sakamoto, A. Mccarthy, D. Smith, K. A. Green, D. Grahame-hardie et al., Alessi: Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction, The EMBO journal, issue.10, pp.24-1810, 2005.

K. Sakamoto, E. Zarrinpashneh, G. R. Budas, A. C. Pouleur, A. Dutta et al., Deficiency of LKB1 in heart prevents ischemia-mediated activation of AMPKalpha2 but not AMPKalpha1, American journal of physiology, vol.290, issue.5, pp.780-788, 2006.

. S. Andreelli-10, C. Jager, J. Handschin, B. M. St-pierre, K. R. Spiegelman et al., AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1{alpha} Foskett: Physiological modulation of CFTR activity by AMP-activated protein kinase in polarized T84 cells Hardie: Does AMP-activated protein kinase couple inhibition of mitochondrial oxidative phosphorylation by hypoxia to calcium signaling in O2-sensing cells? The Journal of biological chemistry Carling: Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding, American journal of physiology The Biochemical journal, vol.574, issue.14, pp.41-53, 2000.

M. Gregor, A. Zeold, S. Oehler, K. A. Marobela, P. Fuchs et al., Plectin scaffolds recruit energy-controlling AMP-activated protein kinase (AMPK) in differentiated myofibres, Journal of Cell Science, vol.119, issue.9, pp.1864-75, 2006.
DOI : 10.1242/jcs.02891

E. A. Vaulont, J. F. Richter, and . Wojtaszewski, Knockout of the alpha2 but not alpha1 5'- AMP-activated protein kinase isoform abolishes 5-aminoimidazole-4-carboxamide-1-beta-4- ribofuranosidebut not contraction-induced glucose uptake in skeletal muscle, J Biol Chem, vol.279, issue.18, pp.1070-1079, 2004.

F. C. Carling, M. J. Schuit, E. A. Birnbaum, R. Richter, S. Burcelin et al., The AMPactivated protein kinase alpha2 catalytic subunit controls whole-body insulin sensitivity Birnbaum: A role for AMP-activated protein kinase in contraction-and hypoxia-regulated glucose transport in skeletal muscle AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target Short-term overexpression of a constitutively active form of AMPactivated protein kinase in the liver leads to mild hypoglycemia and fatty liver, J Clin Invest Molecular cell The Biochemical journal Diabetes, vol.111, issue.3385, pp.91-99, 1999.

L. Couteur, R. J. Shaw, P. Navas, P. Puigserver, D. K. Ingram et al., Resveratrol improves health and survival of mice on a high-calorie diet AMP-activated protein kinase-independent inhibition of hepatic mitochondrial oxidative phosphorylation by AICA riboside, Nature The Biochemical journal, vol.23, issue.4043, pp.444-337, 2006.

B. Andreelli, L. Viollet, . R. Hue-25, S. F. Bergeron, G. W. Previs et al., Carboxamide-1-{beta}-D- Ribofuranoside and Metformin Inhibit Hepatic Glucose Phosphorylation by an AMP- Activated Protein Kinase-Independent Effect on Glucokinase Translocation Effect of 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside infusion on in vivo glucose and lipid metabolism in lean and obese Zucker rats, Diabetes Diabetes, vol.55, issue.505, pp.865-74, 2001.

F. Bado, G. Tronche, S. Mithieux, R. Vaulont, B. Burcelin et al., Liver adenosine monophosphate-activated kinase-alpha2 catalytic subunit is a key target for the control of hepatic glucose production by adiponectin and leptin but not insulin, Endocrinology, vol.147, issue.5, pp.2432-2473, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00091816

L. C. Montminy and . Cantley, The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin, Science, issue.5754, pp.310-1642, 2005.

. Adenovirus-mediated and . Chronic, hyper-resistinemia" leads to in vivo insulin resistance in normal rats. The Journal of clinical investigation, pp.224-255, 2004.

R. Kimura, B. B. Nagai, T. Kahn, . R. Kadowaki-30, F. Dentin et al., Polyunsaturated fatty acids suppress glycolytic and lipogenic genes through the inhibition of ChREBP nuclear protein translocation. The Journal of clinical investigation Stimulation of AMP-activated protein kinase is essential for the induction of drug metabolizing enzymes by phenobarbital in human and mouse liver: Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cellpermeable activator of AMP-activated protein kinase, O. Matejkova, K. J. Mustard, J. Sponarova, P. Flachs, M. Rossmeisl, I. Miksik, M, pp.1288-95, 1994.

D. Thomason-hughes, J. Grahame-hardie, and . Kopecky, Possible involvement of AMPactivated protein kinase in obesity resistance induced by respiratory uncoupling in white fat, FEBS Lett, vol.569, issue.1-3, pp.245-253, 2004.

M. Janovska, I. Horakova, S. Syrovy, J. Cinti, . G. Kopecky et al., Expression of the uncoupling protein 1 from the aP2 gene promoter stimulates mitochondrial biogenesis in unilocular adipocytes in vivo, Eur J Biochem, vol.269, issue.1, pp.19-28, 2002.

. Carboxamide-ribonucleoside, A specific method for activating AMP-activated protein kinase in intact cells, Eur J Biochem, vol.229, issue.2, pp.558-65, 1995.

F. Ferre, . J. Foufelle-38, B. Villena, F. Viollet, A. Andreelli et al., Anti-lipolytic action of AMP-activated protein kinase in rodent adipocytes Sul: Induced adiposity and adipocyte hypertrophy in mice lacking the AMP-activated protein kinase-alpha2 subunit, J Biol Chem Diabetes, vol.280, issue.39, pp.25250-25257, 2004.

O. Mu, M. J. Ljungqvist, L. A. Birnbaum, A. Witters, L. J. Thorell et al., Exercise induces isoform-specific increase in 5'AMP-activated protein kinase activity in human skeletal muscle Biochemical and biophysical research communications Hardie: Inactivation of acetyl-CoA carboxylase and activation of AMP-activated protein kinase in muscle during exercise. The American journal of physiology Ruderman: Contraction-induced changes in acetyl-CoA carboxylase and 5'-AMP- activated kinase in skeletal muscle AMPK: a key sensor of fuel and energy status in skeletal muscle, The Journal of biological chemistry Physiology, vol.273, issue.21, pp.1150-1155, 1996.

L. J. Hirshman, . Goodyear, and J. Vaulont, Role of AMP-activated protein kinase in exercise capacity, whole body glucose homeostasis, and glucose transport in skeletal muscle -Insight from analysis of a transgenic mouse model, 2007.

E. A. Wojtaszewski and . Richter, Role of AMPKalpha2 in basal, training-, and AICARinduced GLUT4, hexokinase II, and mitochondrial protein expression in mouse muscle, American journal of physiology, vol.292, issue.1, pp.331-340, 2007.

S. Schjerling, P. D. Vaulont, E. A. Neufer, H. Richter, . B. Pilegaard-46 et al., Effects of alpha-AMPK knockout on exercise-induced gene activation in mouse skeletal muscle Dohm: AMP kinase is not required for the GLUT4 response to exercise and denervation in skeletal muscle, Skeletal Muscle Adaptation to Exercise Training: AMP-Activated Protein Kinase Mediates Muscle Fiber Type Shift, pp.1146-1154, 2004.

. Holloszy, Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle, Journal of applied physiology, vol.88, issue.6, pp.2219-2245, 2000.

C. F. Young, G. I. Semenkovich, S. Shulman, M. Terada, M. Goto et al., Chronic activation of AMP kinase results in NRF-1 activation and mitochondrial biogenesis Shimokawa and I. Tabata: Effects of low-intensity prolonged exercise on PGC-1 mRNA expression in rat epitrochlearis muscle. Biochemical and biophysical research communications: Skeletal muscle adaptation to exercise training: AMP-activated protein kinase mediates muscle fiber type shift, American journal of physiology Diabetes, vol.281, issue.29628, pp.1340-1346, 2001.

. R. Shulman-53, H. Reznick, J. Zong, K. Li, I. K. Morino et al., Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis AMP-activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. The Journal of biological chemistry Diminished overload-induced hypertrophy in aged fast-twitch skeletal muscle is associated with AMPK hyperphosphorylation Impaired overload-induced muscle growth is associated with diminished translational signalling in aged rat fast-twitch skeletal muscle A possible linkage between AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway: Activation of AMP-activated protein kinase inhibits protein synthesis associated with hypertrophy in the cardiac myocyte Activation of AMP-activated protein kinase leads to the phosphorylation of elongation factor 2 and an inhibition of protein synthesis Control of p70 ribosomal protein S6 kinase and acetyl-CoA carboxylase by AMP-activated protein kinase and protein phosphatases in isolated hepatocytes mediates cellular energy response to control cell growth and survival, Proceedings of the National Academy of Sciences of the United States of America Thr2446 is a novel mammalian target of rapamycin (mTOR) phosphorylation site regulated by nutrient status, pp.15983-15990, 2002.

M. Carling, R. Sandri, M. Ventura-clapier, and . Pende, S6 Kinase Deletion Suppresses Muscle Growth Adaptations to Nutrient Availability by Activating AMP Kinase, Cell metabolism, vol.5, issue.64, pp.476-87, 2007.

. Goodyear, AMP-activated protein kinase alpha2 activity is not essential for contraction-and hyperosmolarity-induced glucose transport in skeletal muscle. The Journal of biological chemistry, pp.39033-39074, 2005.

Y. Mahlapuu, C. Leng, D. Johansson, K. Galuska, M. Lindgren et al., The 5'-AMP-activated protein kinase gamma3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle. The Journal of biological chemistry Selective suppression of AMP-activated protein kinase in skeletal muscle: update on 'lazy mice, Biochem Soc Trans, vol.279, issue.37, pp.38441-38448, 2003.
URL : https://hal.archives-ouvertes.fr/hal-01211883

M. F. Sakamoto, L. J. Hirshman, and S. Goodyear-jensen, Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle, Diabetes, vol.55, issue.7, pp.2067-76, 2006.

J. R. Chibalin, J. F. Zierath, . G. Wojtaszewski-69, E. J. Merrill, D. G. Kurth et al., AMPK-mediated AS160 phosphorylation in skeletal muscle is dependent on AMPK catalytic and regulatory subunits AICA riboside increases AMP-activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. The American journal of physiology, Diabetes, vol.55, issue.70, pp.2051-2059, 1997.

. Kahn, Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase, Nature, issue.6869, pp.415-339, 2002.

L. P. Raney, M. A. Turcotte, A. J. Raney, M. K. Yee, L. P. Todd et al., Regulation of contraction-induced FA uptake and oxidation by AMPK and ERK1/2 is intensity dependent in rodent muscle American journal of physiology AMPK activation is not critical in the regulation of muscle FA uptake and oxidation during low-intensity muscle contraction: AMP kinase activation with AICAR further increases fatty acid oxidation and blunts triacylglycerol hydrolysis in contracting rat soleus muscle, The FASEB journal American journal of physiology The Journal of physiology, vol.19, issue.565, pp.773-782, 2005.

S. Schjerling, D. G. Vaulont, B. F. Hardie, E. A. Hansen, J. F. Richter et al., The alpha2-5'AMP-activated protein kinase is a site 2 glycogen synthase kinase in skeletal muscle and is responsive to glucose loading Muscle-specific overexpression of wild type and R225Q mutant AMP-activated protein kinase gamma3-subunit differentially regulates glycogen accumulation, Diabetes American journal of physiology, vol.53, issue.2913, pp.3074-81, 2004.

L. A. Goodyear, . J. Witters-78, G. D. Dyck, . L. Lopaschuk-79, C. Hue et al., AMPK alterations in cardiac physiology and pathology: enemy or ally? The Journal of physiology New targets of AMP-activated protein kinase Insulin and ischemia stimulate glycolysis by acting on the same targets through different and opposing signaling pathways AMP-activated protein kinase: a key stress signaling pathway in the heart, American journal of physiology Biochemical Society transactions Journal of molecular and cellular cardiology Trends in cardiovascular medicine, vol.292, issue.82, pp.802-813, 2002.

S. Horman, J. Vaulont, B. Hoerter, L. Viollet, J. L. Hue et al., Role of the alpha2-isoform of AMP-activated protein kinase in the metabolic response of the heart to no-flow ischemia, American journal of physiology, vol.291, issue.83, pp.2875-83, 2006.

J. Giordano, M. J. Mu, L. H. Birnbaum, K. Young, E. Carvajal et al., AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury Hoerter: Dual cardiac contractile effects of the {alpha}2-AMPK deletion in low-flow ischemia and reperfusion, The Journal of clinical investigation American journal of physiology, vol.114, issue.85, pp.495-503, 2004.

M. Tian, C. E. Arad, J. G. Seidman, and . Seidman, AMP-activated protein kinase in the heart: role during health and disease, The Journal of biological chemistry Circulation research, vol.278, issue.87, pp.28372-28379, 2003.

M. Roberts, I. P. Arad, V. V. Moskowitz, F. Patel, A. R. Ahmad et al., Transgenic mice overexpressing mutant PRKAG2 define the cause of Wolff-Parkinson-White syndrome in glycogen storage cardiomyopathy, Circulation Circulation, vol.111, issue.89, pp.21-30, 2003.

H. Wakimoto, M. Morita, C. E. Arad, J. G. Seidman, J. S. Seidman et al., Aberrant activation of AMP-activated protein kinase remodels metabolic network in favor of cardiac glycogen storage, The Journal of clinical investigation, vol.117, issue.5, pp.1432-1441, 2007.

J. E. Lygate, G. Schneider, H. Noel, D. Watkins, . S. Carling-91 et al., Characterization of the role of gamma2 R531G mutation in AMP-activated protein kinase in cardiac hypertrophy and Wolff- Parkinson-White syndrome American journal of physiology A PRKAG2 mutation causes biphasic changes in myocardial AMPK activity and does not protect against ischemia. Biochemical and biophysical research communications, pp.1942-51, 2006.

A. Taffet, D. S. Baldini, M. D. Khoury, . J. Schneider-93, E. J. Li et al., A pivotal role for endogenous TGFbeta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway AMPactivated protein kinase activates p38 mitogen-activated protein kinase by increasing recruitment of p38 MAPK to TAB1 in the ischemic heart Jovanovic: AMP-activated protein kinase mediates preconditioning in cardiomyocytes by regulating activity and trafficking of sarcolemmal ATP-sensitive K(+) channels, Proceedings of the National Academy of Sciences of the United States of America Circulation research Journal of cellular physiology, vol.103, issue.2101, pp.17378-83, 2005.

A. Wilding, V. Grynberg, J. Veksler, R. Hoerter, . B. Ventura-clapier-96 et al., AMP-activated protein kinase alpha2 deficiency affects cardiac cardiolipin homeostasis and mitochondrial function Activation of the AMP-activated kinase by antidiabetes drug metformin stimulates nitric oxide synthesis in vivo by promoting the association of heat shock protein 90 and endothelial nitric oxide synthase, Diabetes Diabetes, vol.56, issue.32, pp.786-94, 2006.

M. H. Zou, S. S. Kirkpatrick, B. J. Davis, J. S. Nelson, W. G. Wiles et al., Activation of the AMPactivated protein kinase by the anti-diabetic drug metformin in vivo Role of mitochondrial reactive nitrogen species. The Journal of biological chemistry Metabolic activation of AMP kinase in vascular smooth muscle Long-term AICAR administration reduces metabolic disturbances and lowers blood pressure in rats displaying features of the insulin resistance syndrome, Journal of applied physiology Diabetes, vol.279, issue.9817, pp.43940-51, 2002.
URL : https://hal.archives-ouvertes.fr/inserm-00390859

Z. P. Chen, K. I. Mitchelhill, B. J. Michell, D. Stapleton, I. Rodriguez-crespo et al., AMP-activated protein kinase phosphorylation of endothelial NO synthase, FEBS Letters, vol.100, issue.3, pp.443-285, 1999.
DOI : 10.1016/S0014-5793(98)01705-0

V. A. Morrow, F. Foufelle, J. M. Connell, J. R. Petrie, G. W. Gould et al., Salt: Direct activation of AMP-activated protein kinase stimulates nitric-oxide synthesis in human aortic endothelial cells, The Journal of biological chemistry, issue.34, pp.278-31629, 2003.

F. Goirand, M. Solar, Y. Athea, B. Viollet, P. Mateo et al., Activation of AMP kinase {alpha}1 subunit induces aortic vasorelaxation in mice, The Journal of physiology, pp.581-1163, 2007.
URL : https://hal.archives-ouvertes.fr/inserm-00151009

G. J. Morton, D. E. Cummings, D. G. Baskin, G. S. Barsh, and M. W. Schwartz, Central nervous system control of food intake and body weight, Nature, vol.52, issue.7109, pp.443-289, 2006.
DOI : 10.1016/j.physbeh.2004.04.034

M. S. Kim and K. U. Lee, Role of hypothalamic 5???-AMP-activated protein kinase in the regulation of food intake and energy homeostasis, Journal of Molecular Medicine, vol.53, issue.Suppl 5, pp.514-534, 2005.
DOI : 10.1007/s00109-005-0659-z

S. Ramamurthy and G. V. Ronnett, Developing a head for energy sensing: AMP-activated protein kinase as a multifunctional metabolic sensor in the brain, The Journal of Physiology, vol.15, issue.Suppl. 5, pp.85-93, 2006.
DOI : 10.1113/jphysiol.2006.110122

B. Xue and B. B. , AMPK integrates nutrient and hormonal signals to regulate food intake and energy balance through effects in the hypothalamus and peripheral tissues, The Journal of Physiology, vol.494, issue.1, pp.73-83, 2006.
DOI : 10.1113/jphysiol.2006.113217

P. Foufelle, M. J. Ferre, B. J. Birnbaum, B. B. Stuck, and . Kahn, AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus, Nature, issue.6982, pp.428-569, 2004.

C. J. Carling and . Small, AMP-activated protein kinase plays a role in the control of food intake, The Journal of biological chemistry, vol.279, issue.13, pp.12005-12013, 2004.

S. Namgoong, J. Ha, I. S. Park, I. K. Lee, B. Viollet et al., Anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMPactivated protein kinase, Nature medicine, issue.7, pp.10-727, 2004.

K. Lee, B. Li, X. Xi, Y. Suh, and R. J. Martin, Role of Neuronal Energy Status in the Regulation of Adenosine 5???-Monophosphate-Activated Protein Kinase, Orexigenic Neuropeptides Expression, and Feeding Behavior, Endocrinology, vol.146, issue.1, pp.3-10, 2005.
DOI : 10.1210/en.2004-0968

H. Moran and G. V. , Ronnett: C75, a fatty acid synthase inhibitor, reduces food intake via hypothalamic AMP-activated protein kinase, The Journal of biological chemistry, issue.19, pp.279-19970, 2004.

S. A. Williams, D. G. Hawley, A. B. Hardie, M. Grossman, and . Korbonits, Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase, The Journal of biological chemistry, issue.26, pp.280-25196, 2005.

S. L. Williams, C. Dickson, and . Dieguez, Central administration of resistin promotes shortterm satiety in rats, European journal of endocrinology / European Federation of Endocrine Societies, vol.153, issue.3, pp.1-5, 2005.

E. D. Muse, T. K. Lam, P. E. Scherer, and L. Rossetti, Hypothalamic resistin induces hepatic insulin resistance, Journal of Clinical Investigation, vol.117, issue.6, pp.1670-1678, 2007.
DOI : 10.1172/JCI30440DS1

R. Palanivel and G. Sweeney, Regulation of fatty acid uptake and metabolism in L6 skeletal muscle cells by resistin, FEBS Letters, vol.377, issue.22, pp.5049-54, 2005.
DOI : 10.1016/j.febslet.2005.08.011

. Seeley, Hypothalamic mTOR signaling regulates food intake, Science, issue.5775, pp.312-927, 2006.

T. K. Lam, G. J. Schwartz, and L. Rossetti, Hypothalamic sensing of fatty acids, Nature Neuroscience, vol.267, issue.5, pp.579-84, 2005.
DOI : 10.1073/pnas.94.16.8878

M. J. Wolfgang and M. D. Lane, The Role of Hypothalamic Malonyl-CoA in Energy Homeostasis, Journal of Biological Chemistry, vol.281, issue.49, pp.281-37265, 2006.
DOI : 10.1074/jbc.R600016200

. Lopaschuk, Malonyl-CoA decarboxylase (MCD) is differentially regulated in subcellular compartments by 5'AMP-activated protein kinase (AMPK) Studies using H9c2 cells overexpressing MCD and AMPK by adenoviral gene transfer technique, European journal of biochemistry / FEBS, issue.13, pp.271-2831, 2004.

S. Obici, Z. Feng, A. Arduini, R. Conti, and L. Rossetti, Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production, Nature Medicine, vol.9, issue.6, pp.756-61, 2003.
DOI : 10.1038/nm873

W. He, T. K. Lam, S. Obici, and L. Rossetti, Molecular disruption of hypothalamic nutrient sensing induces obesity, Nature Neuroscience, vol.253, issue.2, pp.227-260, 2006.
DOI : 10.1016/0003-2697(86)90058-8

M. J. Wolfgang, T. Kurama, Y. Dai, A. Suwa, M. Asaumi et al., The brain-specific carnitine palmitoyltransferase-1c regulates energy homeostasis, Proceedings of the National Academy of Sciences, vol.103, issue.19, pp.7282-7289, 2006.
DOI : 10.1073/pnas.0602205103

H. Clements, H. Al-qassab, A. W. Heffron, J. R. Xu, G. S. Speakman et al., Withers: AMPK is essential for energy homeostasis regulation and glucosesensing by POMC and AgRP neurons, J Clin Invest, issue.8, pp.117-2325, 2007.

J. A. Tschape, C. Hammerschmied, M. Muhlig-versen, K. Athenstaedt, G. Daum et al., The neurodegeneration mutant lochrig interferes with cholesterol homeostasis and Appl processing, The EMBO Journal, vol.21, issue.23, pp.6367-76, 2002.
DOI : 10.1093/emboj/cdf636

L. D. Mccullough, Z. Zeng, H. Li, L. E. Landree, J. Mcfadden et al., Ronnett: Pharmacological inhibition of AMP-activated protein kinase provides neuroprotection in stroke, The Journal of biological chemistry, issue.21, pp.280-20493, 2005.

M. Kim, J. Kim, and J. Chung, Energy-dependent regulation of cell structure by AMPactivated protein kinase, Nature, vol.447, issue.7147, pp.1017-1037, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00167887

V. Mirouse, L. L. Swick, N. Kazgan, D. St-johnston, and J. E. , LKB1 and AMPK maintain epithelial cell polarity under energetic stress, The Journal of Cell Biology, vol.62, issue.3, pp.387-92, 2007.
DOI : 10.1073/pnas.0610157104

R. J. Shaw, N. Bardeesy, B. D. Manning, L. Lopez, M. Kosmatka et al., The LKB1 tumor suppressor negatively regulates mTOR signaling, Cancer Cell, vol.6, issue.1, pp.91-100, 2004.
DOI : 10.1016/j.ccr.2004.06.007

. Thompson, AMP-activated protein kinase induces a p53-dependent metabolic checkpoint, Molecular cell, vol.18, issue.3, pp.283-93, 2005.

J. Apfeld, G. O-'connor, T. Mcdonagh, P. S. Distefano, and R. Curtis, The AMPactivated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans, Genes & development, issue.24, pp.18-3004, 2004.

P. Narbonne and R. Roy, Inhibition of germline proliferation during C. elegans dauer development requires PTEN, LKB1 and AMPK signalling, Development, vol.133, issue.4, pp.611-620, 2006.
DOI : 10.1242/dev.02232

R. Curtis, G. O. Connor, and P. S. Distefano, ) links multiple aging and metabolism pathways, Aging Cell, vol.108, issue.2, pp.119-145, 2006.
DOI : 10.1111/j.1474-9726.2006.00205.x

E. L. Greer, D. Dowlatshahi, M. R. Banko, J. Villen, K. Hoang et al., An AMPK-FOXO Pathway Mediates Longevity Induced by a Novel Method of Dietary Restriction in C. elegans, Current Biology, vol.17, issue.19, pp.17-1646, 2007.
DOI : 10.1016/j.cub.2007.08.047

. Brunet, The Energy Sensor AMP-activated Protein Kinase Directly Regulates the Mammalian FOXO3 Transcription Factor, The Journal of biological chemistry, vol.282, issue.41, pp.30107-30126, 2007.

N. Doebber, N. Fujii, M. F. Musi, L. J. Hirshman, D. E. Goodyear et al., Role of AMPactivated protein kinase in mechanism of metformin action, J Clin Invest, vol.108, issue.8, pp.1167-74, 2001.

. Vanoverschelde, AMPK activation restores the stimulation of glucose uptake in an in vitro model of insulin-resistant cardiomyocytes via the activation of protein kinase B, American journal of physiology, vol.291, issue.1, pp.239-50, 2006.

L. Zhang, H. He, and J. A. Balschi, Metformin and phenformin activate AMP-activated protein kinase in the heart by increasing cytosolic AMP concentration, AJP: Heart and Circulatory Physiology, vol.293, issue.1, pp.457-66, 2007.
DOI : 10.1152/ajpheart.00002.2007

B. Cool, B. Zinker, W. Chiou, L. Kifle, N. Cao et al., Identification and characterization of a small molecule AMPK activator that treats key components of type 2 diabetes and the metabolic syndrome, Cell Metabolism, vol.3, issue.6, pp.403-419, 2006.
DOI : 10.1016/j.cmet.2006.05.005

M. J. Sanders, Z. S. Ali, B. D. Hegarty, R. Heath, M. A. Snowden et al., Defining the Mechanism of Activation of AMP-activated Protein Kinase by the Small Molecule A-769662, a Member of the Thienopyridone Family, Journal of Biological Chemistry, vol.282, issue.45, 2007.
DOI : 10.1074/jbc.M706543200

D. G. Viollet, K. Hardie, and . Sakamoto, Mechanism of action of A-769662, a valuable tool for activation of AMP-activated protein kinase, 2007.

T. Kadowaki, T. Yamauchi, N. Kubota, K. Hara, K. Ueki et al., Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome, Journal of Clinical Investigation, vol.116, issue.7, pp.1784-92, 2006.
DOI : 10.1172/JCI29126

J. Yamashita, H. Kamon, W. Satoh, P. Yano, R. Froguel et al., Disruption of adiponectin causes insulin resistance and neointimal formation, The Journal of biological chemistry, issue.29, pp.277-25863, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00174716

K. Ma, A. Cabrero, P. K. Saha, H. Kojima, L. Li et al., Increased beta -oxidation but no insulin resistance or glucose intolerance in mice lacking adiponectin, The Journal of biological chemistry, issue.38, pp.277-34658, 2002.

H. Furuyama, M. Kondo, Y. Takahashi, R. Arita, N. Komuro et al., Diet-induced insulin resistance in mice lacking adiponectin/ACRP30, Nature medicine, vol.8, issue.7, pp.731-738, 2002.

M. Bjursell, A. Ahnmark, Y. M. Bohlooly, L. William-olsson, M. Rhedin et al., Opposing Effects of Adiponectin Receptors 1 and 2 on Energy Metabolism, Diabetes, vol.56, issue.3, pp.56-583, 2007.
DOI : 10.2337/db06-1432

S. Iwabu, N. Kawamoto, T. Kubota, Y. Kubota, J. Ito et al., Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions, Nature medicine, vol.13, issue.3, pp.332-341, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00173813

S. Sato, K. Schiekofer, T. Ohashi, W. S. Funahashi, K. Colucci et al., Adiponectinmediated modulation of hypertrophic signals in the heart, Nature medicine, vol.10, issue.12, pp.1384-1393, 2004.

P. E. Durante, K. J. Mustard, S. H. Park, W. W. Winder, and D. G. , Hardie: Effects of endurance training on activity and expression of AMP-activated protein kinase isoforms in rat muscles, American journal of physiology, vol.283, issue.1, pp.178-86, 2002.

C. Frosig, S. B. Jorgensen, D. G. Hardie, E. A. Richter, and J. F. , Wojtaszewski: 5'- AMP-activated protein kinase activity and protein expression are regulated by endurance training in human skeletal muscle, American journal of physiology, vol.286, issue.3, pp.411-418, 2004.

C. Roepstorff, M. Thiele, T. Hillig, H. Pilegaard, E. A. Richter et al., Higher skeletal muscle alpha2AMPK activation and lower energy charge and fat oxidation in men than in women during submaximal exercise, The Journal of physiology, pp.574-125, 2006.

R. C. Liew, M. F. Ho, R. N. Hirshman, C. R. Kulkarni, L. J. Kahn et al., Skeletal muscle-selective knockout of LKB1 increases insulin sensitivity, improves glucose homeostasis, and decreases TRB3, Molecular and cellular biology, issue.22, pp.26-8217, 2006.

. Wojtaszewski, Lack of {alpha}2 5'AMP Activated Protein Kinase enhances Pyruvate Dehydrogenase activity during exercise (2007) Key words: AMPK, animal models, energy metabolism