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1 Introduction

In many applied studies it is common that the model used is not completely fixed

in advance and that several possibilities are tried. We consider the case where

a regression model belonging to the family of the generalized linear models is

used. In epidemiology for instance it is quite common that the study focusses

on one particular risk factor; the problem is to analyse whether this risk factor

has an influence on the risk of a disease or on a biological trait. To answer the

question a regression model is used in which the risk factor will be represented

by a continuous variable X, and allowing to adjust on p− 1 already known risk

factors of the studied trait. The analysis focusses on the test of “β = 0”, where

β is the coefficient representing the effect of the risk factor of interest. However

the form of the effect (or the dose-effect relationship) is not known in advance.

While a non-parametric approach to this problem may be useful (Hastie and

Tibshirani, 1990), most often a simpler approach is used: several transformations

of the original variable gk(X), k = 1, . . . , K, may be tried. Examples of such

transformations are dichotomizations of the original continuous variable, where

K cutoff points may be used, and Box-Cox tranformations, where K different

powers of the original variable are tried (the Box-Cox family also includes the

log transform). For each of the transforms tried a test of “β = 0” is performed.

Generally the most significant test is retained and often given without corrections

in publications. Of course this leads to increased type I error risk (Miller, 1981).

For instance in studying the effect of minerals in drinking water on the risk

of a disease, threshold effect models have been currently used: higher (or lower)

risk is expected for a concentration above a certain level. However this threshold
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value is generally unknown, leading the epidemiologist to perform several trials.

Multiplying the tests and reporting the most significant one without correction

is able to pervert the whole inference process in applied science and particularly

in epidemiology.

The pvalue should be corrected to take account of the multiplicity of the test.

The simplest correction is to apply the Bonferoni rule; however this leads to a

conservative test if the original tests are positively correlated as is the case here.

Efron (1997) proposed a correction taking account of the correlation between

two consecutive tests, if there is a natural order between the tests with high

correlation between adjacent tests. Liquet and Commenges (2001) and Hashemi

and Commenges (2002) proposed a more exact correction taking into account

the whole correlation matrix, for score tests obtained in logistic regression and

proportional hazards models respectively.

Here, we propose a correction of the pvalue when multiple transformations of

an explanatory variable have been tried in a generalized linear model. We con-

struct K score tests corresponding to the K coding of the explanatory variable.

We thus have a vector of test statistics T = (T1, . . . , TK) for the same null hy-

pothesis H0 which have asymptotically a standard normal distribution. Rejecting

H0 if one of the test Tk is larger than a critical value c is equivalent to rejecting

H0 if Tmax > c, where Tmax = max(T1, . . . , TK). To cope with the multiplicity

problem, we need to compute the probability of Type I error for the statistic Tmax

under the null hypothesis H0 :

pvalue = P (Tmax > tmax) = 1− P (T1 < tmax, . . . , Tmax < tmax).

The asymptotic joint distribution of T1, . . . , Tmax is a multivariate normal distri-

bution with zero mean and a certain covariance matrix Σ that we will estimate
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in the next section. Then we will be able to compute P (T1 < tmax, . . . , Tmax <

tmax) using numerical integration (Genz, 1992).

2 Correlation between tests in generalized lin-

ear model

2.1 Definitions and notations

Let us consider a generalized linear model (McCullagh and Nelder, 1989) with p

explanatory variables where Yi, i = 1, . . . , n, are independently distributed with

probability density function in the exponential family defined as follows :

fY (Yi, θi, φ) = exp {[θiYi − b(θi)]/a(φ) + c(Yi, φ)},

with E[Yi] = µi = b′(θi), var[Yi] = b′′(θi)a(φ). We want to test the influence of

a variable X i, adjusted on a vector of explanatory variables Z i. We consider the

case where we do not know the form of the effect of X i so we may consider K

transformations of this variable X i(k) = gk(X
i), k = 1, . . . , K. The model for

transformation k can be obtained by modeling the canonical parameter θi as:

θi(k) = Z iγ + X i(k)βk, i = 1, . . . , n,

where Z i = (1, Z i
1, . . . , Z

i
p−1) and γ = (γ0, . . . , γp−1)

T is a p × 1 vector of

coefficients. In the sequel,we will denote by X(k) the vector (X 1(k), . . . , Xn(k));

µ = (µ1, . . . , µn)T and lk the log-likelihood of Y = (Y1, . . . , Yn)T for the model

with X(k).

2.2 Score test

For all the K transformations, H0: ”βk = 0” is the same null hypothesis, given

by θi(k) = Z iγ. This defines a unique probability measure under which the
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distribution of the score tests (Tk) can be computed as standardized versions of

the score statistics U(k) which are asymptotically normal distributed:

U(k) =
∂lk

∂βk
(β = 0) =

1

a(φ)
XT (k)[Y − µ̂] =

1

a(φ)
XT (k)R̂,

where R̂ is the vector of residuals R̂i = Yi − µ̂i computed under the null hy-

pothesis. Asymptotically, the variance of the score test can be computed as

(see Cox and Hinkley, 1979): var U(k) = Iβkβk − IβkγI−1
γγ Iγβk , where Iβkβk =

−E
(

∂2l
∂βk∂βk

)
, Iβkγ = −E

(
∂2l

∂βk∂γ

)
, Iγγ = −E

(
∂2l
∂γ∂γ

)
. Another method is to

calculate directly var U(k) by :

var U(k) =
1

a(φ)2
XT (k)var[R̂]X(k).

The term, var[R̂], will be also necessary to determine the correlation between

score tests.

Estimation of var[Y − µ̂] = var[R̂]

A Taylor expansion of Y − µ̂ about its values in γ, the real parameter value,

gives

Y − µ̂ = Y − µ− ∂µ

∂γ

T

(γ)(γ̂ − γ) + op(n
−1/2), (1)

where ∂µ
∂γ

T
(γ) = 1

a(φ)
V Z and Z is a n × p matrix with row Z i, i = 1, . . . , n ;

V is the diagonal matrix with diagonal terms vii = var Yi. Expanding the first

derivatives of the log likelihood around γ yields

∂l

∂γ
(γ̂) =

∂l

∂γ
(γ) +

∂2l

∂γ2
(γ)(γ̂ − γ) + op(n

−1/2), (2)

where ∂2l
∂γ2 (γ) = − 1

a(φ)2Z
TV Z and ∂l

∂γ
(γ̂) = 0 since γ is estimated nullifying the

score Uγ = ∂l
∂γ

(γ). With (2) we find :

γ̂ − γ = a(φ)2(ZTV Z)−1Uγ + op(n
−1/2),
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where Uγ = 1
a(φ)

ZT (Y − µ). So, replacing in (1) we find:

Y − µ̂ = Y − µ− (
1

a(φ)
V Z)a(φ)(ZTV Z)−1ZT (Y − µ) + op(n

−1/2)

= (I −H)(Y − µ) + op(n
−1/2),

where H is the matrix H = V Z(ZTV Z)−1ZT . Note that this expression is exact

for the normal linear model. With an approximation error of order op(n
−1), we

have var[Y − µ̂] = var[(I − H)(Y − µ)]. Using the idempotence property of

(I − H), it can be seen after some computation that var[(I − H)(Y − µ)] =

(I −H)V . Finally we find :

var U(k) =
1

a(φ)2
XT (k)(I −H)V X(k).

In practice, we use an estimator of var U(k) defined by :

v̂ar U(k) =
1

â(φ)2
XT (k)(I −H)V̂ X(k), (3)

where â(φ) and V̂ are the estimator of a(φ) and V .

2.3 Correlation between two tests

Let Tk and Tl be two score test statistics associated with the transformations

X(k) and X(l):

Tk =
U(k)√

v̂ar U(k)
; Tl =

U(l)√
v̂ar U(l)

.

Neglecting the covariance between the estimators of the variances of U(k) and

U(l), the correlation between the two tests is :

ρkl = corr(Tk, Tl) '
cov(U(k), U(l))√
v̂ar U(l)

√
v̂ar U(l)

=
1

â(φ)2

XT (k)var[Y − µ̂]X(l)√
v̂ar U(l)

√
v̂ar U(l)

.
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Using (3) we finally obtain an expression which does not depend on a(φ):

ρkl =
XT (k)[(I −H)V̂ ]X(l)√

XT (k)(I −H)V̂ X(k)

√
XT (l)(I −H)V̂ X(l)

.

Then we can compute P (T1 < tmax, . . . , TK < tmax) for determining the p-value

associated to the test Tmax. This is done by integrating the normal density over a

quadrant and this can be done quite accurately for K < 20 using the subregion

adaptive algorithm proposed by Genz (1992). Note that this result allows a

correction of the p-value if one knows the vectors of the transformed variable

X(k), k = 1, . . . , K, the matrix of explanatory variables Z and the estimated

variances V̂ ; that is, there is the possibility to design a unique program for any

model in the family and for any transformation.

3 Simulation

Simulations for studying the effect of the correction on the type I error risk were

carried out with a Poisson model (a(φ) = 1, b(θi) = eθi , µi = E[Yi] = eθi)

consisting of two explanatory variables: Z1 an adjustment variable and X the

variable of interest. We considered the following models

log E[Yi] = θi(k) = γ0 + γ1Z
i
1 + βX i(k), i = 1, . . . , n.

where X i(k) were dichotomized versions of a continuous variable X. For the

cut-off points we chose the median for one dichotomous transformation (K = 1),

the first and the second terciles for two dichotomous transformations (K = 2),

the quartiles values for three transformations (K = 3) and so on. Z1 and X

were generated according to a uniform distribution U [0, 1]. The sample size was

set to be 100. We used 10,000 replications for the simulation.
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3.1 Study of type I error rate

In this simulation, we took γ0 = 1, γ1 = 10 and β = 0. For a replication,

the rejection criterion of H0 (β = 0) was a pvalue less than 0.05. Thus, for a

simulation, the empirical type I error rate was the proportion of pvalue less than

0.05. Figure 1(a) shows the type I error rate for dichotomous transformations,

as a function of the number of coding (K) tried. The naive approach which

retains the test with the smallest p-value had, as expected, a type I error rate

which increased with the number of cutpoints tried: this is exhibited by the “no

correction” curve in Figure 1(a). The error rate calculated by the Bonferroni

method decreased with the number of cutpoints, leading to a conservative test.

The exact calculation proposed here gave a type I error rate very close to the

nominal 0.05 value.

Figure 1 approximately here

3.2 Power

In this simulation, we took γ0 = 1, γ1 = 5 and β = 5. We studied the power

for a threshold effect model with a cutpoint value at the first tercile (“threshold

effect model”). Figure 1(b) gives the power as a function of the number of

cutpoints. With any method we expect that the power will be substantially less

than that of a test that would be done knowing the cutpoint value: this gives an

upper bound for the power (represented by a horizontal line in Figure 1(b)). As

expected the exact calculation provides more power than the Bonferroni method.

Each time the true cutpoint value appears in the values tried the power increases;

however these oscillations decrease with the number of values tried. When the

good cutpoint value does not appear in the values tried, the power of the exact
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method tends to increase with the number of values tried: the power is slightly

higher using deciles (9 values tried) than using quartiles (3 values tried), and this

is in contrast with the Bonferroni method.
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LIST OF FIGURE

Figure 1 : Type I error rate for various numbers of cutpoints tried without

correction, with the Bonferroni and with the proposed correction (a) and Power

for a “threshold effect model” at the first tercile (b).
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