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A SEMIPARAMETRIC APPROACH

FOR A MULTIVARIATE SAMPLE SELECTION MODEL

Marie Chavent, Benôıt Liquet and Jérôme Saracco

University of Bordeaux

Abstract: Most of the common estimation methods for sample selection models

rely heavily on parametric and normality assumptions. We consider in this paper

a multivariate semiparametric sample selection model and develop a geometric ap-

proach to the estimation of the slope vectors in the outcome equation and in the

selection equation. Contrary to most existing methods, we deal symmetrically with

both slope vectors. Moreover, the estimation method is link-free and distribution-

free. It works in two main steps: a multivariate sliced inverse regression step, and

a canonical analysis step. We establish
√

n-consistency and asymptotic normality

of the estimates. We describe how to estimate the observation and selection link

functions. The theory is illustrated with a simulation study.

Key words and phrases: Sliced Inverse Regression (SIR), Multivariate SIR, Canon-

ical Analysis, Semiparametric Regression Models, Eigen-decomposition.

1. Introduction

Sample selection models (SSM) are described by two equations. A selection

equation specifies the state “observed / non-observed (missing)” of the dependent

variable y as a function of explanatory variables x. An outcome equation specifies

the value of the dependent variable y as another function of explanatory variables

x. Numerous papers dealing with univariate SSM have been published. The

adjective “univariate” refers to y ∈ R. In this paper, we focus on multivariate

SSM, that is, when y ∈ R
q, q > 1.

Let us first briefly review of univariate SSM. Heckman (1979) introduced

what is now regarded as the prototype selection model. Amemiya (1985) refers
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to this model as the type II Tobit model:

(E1) : y∗1 = θ1 + x′β1 + ε1

(E2) : y∗2 = θ2 + x′β2 + ε2

(E3) : y2 = I[y∗2 > 0]

(E4) : y1 = y∗1y2

(E5) : (ε1, ε2)
′|x ∼ N (0, Γ), Γ =

[

σ2
1 σ12

σ12 σ2
2

]

where the notation I designates the indicator function. The observed variables

are y1 ∈ R, y2 ∈ {0, 1} and x ∈ R
p. Note that in this model, the explanatory

variable x does not include the y variable, contrary to Maddala (1983) who

considered a more general simultaneous equation modelling framework where

the outcome y can appear on both right and left hand sides of the equations

(E1) and (E2). Note also that, in equation (E4), missing values are denoted by

zeoro, leading to possible confusions with zero as an actual observed value for

y1. Equation (E3) is the selection equation and equation (E2) is the potential

outcome equation. The maximum likelihood method is generally used to estimate

such models. The score function is highly non-linear. The convergence of the

algorithm heavily depends on the choice of good initial values, and the asymptotic

properties of the estimate are very sensitive to the model specification. This has

been discussed by Goldberger (1983) among others. Alternative methods have

been designed. Heckman (1979) proposed a two-step method estimating first the

selection equation, and then using the result to estimate the outcome equation in

a second stage. Many authors have considered parametric estimation methods.

For a survey of these aspects, see Amemiya (1985), Maddala (1983, 1993) or

Blundell and Smith (1993).

Semiparametric estimation methods have been developed to bypass the sensi-

tivity to specification assumptions. They handle more general models, especially

for error specification. Melenberg and van Soest (1993) give an overview of the

semiparametric estimation methods for SSM. Most semiparametric estimation

techniques of SSM also proceed in two stages. The first gives a consistent es-

timate of the slope of the selection equation. The second stage works with the

non-missing y only, (i) building a biased estimate of the slope of the outcome

equation, and (ii) correcting for this bias with the help of the slope estimated in
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the first step. Duan and Li (1987), Newey (1991), Ahn and Powell (1992), Lee

(1994) follow such a scheme.

In this paper, we examine multivariate sample selection models (MSSM)

which are a generalization of the type II Tobit model when the dependent variable

y is a vector of R
q. This kind of model can also be seen as a generalization of

classical multivariate Tobit model defined by: y = max(y∗, 0) where y∗ = Cx+ε,

ε ∼ N (0,Γ) and C is a q× p matrix of coefficients (see for instance Eiswerth and

Shonkwiler, 2006, for a brief presentation and an ecological application of this

model).

We focus on a semiparametric MSSM by introducing unknown link functions

in the selection and outcome equations in order to get a more flexible model.

Moreover, we do not assume that the distribution of the error term is a multi-

variate normal distribution. Like Duan and Li (1987) in the univariate case, we

propose a link-free and distribution-free estimation method. Contrary to most

existing methods, we deal symmetrically with both slopes (of the selection and

outcome equations).

In Section 2, we give a description of the semiparametric MSSM. We show in

Section 3 the geometric approach to the estimation of the slopes of the outcome

and selection equations from a population point of view and we give the corre-

sponding sample version in order to obtain the slope estimators. The estimation

method works in two steps (which have nothing to do with the two classical stages

of the approaches mentioned above). The first one performs a multivariate sliced

inverse regression (MSIR) analysis. The second step converts the MSIR indices

to estimators of the slopes by means of two canonical analyses. The correspond-

ing numerical algorithm is fast (since the method is based on only a few matrix

calculus and eigen-decompositions, without need for any time-consuming itera-

tive computations) and does not require starting values. Asymptotic properties

of the slope estimators are derived in Section 4. Simulation results are reported

in Section 5. Finally, concluding remarks are given in Section 6.

2. A semiparametric multivariate sample selection model

We consider the following semiparametric multivariate sample selection model:
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for j = 1, . . . , q,

y(j) =







g
(j)
1

(

x̃′

1γ̃1, ε
(j)
1

)

if g
(j)
2

(

x̃′

2γ̃2, ε
(j)
2

)

> 0

MV otherwise.
(2.1)

where:

- The symbol MV symbolically indicates a missing (non observed) value for y(j)

in order to avoid any confusion with zero as an observed value.

- The dependent variable y = (y(1), . . . , y(q)) ∈ R
q (when each y(j) is observed)

is a q-dimensional random vector. In the following, we will see that there is no

need to require all values for the y(j)’s to be real.

- The functions g
(j)
1 and g

(j)
2 are unknown link functions. For the j-th component

y(j) of y, g
(j)
1 is called the observation link function and g

(j)
2 the selection link

function.

- The variables x̃1 ∈ R
p1 and x̃2 ∈ R

p2 are subvectors of a random vector x ∈ R
p,

assumed to have an elliptically symmetric distribution with parameters µ = E(x)

and Var(x) = Σ. Let Ak, k = 1, 2 be a p×pk matrix which selects the components

of x̃k in x, that is: x̃k = A′

kx. This matrix has exactly one “1” in each column

and at most one “1” in each row, and the other elements are “0”. From the

definition of Ak, this matrix is a full column rank matrix such that A′

kAk = Ipk
.

These matrices A1 and A2 are assumed to be known a priori. They are not

chosen arbitrarily by the user, they need to be assumed based on existing theory

on the exclusion of specific variables. It follows that x̃1 and x̃2 are elliptically

distributed with parameters µk = E(x̃k) = A′

kµ, k = 1, 2 and Σk = Var(x̃k) =

A′

kΣAk, k = 1, 2.

- Let ε(j) = (ε
(j)
1 , ε

(j)
2 )′. Let us also define ε =

(

ε(1)′, . . . , ε(q)′
)′

. The error term ε

is a random vector independent of x with an unknown distribution.

- The parameters γ̃1 and γ̃2 are the p1 × 1 and p2 × 1 real unknown slope param-

eters. Let us also introduce γk = Akγ̃k ∈ R
p, k = 1, 2, in order to expand γ̃k to

a p × 1 vector with zeros corresponding to the non-selected components.

Under the generality of the unknown link functions in this model, the in-

tercepts, the vector lengths and vector signs of γ̃1 and γ̃2 are not identifiable.

Without additional assumptions, only the directions of the observation and se-

lection slope vectors are identifiable. Then, our main purpose is to estimate the
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directions of the vectors γ̃1 and γ̃2. The nonparametric estimation of g
(j)
1 and

g
(j)
2 will also be discussed.

We will consider model (2.1) as a particular case of a more general multi-

variate two-index semiparametric regression model of the form

y = f(x′γ1, x
′γ2, ε). (2.2)

Model (2.2) was introduced by Li (1991) when y ∈ R. Li (1991) introduced

the sliced inverse regression in order to estimate the subspace of R
p, spanned

by the γk’s, which is called the e.d.r. (effective dimension reduction) space. In

model (2.2), since the link function f is assumed to be arbitrary and unknown,

the γk’s are not individually identifiable, while the e.d.r. space is identifiable.

Some extensions of the SIR approach to multivariate y have been studied by

Aragon (1997), Li et al. (2003), Saracco (2005), and Barreda et al. (2007).

It is interesting to note that SIR and Pooled Marginal SIR (a multivariate SIR

approach which will be used in the next section) do not require a metric structure

for the outcome variable(s). Thus, MV values for the y(j)’s are easily managed.

In our context, we have to take into account extra information about the

e.d.r. space, namely, structural zeros in the slopes γ1 and γ2, with a link function

f depending on the unknown functions g
(j)
1 and g

(j)
2 for j = 1, . . . , q.

We now exhibit in Theorem 1 a geometrical property of this model on

which the proposed approach is based. Let us define the linear subspace E =

Span(γ1, γ2) of R
p. Without additional conditions, we have dim(E) ≤ 2. If γ1

and γ2 are linearly independent, then dim(E) = 2, and {γ1, γ2} is a basis of the

e.d.r. space. In order to ensure that we are working on a two-index model (that

is dim(E) = 2), let us assign the following identifiability conditions:

(i) Each vector x̃k, k = 1, 2, has at least an x-component not present in the

other x̃k, k = 2, 1; such a component could be considered k-specific.

(ii) At least one component of γk among the k-specific component is non null,

k = 1, 2.

Note that these identifiability conditions are stronger than the usual identifiabil-

ity condition, which is that x̃2 contains an x-component that is not in x̃1. The

underlying reason for the stronger condition is that the proposed method deals
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symmetrically with the selection and outcome slope vectors. Knowingly, we do

not make use of an important piece of information, namely that the selection

probabilities depend only on one of the two index variables, x̃′

2γ̃2.

We now bring these conditions into a geometrical perspective. Let us consider

the linear subspace Ek = Span(Ak) of R
p.

Theorem 1. Under the assumptions of model (2.1) and the identifiability con-

ditions, we have: for k = 1, 2,

E ∩ Ek = Span(γk).

Proof. From the definition of Ak, we have dim(Ek) = pk. The identifiability

conditions give: (i) E1 6⊂ E2 and E2 6⊂ E1, and (ii) E ∩E1 6= E and E ∩E2 6= E.

Let us study more closely the linear subspace E ∩ Ek. Since dim(E) = 2, we

have dim(E ∩ Ek) ≤ 2. From the definition of E and Ek, γk ∈ E ∩ Ek and then

dim(E∩Ek) ≥ 1. From the identifiability conditions, we get, for k⋆ 6= k, γk⋆ ∈ E

and γk⋆ 6∈ Ek, thus γk⋆ 6∈ E ∩Ej and dim(E ∩Ek) < 2. Finally, dim(E ∩Ek) = 1

and E ∩ Ek ⊂ R
p is spanned by γk.

We specify in the next section how to determine a basis of E and to deduce a

basis E ∩Ej from a population point of view. Then we describe how to estimate

the directions of γ1 and γ2.

Remark 1. The full model defined in (2.1) can be interpreted as an item non-

response model, that is the response status for each outcome measure (or survey

item) is governed by a specific selection equation. We can also introduce a sim-

plified model in terms of the type of missing data encountered. In the following

simplified version of the model, we assume that the same selection equation is

used for all outcomes: each selection link function g
(j)
2 (.) is equal to the same

link function g2(.). With unique error term ε2, the model can be written in this

simple way:

y =

{

g1 (x̃′

1γ̃1, ε1) if g2 (x̃′

2γ̃2, ε2) > 0

MV otherwise.

where the observation link function g1(.) takes its values (when they are observed)

in R
q and the error term ε1 is a q-dimensional random vector. This model can be

interpreted as a case non-response model, when the response status for multiple
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outcomes is clustered at the individual level: an individual either responds to all

outcome measures (case response) or does not respond to any outcome measure

(case non response).

Remark 2. The proposed approach can cope with the generalized two-limit

selection model of the form: for j = 1, . . . , q,

y(j) =











L
∗(j)
1 if g

(j)
2 (x̃′

2γ̃2, ε2) ≤ L
(j)
1

g
(j)
1 (x̃′

1γ̃1, ε1) if L
(j)
1 < g

(j)
2 (x̃′

2γ̃2, ε2) < L
(j)
2

L
∗(j)
2 if g

(j)
2 (x̃′

2γ̃2, ε2) ≥ L
(j)
2

(2.3)

where L
∗(j)
1 and L

∗(j)
2 are qualitative measures of specific situations, L

(j)
1 and

L
(j)
2 are two thresholds of the selection equation. This model is a multivariate

extension of the two-limit Tobit model (see e.g. Maddala, 1993). In addition to

the two-limit selection model, it might also be useful to consider more general

selection models with multiple non-response categories, such as refusals, don’t

know, etc., with a distinct selection equation for each category.

Real examples for potential application of the proposed model. Semi-

parametric MSSM has many possible real applications in economics. For ex-

ample, it can be used to study the determinants of innovation behaviour or

financial choices. The Community Innovation Survey collects data on the in-

novative characteristics of EU firms. The data include measures of innovation

and related expenditures (Intramural R&D, extramural R&D, Acquisition of ma-

chinery, equipment and software and other external knowledge). MSSM could

be useful to exploit this information. The selection equation could give the state

“observed / non-observed” of the dependent variable y (having innovation activ-

ities) and the outcome equation would give the value of dependent variables (the

amount of expenditure for each of the four innovation activities) when innovation

activities are observed.

Semiparametric MSSM could also be used in clinical study when the applied

researcher considers relative potency. For instance, consider a clinical study of

two related drugs A and B that belong to the same class (such as two statins),

with the primary goal to determine the relative potency for the two drugs. In

this kind of application, it is reasonable to assume that the relative potency

is determined biologically by the intrinsic nature of the two drugs, therefore
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the same relative potency (that is the same γ̃j coefficients) holds for various

components of the multivariate outcome measure.

3. Population and sample approaches

Our approach splits into two principal steps. In the first step, the idea is to

use multivariate sliced inverse regression in order to get a Σ-orthogonal basis of

the e.d.r. space E = Span(γ1, γ2). In the second step, since the linear subspaces

E1 and E2 are known (because the matrices A1 and A2 are assumed to be known

a priori), two canonical analyses of the couples (E,E1) and (E,E2) can provide

bases of E ∩ E1 = Span(γ1) and E ∩ E2 = Span(γ2).

3.1. Population version

Step 1: Pooled marginal sliced inverse regression. For model (2.2),

Saracco (2005) has shown that pooled marginal sliced inverse regression based on

the SIRα approach, named PMSα hereafter, provides a basis denoted B = [v1, v2]

of the e.d.r. space E, that is Span(B) = E. The major novelty is to consider

a transformation (slicing) Tj(.) of y(j) with a specific slice for the missing value

(MV) of y(j). The vectors bk are the eigenvectors corresponding to the two largest

eigenvalues of a Σ-symmetric matrix.

More precisely, let us give a brief overview of the PMSα method. The idea

of this method is to consider the q univariate SIRα methods of each component

y(j) of y on x (based on a specific slicing Tj) and to combine the corresponding

Mα matrices (denoted by M
(j)
αj ) in the following pooling:

Mα,P =

q
∑

j=1

wjM
(j)
αj

, (3.1)

for positive weights wj and parameters αj ∈ [0, 1]. In the Mα,P matrix, the α

index stands for the vector (α1, . . . , αq) and the P index stands for “pooled”.

Each transformation Tj categorizes each response y(j) into a new response with

Hj + 1 levels. We assume that the support of each y(j) is partitioned into Hj

fixed slices s
(j)
1 , . . . , s

(j)
h , . . . , s

(j)
Hj

, plus one slice s
(j)
0 for the missing value of y(j).

For j = 1 . . . , q, the matrices M
(j)
αj are defined as follows:

M (j)
αj

= (1 − αj)M
(j)
I Σ−1M

(j)
I + αjM

(j)
II ,
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with M
(j)
I = Var(E(x|Tj(y

(j))))

=
∑Hj

h=0 p
(j)
h (m

(j)
h − µ)(m

(j)
h − µ)′,

M
(j)
II = E

{(

Var(x|Tj(y
(j))) − E(Var(x|Tj(y

(j))))
)

Σ−1

(

Var(x|Tj(y
(j))) − E(Var(x|Tj(y

(j))))
)′
}

=
∑Hj

h=0 p
(j)
h

(

V
(j)
h − V

(j)
)

Σ−1
(

V
(j)
h − V

(j)
)

,

where p
(j)
h = P (y(j) ∈ s

(j)
h ), m

(j)
h = E(x|y(j) ∈ s

(j)
h ), Var

(j)
h = Var(x|y(j) ∈ s

(j)
h )

and V
(j)

=

Hj
∑

h=0

p
(j)
h V

(j)
h . The matrix M

(j)
I is the usual matrix used in the classical

SIR approach, often named SIR-I because it relies on a property of the first

inverse conditional moment of x given y, while M
(j)
II correspond with the SIR-II

approach using information from the inverse conditional variance of x given y.

When αj = 0 (resp. αj = 1), the method used with M
(j)
αj is equivalent to the

SIR-I (resp. SIR-II) approach for the j-th component of y.

For model (2.2), two crucial conditions for the theoretical success of SIRα and

PMSα methods are the following: a linearity condition

E(v′x|γ′

1x, γ′

2x) is linear for any v, (3.2)

and a constant variance condition

Var(x|γ′

1x, γ′

2x) is non-random. (3.3)

Note that (3.2) is satisfied when x has an elliptically symmetric distribution

and (3.3) is satisfied when x follows a multivariate normal distribution (which

is an elliptical distribution). Moreover, some mild departure from the elliptical

symmetry will not affect the application of SIR or MSIR, see for instance Li

(1991, 1997). Note also that low-dimensional projections from high-dimensional

data are known to be able to improve the elliptical symmetry of data distribution,

see for details Diaconis and Freedman (1984) or Hall and Li (1993). Finally, an

insightful discussion about the SIR methodology and applications can be found

in Chen and Li (1998), and most of these comments are still valid for MSIR

approach.

Under conditions (3.2) and (3.3), the eigenvectors v1, v2 associated with the

largest two eigenvalues of Σ−1Mα,P are e.d.r. directions and span the e.d.r.

space.
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Step 2a: Two canonical analysis.

Let us consider the two subspaces Ek and E of R
p equipped with the inner

product Σ. Canonical analysis is a useful tool to find out a Σ-orthogonal basis of

Ek ∩E. This basis is formed by the eigenvectors corresponding to the eigenvalue

1 of PEk
PE , where PEk

and PE are respectively the Σ-orthogonal projectors onto

Ek and E.

Specifically, we have: PE = B(B′ΣB)−1B′Σ = BB′Σ and PEk
= Ak(A

′

kΣAk)
−1A′

kΣ.

It is equivalent and simpler to diagonalize PEk
PEPEk

which is a Σ-symmetric

matrix. Let us call bk the unique eigenvector corresponding to the eigenvalue

1 of PEk
PEPEk

. From Theorem 1, the eigenvector bk is colinear to γk and is

Σ-normalized: b′kΣbk = 1.

Step 2b: Retrieval of the direction of γ̃k. We can derive a vector, b̃k,

colinear to γ̃k: b̃k = A′

kbk. This vector b̃k is Σk-normalized: b̃′kΣk b̃k = 1.

3.2. Estimation of the directions

As mentioned in the preceding section, the directions are obtained from

computations based only on covariance matrices. Substituting estimates in place

of these matrices yields estimated directions.

Let {(yi, xi), i = 1, ..., n} be a sample from the reference model (2.1). Let Σ̂ be

the empirical covariance matrix of the xi’s.

Step 1: Estimating a basis of the e.d.r. space E by PMSα method. We

have to estimate the matrix Mα,P . To do this using the Hj + 1 slices of each

component y(j), it is straightforward to estimate the matrices M
(j)
I and M

(j)
II by

substituting empirical versions of the moments for their theoretical counterparts,

and therefore to obtain the estimated matrices M̂
(j)
α̂j

. Note that, for the choice of

the slices of Tj , s
(j)
0 contains the cases corresponding to the missing value (MV)

of y(j). The other slices, s
(j)
h , h = 1, ...,Hj , are made by splitting the range of the

non-missing values of the jth component of y into slices of nearly equal weight.

The choice of number Hj of slices is less crucial than the choice of the smoothing

parameter in nonparametric regression: in practice, we propose to choose Hj such

that 2 < Hj < [n∗

j/2], where n∗

j is the number of non missing y
(j)
i in the sample

and [a] denotes the integer part of a. For the choice of the weights wj , we can

use equal weights wj = 1/q for j = 1, . . . , q if we have no a priori information on

the importance of each component y(j) of y. The parameters αj are individually
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chosen for each matrix M
(j)
αj , and we propose to use the method based on the

test approach of Saracco (2001), which does note require the estimation of the

link functions. Therefore we obtain the estimated matrix:

M̂α̂,P =
1

q

q
∑

j=1

M̂
(j)
α̂j

. (3.4)

The two estimated e.d.r. directions, v̂1 and v̂2 , are then the eigenvectors cor-

responding to the two largest eigenvalues of Σ̂−1M̂α̂,P . These vectors form a

Σ̂-orthonormal system. Let Ê = Span(B̂) where B̂ = [v̂1, v̂2].

Step 2a: Estimating the direction of γk, k = 1, 2. We obtain these di-

rections by canonical analyses of (Ê, E1) and (Ê, E2). Thefore, the estimate of

the direction of γk is the eigenvector b̂k corresponding to the major eigenvalue of

the Σ̂-symmetric matrix P̂Ek
P̂ÊP̂Ek

, where P̂Ê = B̂(B̂′Σ̂B̂)−1B̂′Σ̂ = B̂B̂′Σ̂ and

P̂Ek
= Ak(A

′

kΣ̂Ak)
−1AkΣ̂.

Step 2b: Estimating the direction of γ̃k, k = 1, 2. The estimates of the

direction of γ̃k are then given by
ˆ̃
bk = A′

k b̂k.

Remarks:

- In order to obtain an estimate of the entire vector γ̃k (and not only of its

direction), we can normalize this vector in the Σk metric, and impose the sign of

a non null component of γ̃k.

- For the two-limit model (2.3), there must be one slice for each kind of missing

y value. The other slices are built, splitting the other cases in the usual way.

We will study the asymptotic properties of the estimators
ˆ̃
b1 and

ˆ̃
b2 in the

next section. First, however, we will discuss a topic of practical concern con-

nected with the estimation process: the estimation of the link functions of the

model (2.1).

Rough approximation of the link functions g
(j)
1 and estimation of the

state of y probabilities. Let us simplify the reference model by assuming an

additive error component: for j = 1, . . . , q,

y(j) =

{

g
(j)
1 (x̃′

1γ̃1) + ε
(j)
1 if g

(j)
2 (x̃′

2γ̃2) + ε
(j)
2 > 0

0 otherwise.

with E(ε
(j)
1 ) = E(ε

(j)
2 ) = 0. A rough approximation of the jth-observation link

function, g
(j)
1 , may be nonparametrically obtained by kernel or spline methods.
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Eubank (1988) and Haerdle (1990) give an operational description of these tools.

We may, for instance, build a naive Nadaraya-Watson kernel estimate from the

subsample of cases where y(j) is non missing by regressing y(j) on x̃′

1
ˆ̃
b1. This

estimator is generally a biased estimator of g
(j)
1 since E(ε

(j)
1 |x̃′

1γ̃1, g2(x̃
′

2γ̃2)+ε
(j)
2 >

0) is non null.

Let us now examine the case of the selection link functions, g
(j)
2 . What is in-

teresting is to estimate the probability of the state of y(j). In order to describe

the state of y(j), let us introduce the qualitative variable t(j) for the one-limit

selection model (2.1) (resp. for the two-limits selection model (2.3)):

t(j) =

{

1 if y(j) is observed

0 otherwise






resp. t(j) =











0 if y(j) = L∗

1

1 if y(j) is observed

2 if y(j) = L∗

2






.

From each sample {(t(j)i , ri), i = 1, . . . , n} where ri = x̃′

2i
ˆ̃
b2, we can obtain a

näıve Nadaraya-Watson estimate of the probability P (t(j) = t|r = x̃′

2b̃2) by:

p̂(j)
n (t|r) =

n
∑

i=1

K
(

r−ri

νn

)

∑n
l=1 K

(

r−rl

νn

)I[t
(j)
i = t], (3.5)

where K is a kernel function and νn is the bandwidth which may be chosen by

cross validation.

4. Asymptotic theory

In the sequel, the notation Xn −→d X means that Xn converges in dis-

tribution to X as n → ∞. Let D1 ⊗ D2 denote the Kronecker product of

the matrices D1 and D2 (see Tyler (1981) for some useful properties of the

Kronecker product). From now on, for each s × s matrix D =
(

d(jk)
)

, let

vec(D) =
(

d(11), . . . , d(s1), d(21), d(22), . . . , d(ss)
)′

be the s2-dimensional column

vector of all elements of D.

The necessary assumptions are gathered together below for easy reference.

(A1) {(yi, xi), i = 1, . . . , n} is a sample of independent observations from model

(2.1).

(A2) The supports of each component y(j) (when observed) of y are partitioned

into Hj fixed slices s
(j)
1 , . . . , s

(j)
h , . . . , s

(j)
Hj

such that p
(j)
h 6= 0, with a special slice

s
(j)
0 for the missing y(j).
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(A3) The covariance matrix Σ is positive definite.

(A4) The two largest eigenvalues of Σ−1Mα,P satisfy λ1 ≥ λ2 > λ3 ≥ 0.

4.1. Convergence in probability of the estimated directions

Theorem 2. Under conditions given in (3.2) and (3.3), and under assumptions

(A1), (A2) and (A3), we have
ˆ̃
bk = b̃k + Op(n

−1/2), with the vector b̃k colinear

to γ̃k, for k = 1, 2,.

Proof. Classical asymptotic theory gives us: Σ̂ = Σ + Op(n
−1/2). By the

asymptotic theory of PMSα (see Saracco, 2005), we get B̂ = B + Op(n
−1/2).

Thus,

P̂Ê = PE + Op(n
−1/2). (4.1)

From the identifiability conditions, rank(A′

kΣAk) = pk. Since A′

kΣ̂Ak = A′

kΣAk+

Op(n
−1/2), we get (A′

kΣ̂Ak)
−1 = (A′

kΣAk)
−1 + Op(n

−1/2) and

P̂Ek
= PEk

+ Op(n
−1/2), j = 1, 2. (4.2)

Combining (4.1) with (4.2) yields P̂Ek
P̂ÊP̂Ek

= PEk
PEPEk

+Op(n
−1/2), k = 1, 2.

Consequently, the eigenvector of P̂Ek
P̂ÊP̂Ek

corresponding to the major eigen-

value converges at the same rate to the corresponding eigenvector for PEk
PEPEk

:

b̂k = bk + Op(n
−1/2), k = 1, 2. Finally, since

ˆ̃
bk = A′

k b̂k and b̃k = A′

kbk, we con-

clude that:
ˆ̃
bk = b̃k + Op(n

−1/2), k = 1, 2. From Theorem 1, we have b̃k colinear

to γ̃k.

4.2. Asymptotic distribution of
ˆ̃
bk, k = 1, 2

Theorem 3. Under conditions (3.2) and (3.3), and under assumptions (A1),

(A2), (A3) and (A4), we have: for k = 1, 2,

√
n(

ˆ̃
bk − b̃k) −→d N (0, A′

kGkC
∗G′

kAk),

where the expression of Gk is given in (4.3) and the expression of C∗ can be

found in Saracco (2005).

Proof. The proof is divided into three steps.

Step 1: Asymptotic distribution of the Canonical analysis matrix.
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Let us consider the decomposition

√
n(P̂Ek

P̂ÊP̂Ek
− PEk

PEPEk
)

=
√

n(P̂Ek
− PEk

)P̂Ê(P̂Ek
− PEk

) +
√

n(P̂Ek
− PEk

)P̂ÊPEk

+
√

nPEk
P̂Ê(P̂Ek

− PEk
) +

√
n(PEk

P̂ÊPEk
− PEk

PEPEk
).

The first term of the right hand side is Op(n
−1/2). Thus,

√
n
[

vec(P̂Ek
P̂ÊP̂Ek

) − vec(PEk
PEPEk

)
]

has the same asymptotic distribution as the last three terms of the decomposi-

tion. These terms can be written as follows:

([P ′

Ek
P̂ ′

Ê
⊗Ip]+[Ip⊗PEk

P̂Ê ])
√

n[vec(P̂Ek
)−vec(PEk

)]+[P ′

Ek
⊗PEk

]
√

n[vec(P̂Ê)−vec(PE)].

We prove in the Appendix that
√

n
[

vec(P̂Ek
) − vec(PEk

)
]

has the same asymp-

totic distribution as Nk
√

n[vec(Σ̂)− vec(Σ)] where Nk is defined in (6.1). More-

over, from Saracco (2005), since Σ̂−1M̂α,P converges in probability to Σ−1Mα,P ,

we have, with a probability converging to 1, for n sufficiently large: ||Σ̂−1M̂α,P −
Σ−1Mα,P || ≤ λ2/2, where λ2 is the second major eigenvalue of Σ−1Mα,P . Then

we can apply the Lemma 4.1 of Tyler (1981), and we obtain the asymptotic distri-

bution of the eigenprojector on the estimated e.d.r. space:
√

n
[

vec(P̂Ê) − vec(PE)
]

has the same asymptotic distribution as

Cw

√
n
[

vec(Σ̂−1M̂α,P ) − vec(Σ−1Mα,P )
]

where Cw = −∑λ∈w[(Mα,P Σ−1 − λIp)
+ ⊗ Pλ + P ′

λ ⊗ (Σ−1Mα,P − λIp)
+], with

w = {λ1, λ2}.
Finally, the asymptotic distribution of

√
n(P̂Ek

P̂ÊP̂Ek
− PEk

PEPEk
) is then the

same as

Â0√n

([

vec(Σ̂−1M̂α,P )

vec(Σ̂)

]

−
[

vec(Σ−1Mα,P )

vec(Σ)

])

,

where Â0 =
[

A0
1 | Â0

2

]

, with A0
1 = (P ′

Ek
⊗PEk

)Cw and Â0
2 =

(

[PEk
P̂ ′

Ê
⊗ Ip] + [Ip ⊗ PEk

P̂Ê ]
)

Nk.

Moreover, it is easy to show that Â0 −→P A0 where A0 =
[

A0
1 | A0

2

]

with

A0
2 =

(

[PEk
P ′

E ⊗ Ip] + [Ip ⊗ PEk
PE ]
)

Nk.

Step 2: Asymptotic distribution of the major eigenvector.

Remembering that b̂k (resp. bk) is the eigenvector corresponding to the major

eigenvalue of P̂Ek
P̂ÊP̂Ek

(resp. PEk
PEPEk

), we apply Lemma 2 of Saracco (1997).
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First, we need to specify the asymptotic distribution of

√
n

([

vec(P̂Ek
P̂ÊP̂Ek

)

vec(Σ̂)

]

−
[

vec(PEk
PEPEk

)

vec(Σ)

])

.

From step 1, this vector has the same asymptotic distribution as

B̂0√n

([

vec(Σ̂−1M̂α,P )

vec(Σ̂)

]

−
[

vec(Σ−1Mα,P )

vec(Σ)

])

,

where B̂0 =

[

A0
1 Â0

2

0p2,p2 Ip2

]

. Since Â0
2 −→P A0

2, we get B̂0 −→P B0 where

B0 =

[

A0
1 A0

2

0p2,p2 Ip2

]

.

Moreover, from an application of the Delta method, Saracco (2005) shows that

√
n

([

vec(Σ̂−1M̂α,P )

vec(Σ̂)

]

−
[

vec(Σ−1Mα,P )

vec(Σ)

])

−→d Φ∗ =

[

vec(Φ)

vec(ΦΣ)

]

∼ N (0, C∗),

The expression of C∗ can be found in Saracco (2005).

Thus we obtain:

√
n

([

vec(P̂Ek
P̂ÊP̂Ek

)

vec(Σ̂)

]

−
[

vec(PEk
PEPEk

)

vec(Σ)

])

−→d B0Φ∗,

where B0Φ∗ ∼ N (0, B0C∗B0′). We can now apply Lemma 2 of Saracco (1997),

and we get: √
n(b̂k − bk) −→d Rk,

where Rk = [b′k⊗ (PEk
PEPEk

−Ip)
+]B0

[

vec(Φ)

vec(ΦΣ)

]

− 1
2(b′kΦΣbk)bk. Tedious but

simple computations give us for Rk a multivariate normal distribution with mean

zero and covariance matrix GkC
∗G′

k where the matrix Gk is:
[

{b′k ⊗ (PEk
PEPEk

− Ip)
+}(P ′

Ek
⊗ PEk

)Cw |
{b′k ⊗ (PEk

PEPEk
− Ip)

+}((PEk
PE)′ ⊗ Ip + Ip ⊗ PEk

PE)Nk − 1
2bk(b

′

k ⊗ b′k)
]

.
(4.3)

Step 3: Asymptotic distribution of
ˆ̃
bk.

Finally, since
ˆ̃
bk = A′

k b̂k and b̃k = A′

kbk, we get:

√
n(

ˆ̃
bk − b̃k) −→d R̃j = A′

kRk
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where R̃k ∼ N (0, A′

kGkC
∗G′

kAk).

Remark. From a theoretical point of view, the asymptotic covariances of these

two estimators can be estimated by replacing the theoretical terms by their em-

pirical
√

n-consistent counterparts. The corresponding estimated asymptotics

matrices converge to the true ones at rate
√

n. From a computational point of

view, it is tedious to obtain these estimators of the asymptotic covariances. Nev-

ertheless, we can easily compute bootstrap estimators of these matrices which are

very close to the true matrices (obtained by Monte-Carlo method). We illustrate

this point in Section 5.1 on a simulated example.

5. Simulation results

In order to evaluate the numerical performance of the proposed method, a

simulation study was carried out. Following Duan and Li (1991), we measure the

quality of the estimate
ˆ̃
bk of the direction of γ̃k by:

cos2
(

ˆ̃
bk, γ̃k

)

=

(

ˆ̃
b
′

kΣkγ̃k

)2

(
ˆ̃
b
′

kΣk
ˆ̃
bk)(γ̃

′

kΣkγ̃k)

where Σk = A′

kΣAk. The closer the squared cosine is to one, the better the

estimation.

We generate simulated data from the semiparametric multivariate (q = 2)

model (2.1) with






















g
(1)
1 (x̃′

1γ̃1, ε
(1)
1 ) = exp(x̃′

1γ̃1) + ε
(1)
1

g
(1)
2 (x̃′

2γ̃2, ε
(1)
2 ) = x̃′

2γ̃2 + ε
(1)
2

g
(2)
1 (x̃′

1γ̃1, ε
(2)
1 ) = (x̃′

1γ̃1)
3 + 3(x̃′

1γ̃1) + ε
(2)
1

g
(2)
2 (x̃′

2γ̃2, ε
(2)
2 ) = (x̃′

2γ̃2)
2 + ε

(2)
2

(5.1)

where x follows a p-dimensional standardized normal distribution, and x̃1 (resp.

x̃2) is the (p−1)-dimensional vector corresponding to the first (resp. last) (p−1)

coordinates of x. The error term ε = (ǫ
(1)
1 , ǫ

(1)
2 , ǫ

(2)
1 , ǫ

(2)
2 )′ is normally distributed:

ǫ ∼ N4(µǫ,Σǫ). Two designs of the covariance of ǫ will be considered:

ΣI
ǫ =













1 ρ 0 0

ρ 1 0 0

0 0 1 ρ

0 0 ρ 1













and ΣII
ǫ =













1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ 1 ρ

ρ ρ ρ 1













,
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with different values of ρ (0.1, 0.5 and 0.9). In the matrix ΣI
ǫ the error term

associated with the two components y(1) and y(2) are assumed to be independent,

which is not the case with the covariance matrix ΣII
ǫ . Note that we never consider

the most favourable case with an independent error term between the observed

equation and the selection equation. To control the number of non observed

values for the y(j)’s component, we use two different values of µǫ: in order to

obtain around 25% (resp. 50%) of non observed values for y(1) and y(2), we

choose µǫ = (0, 1.5, 0,−0.5) (resp. µǫ = (0, 0, 0,−2)). For the slope parameters,

we take γ̃1 = (1, 1,−1,−1, 0, . . . , 0)′ and γ̃2 = (0, . . . , 0, 1,−1, 1,−1)′.

To study the performance of the proposed method, we consider different

sample sizes (n = 100, 200 and 300), various dimensions of the explanatory

variable (p = 5, 10), the two different choices of covariance matrix (ΣI
ǫ and ΣII

ǫ ),

and two levels L of non observed values for y(j) (25% and 50%). The number of

slices in the PMSα method, Hj , is specified to be Hj = max
(
√

n∗

j , p
)

where n∗

j

is the number of observed y
(j)
i ’s in the sample.

In the next subsection, we apply our approach to a simulated sample. Then,

in the last subsection, we comment on the complete simulation study. Simulations

were performed with R. All of the source codes are available from the authors

by e-mail.

5.1. Simulated example

In this susbsection, we consider a simulated sample of n = 100 data points

from the previous model for p = 5, Σǫ = ΣII
ǫ , ρ = 0.5 and L = 25%. On the

left hand side of Figure 5.1, we can observe the plots of the response variables

y(1) and y(2) versus the true “observation” index x̃′

1γ̃1. Let us introduce the two

variables y
(1)
∗ = g

(1)
2 (x̃′

2γ̃2, ε
(1)
2 ) and y

(2)
∗ = g

(2)
2 (x̃′

2γ̃2, ε
(2)
2 ), which are called in

the literature latent variables (since in practice the values of these variables are

never available in the sample). On the right hand side of Figure 5.1, we plot

these latent variables y
(j)
∗ versus the true “selection” index x̃′

2γ̃2. The horizontal

line allows us to determine for which observations the y
(j)
i ’s values will be non

observed in the left hand side graphics.

The directions of γ̃1 and γ̃2 are then estimated and we get
ˆ̃
b1 = (−0.483,−0.565, 0.447, 0.497)′

and
ˆ̃
b2 = (−0.613, 0.539,−0.350, 0.459)′. The corresponding squared cosines are

respectively equal to 0.993 and 0.962. Note that
ˆ̃
b1 (resp.

ˆ̃
b2) gives nearly the
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Figure 5.1: Plots of y(j) versus the true “observation” index x̃′

1γ̃1 (on the left) and plots

of the latent variables y
(j)
∗ versus the true “selection” index x̃′

2γ̃2 (on the right).

same direction as γ̃1 (resp. γ̃2). Moreover, we compute the quality of the estima-
tion Ê of the e.d.r. space E using Trace(PEPÊ)/2 which is equal to 0.886 for this
simulated sample. Even if this subspace is relatively poorly estimated compared
with the quality of each estimated direction, the second step (which takes into
account additional information) ensures that we recover the good directions of
the observation and selection slope vectors. We estimate the asymptotic covari-

ance matrices, denoted by V̂ (
ˆ̃
b1) and V̂ (

ˆ̃
b2), with the bootstrap method (with

500 replications):

V̂ (
ˆ̃
b1) = 10−3

0

B

B

B

@

4.17 −1.93 1.74 −0.90

4.00 0.24 4.16

2.84 −0.36

17.1

1

C

C

C

A

, V̂ (
ˆ̃
b2) = 10−2

0

B

B

B

@

4.54 −2.38 −2.83 0.97

4.36 2.66 −1.52

4.22 −0.58

2.64

1

C

C

C

A

.

These matrices are very close to the “true” asymptotic covariance matrices,V (
ˆ̃
b1)

and V (
ˆ̃
b2) (not given here), calculated via the Monte Carlo approach. Note that

the variance terms in V̂ (
ˆ̃
b2) are greater than those obtained in V̂ (

ˆ̃
b1), because of
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the low level L (=25%) of non observed values for y(j).

In Figure 5.2, we represent on the left hand side the plots of the response

variable y(j) versus the estimated “observation” index x̃′

1
ˆ̃
b1. Note that, since we

have
ˆ̃
b1 ≃ −γ̃1/||γ̃1|| (resp.

ˆ̃
b2 ≃ −γ̃2/||γ̃2||), the scatterplots of Figures 5.1 and

5.2 (left hand side) do not have the same orientation. We add on these plots the

Nadaraya-Watson estimate of the observation link functions. On the right hand

side, we plot the t(j)’s values versus the estimated “selection” index x̃′

2
ˆ̃
b2, and we

also plot the Nadaraya-Watson estimate of the probability to observe y(j), based

on the equation (3.5).
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Figure 5.2: Kernel estimate of the observation link functions (left hand side) and

Nadaraya-Watson estimate of the probability of t(j) = 1 (that is y(j) observed)

5.2. Results of the simulation study

In our study, we consider combinations of the following simulation parame-

ters: the level L of non observed values for y(j) (25% or 50%), the form of the

error covariance matrix Σǫ (ΣI
ǫ or ΣII

ǫ with ρ = 0.1, 0.5 or 0.9, and the dimension
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p of the covariable (p = 5 or 10). We also take into account various sample sizes

n = 100, 200 or 300.

For each combination, N = 500 samples were generated. For each sample

l = 1, . . . , N , the directions of the slope vectors γ̃1 and γ̃2 were estimated and we

get
ˆ̃
b
l

1 and
ˆ̃
b
l

2. Then, we evaluate the corresponding values of the quality measure:

cl
k = cos2(

ˆ̃
b
l

k, γ̃k) for k = 1, 2 and l = 1, . . . , N .

We show the results via the boxplots of these squared cosines for different

combinations. When p = 5 and Σǫ = ΣI
ǫ (resp. Σǫ = ΣII

ǫ ), Figure 5.3 (resp.

Figure 5.4) gives the boxplots for γ̃1 and γ̃2 denoted by G1 and G2 in the graphics,

for the different values of ρ, L and n. Figure 5.5 shows the boxplots when p = 10,

Σǫ = ΣII
ǫ and n = 300, for various ρ; note that the vertical scale in this figure

goes from 0.75 to 1 (contrary to the previous one which goes from 0.4 to 1).

From Figures 5.3, 5.4 and 5.5, we can see that the results with these simulated

data are very good. More precisely, one can observe that:

- The estimations of the γ̃1 and γ̃2’s directions are good since almost all boxplots

of the squared cosines are concentrated in the interval [0.9, 1].

- The form of the covariance matrix of the error term ε and the value of the

parameter ρ do not seem to have any influence on the quality of the estimates.

- The level L of the non observed values for the y(j)’s has only a slight influence

on the quality of the estimation of the selection slope vectors γ̃2, especially in

terms of spread of the squared cosine values. When this level is low (L = 25%),

there is less information on the selection part of the model so the quality of the

γ̃2 estimates is slightly lower than when this level is larger (L = 50%). On the

other hand, not surprisingly, there is an opposite behavior for the estimates of the

observation slope parameter γ̃1 since there is less information on the observation

part of the model when L is large.

- The sample size n has a quite predictable influence of the quality of the esti-

mates: the largest is the sample size, the greatest are the squared cosines. When

n = 200 or 300, the quality of the two estimated directions are very good.

- Dimension p of the explanatory variable x does not seem to have any effect on

the quality of the estimates.

5.3. Simulation with a non-normal distributed covariable x

In order to investigate the robustness of the method when x does not fol-
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Figure 5.3: Boxplots of the squared cosines when Σǫ = ΣI
ǫ and p = 5

low a multivariate normal distribution, we generate each component of x from

various distributions (far from the normal distribution): discrete rectangular dis-

tribution on {1, . . . , 4}, continuous rectangular distribution on [0,
√

12], binomial

distribution B(4, 0.2). We do not change either the form or the other parameters

(p = 5, Σǫ = ΣII
ǫ with various values of ρ) of the simulated model described at

the beginning of Section 5. In order to control the level L, we use different values

for µǫ to obtain around 25% (resp. 50%) of non observed values for the y(1)’s and

the y(2)’s. Moreover we take γ̃1 = (1, 1,−1,−1)′/2 and γ̃2 = (1,−1, 1,−1)′/2 for

the observation and selection slope parameters.
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Figure 5.4: Boxplots of the squared cosines when Σǫ = Σ2
ǫ and p = 5

In each case, N = 500 samples of size n = 200 have been generated, and for

each simulated sample, the directions of γ̃1 and γ̃2 have been estimated with the

proposed method. Then the corresponding squared cosines have been calculated.

Figure 5.6 reports the results of this simulation study via the boxplots of these

squared cosines for the discrete rectangular distribution. One can see that the

estimations of the directions of the slopes for the selection equations and the

outcome equations are quite good, even for a discrete x that does not follow an

elliptically symmetric distribution. Note that, as in the multivariate normal case

(in the previous subsection), we can observe the same influence of the level L on
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Figure 5.5: Boxplots of the squared cosines when Σǫ = Σ2
ǫ , n = 300 and p = 10

the quality of the estimates and no influence of parameter ρ. Very similar results

(not detailed here) were observed for the two other distributions.

5.4. Comparison with a parametric approach

We compare in this simulation the parametric Tobit II model (implemented

in Henningsen and Toomet (2008)) with our semiparametric approach using

various error distributions and various selection and observations link function

shapes. We consider here two models, (M1) and (M2), from the sample models

defined in (2.1) with q = 1:

(M1) :

{

g1(x̃
′

1γ̃1, ǫ1) = x̃
′

1γ̃1 + ǫ1

g2(x̃
′

2γ̃2, ǫ2) = x̃
′

2γ̃2 + ǫ2
and (M2) :

{

g1(x̃
′

1γ̃1, ǫ1) = exp (x̃
′

1γ̃1) + ǫ1

g2(x̃
′

2γ̃2, ǫ2) = exp (x̃
′

2γ̃2) + ǫ2

Model (M1) is in favour of the parametric approach with linear link functions,

whereas model (M2) has non-linear link functions. For these two models, the

error term ǫ = (ǫ1, ǫ2) is normally distributed as in the previous simulation study,

x follows a five-dimensional standardized normal distribution, x̃1 (resp. x̃2) is the

4-dimensional vector corresponding to the first (resp. last) four coordinates of x.

To control the level L of non observed values for y, we used different values of µǫ.

For the slope parameters , we took γ̃1 = (1, 1,−1,−1)
′

and γ̃2 = (1,−1, 1,−1)
′

.

We present in Figure 5.7 only the results for n = 200, ρ = 0.9 and L = 50%,

over N = 500 replicated samples. As is to be expected, the Tobit II approach
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Figure 5.6: Boxplot of the squared cosines when x follows a (discrete) rectangular dis-

tribution on {1, . . . , 4}

performs poorly for model (M2) only for the outcome equation, not for the

selection equation, and the proposed method is somewhat inferior to Tobit II

approach for model (M1).

We have also considered various combinations of the simulation parameters:

the level L of non observed values for y(j) (25% or 50%), the error term correlation

ρ = 0.1, 0.5 or 0.9. In any case, we observed very similar results. Moreover, we

compared the two approaches with the linear model (M1) when the error term

is non normal distributed. The Tobit II method appears to be robust to mild

violations of the normality assumption like our approach (which does not rely on

this kind of assumption).

6. Concluding remarks

In this paper, we proposed a new semi-parametric estimation method for

a multivariate sample selection model (MSSM). As pointed out previously, our

semi-parametric approach has the main advantage of being link- and distribution-

free. The proposed geometric approach to the estimation of the slope vectors in
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Figure 5.7: Boxplot of the squared cosines n = 200, where the notation G (resp. T) is

used for our proposed estimators (resp. Tobit II estimators)

the outcome equation and in the selection models has also the advantage of deal-

ing symmetrically with both slope vectors. From a theoretical point of view, the

convergence in probability at root n rate and the asymptotic normality of the

slope estimators have been proved. This estimation method is numerically very

fast since it is based on only a few matrix calculus and eigen-decompositions

and does not demand any time-consuming iterative computations. Note that the

corresponding algorithm is easy to implement. The R source code is available

from the authors. Another interesting aspect is that this method does not re-

quire starting values. From a practical point of view, the simulation study has

highlighted a good behaviour of the estimation method even for non-elliptical

distribution of the covariate. Moreover a real economic application is currently

under investigation. Finally a direction which would probably be interesting

to investigate would be to develop another two-step semi-parametric estimation

methods. In a first step, we could take into account the MSIR estimator of the

selection slope parameter since the selection probability only depends on the in-

dex x̃2γ̃2. Then in a second step, we will incorporate the additional information

in order to get the observation slope vector from the entire e.d.r. space.
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Appendix: Asymptotic distribution of P̂Ek

Let P̂Ek
= Ak(A

′

kΣ̂Ak)
−1A′

kΣ̂ ( resp. PEk
= Ak(A

′

kΣAk)
−1A′

kΣ) be the

Σ̂ (resp. Σ) orthogonal projector onto the linear subspace Ek spanned by the

columns of Ak.

For an elliptically distributed x, with covariance matrix Σ and kurtosis parameter

κ, Tyler (1981) gave the following asymptotic distribution:
√

n(Σ̂ − Σ) −→d ΦΣ

where vec(ΦΣ) ∼ N(0, CΣ) and CΣ = (1+κ)(Ip2 +Kp)(Σ⊗Σ)+κvec(Σ)[vec(Σ)]′.

Kp is the p2 × p2 commutation matrix (see Magnus and Neudecker, 1979).

We obtain the asymptotic distribution of P̂Ek
through the following three steps.

Step 1. Let f1 : R
p2 −→ R

pkp+p2

k be defined by f1(vec(M)) =

[

(Ip ⊗ A′

k)vec(M)

(A′

k ⊗ A′

k)vec(M)

]

.

Then, from the Delta method, we get:

√
n

([

vec(A′

kΣ̂)

vec(A′

kΣ̂Ak)

]

−
[

vec(A′

kΣ)

vec(A′

kΣAk)

])

−→d U1k,

where U1k ∼ N (0, C1k) with C1k =

[

Ip ⊗ A′

k

A′

k ⊗ A′

k

]

CΣ

[

Ip ⊗ Ak Ak ⊗ Ak

]

.

Step 2. From the following first order approximation:

√
n((A′

kΣ̂Ak)
−1−(A′

kΣAk)
−1)

.
= −(A′

kΣAk)
−1
[√

n(A′

kΣ̂Ak − A′

kΣAk)
]

(A′

kΣAk)
−1,

we derive:

√
n

([

vec(A′

kΣ̂)

vec((A′

kΣ̂Ak)
−1)

]

−
[

vec(A′

kΣ)

vec((A′

kΣAk)
−1)

])

−→d U2k = SkU1k

where U2k ∼ N(0, C2k) with C2k = SkC1kS
′

k and Sk =

[

Ipkp 0pkp+p2

k

0p2

k
+pkp −(A′

kΣAk)
−1 ⊗ (A′

kΣAk)
−1

]

.

Step 3. Let us introduce the function f2 : R
pkp+p2

k −→ R
p2

defined by f2

(

vec(M1)

vec(M2)

)

=

vec(AkM2M1). Then from a second application of the Delta method, we derive:

vec(
√

n[P̂j − PEk
]) −→d Uk,
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where Uk ∼ N(0, CUk
) with CUk

= NkCΣN ′

k and

Nk = Ip ⊗ Ak(A
′

kΣAk)
−1A′

k − P ′

Ek
⊗ Ak(A

′

kΣAk)
−1A′

k

= (Ip − P ′

Ek
) ⊗ [Ak(A

′

kΣAk)
−1A′

k]
(6.1)
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