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Summary

The problem of selecting between semi-parametric and proportional haz-
ards models is considered. We propose to make this choice based on the
expectation of the log-likelihood (ELL) which can be estimated by the like-
lihood cross-validation (LCV) criterion. The criterion is used to choose an
estimator in families of semi-parametric estimators defined by the penal-
ized likelihood. A simulation study shows that the ELL criterion performs
nearly as well in this problem as the optimal Kullback-Leibler criterion in
term of Kullback-Leibler distance and that LCV performs reasonably well.
The approach is applied to a model of age-specific risk of dementia as a
function of sex and educational level from the data of a large cohort study.
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1 Introduction

The proportional hazards model has been widely used in epidemiology. The
proportional hazards assumption has several advantages: i) the effect of a
factor can be easily summarized by the relative risk, and ii) a mathemati-
cal simplicity which has been exploited by Cox (1972) to produce a simple
semi-parametric approach via the partial likelihood. This is however a strong
assumption which may not be true: it can be relaxed by allowing strata. Nev-
ertheless making strata incurs some loss of information. In practice, graphical
methods may be used to see whether the proportional hazards assumption is
violated but there is no recognized method for choosing between a propor-
tional hazards model and a stratified model.

Consider now the important and complex problem of the choice between
these two models. Gray (1994) has proposed a testing approach to this prob-
lem. In this paper, we propose to use a model selection point of view: here
the problem is not to know whether the proportional hazards model is the
true one but rather to choose the best model for inference, taking into ac-
count the available amount of information. In a parametric context, various
model selection methods have been proposed from different perspectives in-
cluding the minimization of the Kullback-Leibler information criteria such
as AIC (Akaike, 1973), EIC (Ishiguro et al., 1997), and a Bayesian’s point
of view such as the BIC (Schwarz, 1978). In a non-parametric framework,
smoothing procedures (see Hastie and Tibshirani, 1990 and Silverman, 1986)
such as kernel smoothing and penalized likelihood, define families of estima-
tors indexed by the smoothing parameter. The smoothing parameter may
be chosen by cross-validation (CV), generalized cross-validation (GCV) (see
Craven and Wahba, 1979) or likelihood cross-validation (LCV) (O’Sullivan,
1988). Using a criterion which is an approximation of the Kullback-Leibler
information, Liquet et al. (2003) introduced a general point of view which
allows to choose an estimator among parametric or semi-parametric fami-
lies of estimators. Note that this approach is not exactly a model selection
approach but an estimator selection approach, which is a little more general.

In the context of incomplete data, in particular for survival data, Liquet
and Commenges (2004) proposed the expectation of the log likelihood (ELL)
as a theoretical criterion. They have considered both families of kernel and
penalized likelihood estimators of the hazard function (indexed on a smooth-
ing parameter) and they have shown on some simulations good results for
LCV and a bootstrap estimator of the ELL. In this paper, we propose to use
the ELL criterion and its LCV estimator to approach the best smooth estima-
tor in the proportional and in the stratified hazards model. In addition it is
possible to choose between the proportional and the stratified hazards models
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by comparing the best LCV (estimated ELL) obtained by each model.
The paper is organized as follows. In Section 2, we present the propor-
tional and the stratified hazards models and their estimation via penalized
likelihood. The theoretical selection criterion and its estimator, LCV, are
described in Section 3. In order to demonstrate the quality of the proposed
approach, results of a rather intensive simulation are given in Section 4. In
Section 5, we apply our approach to the data of the PAQUID study, a large
cohort study on dementia (Letenneur et al., 1994) in order to model onset of
dementia as function of sex and educational level. We conclude in Section 6.

2 Penalized likelihood estimation for propor-

tional and stratified hazards models

Let T be the time of the events of interest. Let f and F be the density
function and the cumulative distribution function of T . The hazard function
is defined by λ(t) = f(t)

S(t) where S = 1 − F is the survival function of T .

However, we do not observe the realizations of T but only a sample W =
{W1, . . . , Wn} of independent and identically distributed (i.i.d.) variables
which bring information on the variable T . For instance, in the case of right-
censored observations, the Wi’s are copies of the random variable W = (T̃ , δ)
where T̃ = min(T, C) and δ = I[T≤C]. Other cases of censoring are left and
interval censoring. When a vector of explanatory variables X is also available,
we observe an i.i.d. sample W , where Wi = (T̃i, δi, Xi) for i = 1, . . . , n. In
this context, the most popular model is the proportional hazards model in
which the hazard function is:

λ(t|X = x) = λ0(t) exp (xβ), (1)

where λ0(t) is the baseline hazard function, x is a row vector (x1, . . . , xm)
and β a column vector of regression parameters; the completely proportional
hazards model will be denoted M0. We consider the case where a subset of X

is constituted of binary variables (it is sufficient to consider binary variables
rather than categorical variables with more than two categories because it is
not reasonable to make a proportionality assumption on the effects of several
categories; a categorical variable with p categories is generally coded by p−1
binary variables). Let us denote by k (k ≤ m) the number of binary vari-
ables, and without loss of generality we denote by β1, . . . , βk the regression
parameters of the binary variables. The proportionality assumptions may be
relaxed for some (or all) of the binary variables. If we relax the proportion-
ality assumptions for l (l ≤ k) binary variables, this constitutes 2l strata.
The stratified model based on relaxing the proportionality assumptions for
variables j1, . . . , jl, denoted by MJl

(where Jl is the subset {j1, . . . , jl} of
{1, . . . , k}) can be defined as follows:

λJl(t|X = x) = λJl,xj1
...xjl (t) exp xβJl (2)
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4

where βJl

j1
= . . . = βJl

jl
= 0 and where λJl,xj1

...xjl (t) represents the baseline

hazard function in stratum xj1 . . . xjl
. Note that βJl is the same in the

2l strata. A more radical model relaxes the latter assumption and can be
written:

λJl(t|X = x) = λJl,xj1
...xjl (t) exp xβJl,xj1

...xjl . (3)

Here, βJl,xj1
...xjl is specific of the stratum xj1 . . . xjl

; this boils down to make
completely separate analyses for the different strata, but can still be consid-
ered as a model for the whole data. Note that there are 2k stratified models
(including the unstratified one) since each binary variable can participate or
not to define strata. The number of models is larger if we consider in addition
the possibility of completely separate analyses as in (3); of course it is pos-
sible to mix stratification on some variables and separate analyses on other.
Our main interest focuses on the choice for modelling λ(t|X = x) between the
proportional hazards model M0 and several possible stratified models MJl

obtained with different choices of l and Jl, and also models making separate
analyses in some groups.

We will only consider methods which yield smooth estimators of baseline
hazard functions. The reason is that non-smooth estimators (such as the
Breslow estimator) will yield a value of −∞ for our model choice criteria.
Moreover this is realistic to impose a smoothness condition for the applica-
tions we have in mind. Kooperberg et al. (1995) have proposed a flexible
parametric approach based on splines. Ramlau-Hansen (1983) and Andersen
et al. (1993) proposed to smooth the Nelson-Aalen (or the Breslow) estimator
by kernel methods.

In this paper we use the approach based on penalized likelihood. An a
priori knowledge of smoothness of the hazard function is introduced by penal-
izing the likelihood by a norm of the second derivative of the hazard function.
The estimator is defined nonparametrically as the function that maximizes
the penalized likelihood. The solution is then approximated on a basis of
splines. Such an approach has been proposed by O’Sullivan (1988) and Joly
et al. (1998). This approach has the advantage of dealing with complex cases
of truncation and censoring, including interval-censoring whereas the smooth
Nelson-Aalen estimator is limited to right-censoring and left truncation.

In the proportional hazards model M0, let λ̂0
h(t) and β̂ be the estimators

of λ0(t) and β that maximize the penalized log-likelihood:

pLh(W) = logLλ0,β
p (W) − h

∫
λ0

′′2

(u)du

where logLλ0,β
p (W) is the log-likelihood (conditional on the Xi, i = 1, . . . , n),

h is the smoothing parameter and
∫

λ0
′′2

(u)du is the penality term which
represents the a priori of the smoothness of λ(t|x). For instance with right-
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5

censored data, the log-likelihood is defined by:

logLλ0,β
p (W) =

n∑

i=1

[
δi{log(λ0(T̃i)) + xiβ} −

∫ T̃i

0

λ0(u) exp xiβdu

]
;

see Commenges et al. (1998) for the case with interval-censoring and left-
truncation. Thus, given a sample W , penalized likelihood defines a family of
estimators λ̂W

h (t|x) of the proportional hazards model. This family is indexed

by one hyper-parameter h. In the stratified model MJl
, let λ̂

Jl,xj1
...xjl

h (t)

and β̂Jl be the estimators of λ
Jl,xj1

...xjl

h (t) and βJl which maximize the cor-
responding penalized likelihood:

pLh(W) =

1∑

xj1
=0

. . .

1∑

xjl
=0

logLλ
Jl,xj1

...xjl

p (WJl,xj1
...xjl )

−h

∫
λJl,xj1

...xjl

′′2

(u)du

where WJl,xj1
...xjl = {Wi, i = 1, . . . , n : Xj1 = xj1 , . . . , Xjl

= xjl
}. Note that

the baseline hazard functions of the strata are estimated using the same
smoothing parameter h. Thus the family of estimators of the proportional
hazards model and of the different stratified model have both only one hyper-
parameter h. Since the number of functions to be estimated varies according
to the models, the problem is better formulated in terms of choice in a family
of estimators of conditional probabilities: given W for each Jl and h, the
penalized likelihood gives an estimator P̂W

Jl,h
(specified by the 2l functions

λ̂Jl,xj1
...xjl ); the problem is the choice in the family (P̂W

Jl,h
).

3 Selection Criterion

We first exhibit the different criteria for the smooth estimator λ̂W
h (t|x) of

the proportional hazards model and the stratified hazards model in a general
censoring context. Then we expose the LCV criterion and its approximation
(noted LCVa). In the sequel, we note λ̂W

h instead of λ̂W
h (t|x).

3.1 The expected log-likelihood

For uncensored data, Kullback-Leibler information is a useful measure of
discrepancy between fT |X , the conditional density of T given X , and a

smooth estimator f̂T
T |X,h indexed by h and defined on the sample T =

{(Ti, Xi), i = 1, . . . , n}. The useful part of this measure (called KL) is defined
as the conditional expectation of the log-likelihood of a future observation
(T

′

, X
′

) given T :

KL(T ) = E
[
log f̂T

T |X,h(T
′

|X
′

)|T
]
, (4)
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6

where (T
′

, X ′) has the same distribution as (T, X) and is independent of

the sample T . Given a sample T , we want to select the estimator f̂T
T |X,h

which has the highest KL. Based on KL, Akaike (1973) (see also DeLeeuw,
1992), in a parametric framework for complete data, defined the popular
criterion AIC (AIC = −2 logL + 2p, where L is the likelihood and p is the
number of estimated parameters) as an estimator of the expectation of the
Kullback-Leibler information, EKL=E [KL(T )]. In principle there should
be an advantage in using the “adaptative” KL(T ) rather than the “non-
adaptative” EKL; however it seems illusory to try to estimate KL(T ), while
AIC (as well as some other criteria) can be derived as estimators of EKL.

In presence of incomplete data, even EKL is difficult to estimate. In
particular, because T is not observed, it is not possible to directly estimate
the different expectations by bootstrap. We consider the case where we
observe an i.i.d. sample W with Wi = (T̃i, δi, Xi) for i = 1, . . . , n. In this
context, Liquet and Commenges (2004) have proposed a new criterion, called
ELL, which is the expectation of the observed log-likelihood of a new sample
which is a copy of the original sample:

ELL(λ̂W
h ) = E

[
logLλ̂W

h (W
′

)
]
. (5)

where W
′

has the same distribution as W and Lλ̂W
h (W

′

) is the likelihood

function of the estimator λ̂W
h for the sample W

′

. In a sense, this is an observed
information criterion. It is easy to show that for uncensored observation
ELL{λ̂W

h } = nEKL. (It would also be possible to define an “adaptative” or
conditional version of ELL, but as it is illusory to estimate it, we skip this
stage and proceed directly to ELL).

3.2 The LCVa: an estimator of ELL

Throughout this subsection, we index the sample W by its size n and thus
use the notation Wn. We recall that the likelihood cross-validation is defined
as:

LCV(Wn) =

n∑

i=1

logLλ̂W−i

h (Wi)

where Lλ̂W−i

h (Wi) is the likelihood contribution of Wi for the estimator de-

fined on the sample W−i in which Wi is removed. The LCV choice for λ̂W
h is

the estimator which maximizes LCV. An important property of LCV is that
the expectation of LCV is approximatively equal to ELL and it is shown in
Liquet and Commenges (2004) that when n −→ ∞,

E [LCV(Wn)]

ELL(λ̂h(n))
−→ 1,
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7

where λ̂h(n) is an estimator applied to a sample of size n. However we
certainly can obtain more: for instance a law of large numbers should apply
to n−1LCV(Wn) showing that this tends towards E[LCV(Wn)], even though
the terms in the sum defining LCV are correlated. A detailed analysis of
this topic is beyond the scope of this paper; however we conjecture that
LCV is an “estimator” of ELL, in the sense that LCV(Wn) will take values
close to ELL when n is large, and thus will give results close to ELL when
applied to model selection. In a particular case of our simulation study of
Section 4, we have displayed on Figure 1 the values of the log-likelihood,
ELL and LCVa (an approximation of LCV defined below); as expected the
log-likelihood overestimates ELL (because for this value the maximum of the
penalized likelihood is obtained) while LCVa achieves a good correction of
this bias. It appears that LCVa has rather a negative bias but the shape of
the curve as a function of h is similar to that of ELL. Note that when h → 0
the likelihood tends towards ∞ while LCVa like ELL tends towards -∞: the
likelihood choice would be to put masses at observed event times while this
is strongly rejected by both LCVa and ELL.
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Figure 1: Plot of ELL (solid line), mean of LCVa (dotted line) and mean
of the log likelihood (dashed line) versus the smoothing parameter h for a
stratified hazard model with n = 100 and 10% of censoring. The mean of
LCVa and log-likelihood curves has been calculated over 100 replications.

If n is large, the computation of LCV is intensive. An approximation

based on a first-order expansion of logLλ̂W−i

h (Wi) around logLλ̂W
h (Wi) can
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8

be used. This leads to an expression of the form

LCVa(Wn) =

n∑

i=1

logLλ̂W
h (Wi) − mdf,

where the term mdf can be interpreted as the model degrees of freedom,
and this expression is analogous to an AIC criterion. For instance, in the
spline approximation of the penalized likelihood, we have mdf = trace([Ĥ −

2hΩ]−1Ĥ) where Ĥ is the converged Hessian matrix of the log-likelihood,
and Ω is the penalized part of the converged Hessian matrix, see Joly et al.
(1998) for more details.

4 Simulation

To investigate the behavior of our model selection approach, we did some
simulation studies. In the first simulation, the data were generated from a
proportional hazards model with one binary variable X coded 0/1 (corre-
sponding to m = k = 1). In the sequel, we will denote by M0 this model. In
the second simulation, data were generated from a stratified hazards model.
In accordance with the notation of Section 2, the subset of variables used for
stratification is J1 = {1}, so this model is denoted by M{1} and the hazard
functions are:

λ(t|X = x) =

{
λ{1},0(t) if x = 0

λ{1},1(t) if x = 1

4.1 Generation of the data

The data were generated from a Weibull distribution and we considered right-
censored observations. Samples of size 50, 100 or 500 were generated. The
percentages of censoring used were respectively around 10%, 25% or 50%.
Each simulation involved 1000 replications.

• True model is M0

Let f(t; p, γ) = pγptp−1e−(γt)p

be the probability density function of
the Weibull(p,γ) distribution and let λ(t; p, γ) = pγptp−1 be its cor-
responding hazard function. For X = 0, we generated a random
sample {T1, ..., Tn/2} of i.i.d. failure times from the Weibull(3,0.02)
distribution. We generated a random sample {C1, ..., Cn/2} of i.i.d.
censoring times in the following way: in order to obtain 10% (re-
spectively 25% and 50%), we used the following hazard function for
the censoring variable λC(t|X = 0) = 0.11λ(t; 3, 0.02) (respectively
λC(t|X = 0) = 0.33λ(t; 3, 0.02) and λC(t|X = 0) = λ(t; 3, 0.02));
the Ci’s were independent of the Ti’s. So the observed sample was
{(T̃1, δ1, X1 = 0), ..., (T̃n/2, δn/2, Xn/2 = 0)} where T̃i = min(Ti, Ci)
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9

and δi = I[Ti≤Ci]. For X = 1, the two samples {Tn/2+1, . . . , Tn}
and {Cn/2+1, . . . , Cn} were generated according to λT (t|X = 1) =
λT (t|X = 0) exp (1) and λC(t|X = 1) = λC(t|X = 0) exp (1). The
simulated model M0 is represented in Figure 2(a).

• True model is M{1}

To generate the model M{1}, we generated different hazard functions
for the two strata. For the stratum X = 0, the sample {T1, ..., Tn/2}
was generated from the Weibull(2, 0.04) distribution. The random
sample {C1, ..., Cn/2} of censoring times was generated from the Wei-
bull(2,0.0133), Weibull(2,0.0231), Weibull(2,0.04) distributions, corres-
ponding to a percentage of censoring around 10%, 25% and 50% respec-
tively. For the stratum X = 1, the sample {Tn/2+1, ..., Tn} was gener-
ated from a Weibull(4,0.03) distribution. The sample {Cn/2+1, ..., Cn}
of censoring times was generated from the Weibull(4,0.0173), Weibull(4,
0.0228), Weibull(4,0.03) distributions corresponding to a percentage of
censoring around 10%, 25% and 50% respectively. The simulated model
M{1} is represented in Figure 2(b).

4.2 Description

We compared the “theoretical” criteria KL and ELL (which can be only
obtained in simulation) and the proposed “practical” criterion LCVa. For
each replication W , we computed the useful part of the Kullback-Leibler
information between the true density function fT |X and an estimator chosen
by each “theoretical” or “practical” criterion

KL(W) = E[log f̂
λ̂W

h

T |X(T ′|X ′)|W ] with (T ′, X ′) ∼ FT,X

where f̂
λ̂W

h

T |X is defined by the estimator λ̂W
h . We calculated, for each sim-

ulation, the average (over the 1000 replications) of KL and its correspond-
ing empirical standard error. The “theoretical” criteria (KL, ELL) were
computed by a Monte Carlo method. For instance KL was evaluated as

M−1
∑M

j=1 log f̂
λ̂W

h

T |X(T j|Xj), where (T j, Xj) where independent pseudo-random

numbers with the distribution FT,X ; we used M = 50000. For simplicity,
since KL generally takes negative values, we give in Table 2 the average val-
ues -KL of -KL. Hence low values of this criterion correspond to estimators
close to the true distribution.

4.3 Results

Identifying the true model is not necessarily the right thing to do. When
estimation of regression function or prediction is the goal, the true model,
even if assumed reasonably simple and known, may not perform the best.
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(a) Proportional hazards model M0
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(b) Stratified hazards model M{1}
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Figure 2: The two simulated hazards models: solid line for the stratum X = 0
and dotted line for the stratum X = 1.
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The well-known trade-off between bias and variance may prefer an incorrect
but simpler model (see Chapter 1 of Miller (1990) for an illustration in the
context of prediction).

For a given W , we consider that the best model between M0 and M{1}

is the one which has the lower -KL value. Therefore our “optimal” (and
theoretical) choice is given by the KL criterion. We are interested to have
a “practical” criterion which gives most often the same choice between M0

and M{1} than the optimal criterion KL.
Table 1 presents the frequency of the model selected by the KL and LCVa

criteria. In the two simulation cases (the true model is respectively M0 and
M{1}), the LCVa criterion tends to select models that agree with those chosen
by KL. Nevertheless we can observe several differences in the choice between
M0 and M{1} for small sample size (n = 50). We can note that, in all
simulations, the “non-adaptative criterion” ELL choses the simulated model;
ELL for M0 (noted ELLM0

) is lower than ELLM{1}
when the simulated

model is M0 and ELLM{1}
< ELLM0

when the simulated model is M{1}

(these values are not presented here).
For a given W , we chose by each criterion (KL, ELL, LCVa) the best

estimator for the models M0 and M{1}, and then chose the best one. For
the selected estimator, we computed the corresponding values of -KL, then
we calculated the average of -KL (over all the 1000 W ’s replications). These
averages are shown in Table 2 (the numbers in parentheses are the corre-
sponding standard errors). The KL and ELL criteria give similar results; the
larger differences occur when there is little information (small sample size
and high censoring level). The LCVa criterion also yields close results. Here
the larger differences also occur when the information is sparse.

To illustrate more precisely these results, we represented in Figure 3 the
boxplots of -KL for the different criteria for the two models (KLM0

, KLM{1}
,

ELLM0
, ELLM{1}

, LCVaM0
, LCVaM{1}

) when the simulated model is M0

and also when the simulated model is M{1}, with 25% of censoring and for
different sample sizes (n = 100 and n = 500). For instance, the notation
KLM0

represents the criterion KL applied to model M0. Figure 3 shows
that the differences between the values of -KL for KLM0

and KLM{1}
are

significative. This is particulary obvious when the true model is M{1}. With
the ELLM0

and ELLM{1}
criteria, we observe the same significative differ-

ences. The LCVa criterion has a similar behaviour; the variability of the -KL
values is larger for LCVa but this was expected since LCVa is an estimator
of ELL.

5 Application

We analysed data from the PAQUID study (Letenneur et al., 1994), a pros-
pective cohort study of mental and physical aging that evaluates social en-
vironment and healh status. The PAQUID study is based on a large cohort
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(a) Simulated model M0

≃ 10% n= 50 n= 100 n= 500
censoring M0 M{1} M0 M{1} M0 M{1}

KL 837 163 897 103 962 38
LCVa 840 160 907 93 933 67
LCVa≡KL 701 24 809 5 899 4

≃ 25% n= 50 n= 100 n= 500
censoring M0 M{1} M0 M{1} M0 M{1}

KL 788 212 877 123 955 45
LCVa 828 172 892 108 932 68
LCVa≡KL 637 21 780 11 888 1

≃ 50% n= 50 n= 100 n= 500
censoring M0 M{1} M0 M{1} M0 M{1}

KL 811 189 862 138 949 51
LCVa 770 230 878 122 929 71
LCVa≡KL 616 35 748 8 878 0

(b) Simulated model M{1}

≃ 10% n= 50 n= 100 n= 500
censoring M0 M{1} M0 M{1} M0 M{1}

KL 4 996 0 1000 0 1000
LCVa 407 593 242 758 3 997
LCVa≡KL 0 589 0 758 0 997

≃ 25% n= 50 n= 100 n= 500
censoring M0 M{1} M0 M{1} M0 M{1}

KL 1 999 0 1000 0 1000
LCVa 442 558 293 707 6 994
LCVa≡KL 1 558 0 707 0 994

≃ 50% n= 50 n= 100 n= 500
censoring M0 M{1} M0 M{1} M0 M{1}

KL 44 956 10 990 0 1000
LCVa 441 559 319 681 8 992
LCVa≡KL 10 525 0 671 0 992

Table 1: Frequencies of selection of the models by different criteria using
1000 independent replications when the simulated model is (a) a proportional
hazards model M0 or (b) a stratified hazards model M{1}, for different sample
sizes and various levels of censoring. The notation ≡ means that the two
criteria agree for the choice between M0 and M{1}.

in
se

rm
-0

03
66

56
5,

 v
er

si
on

 1
 - 

9 
M

ar
 2

00
9



13

(a) Simulated model M0

≃ 10% n= 50 n= 100 n= 500

censoring -KL -KL -KL

KL 4.061(0.0007) 4.053(0.0004) 4.040(0.0001)
ELL 4.070(0.0011) 4.056(0.0004) 4.040(0.0001)
LCVa 4.125(0.0034) 4.072(0.0011) 4.044(0.0002)

≃ 25% n= 50 n= 100 n= 500

censoring -KL -KL -KL

KL 4.074(0.0008) 4.064(0.0005) 4.036(0.0001)
ELL 4.086(0.0014) 4.067(0.0005) 4.036(0.0001)
LCVa 4.162(0.0050) 4.088(0.0013) 4.040(0.0002)

≃ 50% n= 50 n= 100 n= 500

censoring -KL -KL -KL

KL 4.114(0.0018) 4.079(0.0009) 4.053(0.0003)
ELL 4.137(0.0027) 4.098(0.0011) 4.056(0.0003)
LCVa 4.297(0.0119) 4.124(0.0027) 4.062(0.0006)

(b) Simulated model M{1}

≃ 10% n= 50 n= 100 n= 500
censoring -KL -KL -KL

KL 3.734(0.0008) 3.715(0.0004) 3.695(0.0001)
ELL 3.740(0.0009) 3.719(0.0004) 3.696(0.0001)
LCVa 3.827(0.0039) 3.751(0.0016) 3.697(0.0002)

≃ 25% n= 50 n= 100 n= 500
censoring -KL -KL -KL

KL 3.740(0.0010) 3.729(0.0006) 3.695(0.0001)
ELL 3.746(0.0011) 3.734(0.0006) 3.697(0.0002)
LCVa 3.863(0.0103) 3.769(0.0017) 3.699(0.0003)

≃ 50% n= 50 n= 100 n= 500
censoring -KL -KL -KL

KL 3.781(0.0020) 3.750(0.0011) 3.713(0.0003)
ELL 3.795(0.0021) 3.772(0.0022) 3.717(0.0003)
LCVa 3.978(0.0092) 3.821(0.0043) 3.719(0.0006)

Table 2: Average Kullback-Leibler information -KL and the corresponding
standard errors (numbers in the parentheses) for each criterion when the
simulated model is (a) a proportional hazards model M0 or (b) a stratified
hazards model M{1}, for different sample sizes n and various levels of cen-
soring.
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Figure 3: Boxplots of the -KL for the different criteria when the simulated
model is a proportional hazard model M0 (pictures on the top) and when the
simulated model is a stratified hazard model M{1} (pictures on the bottom)
for sample sizes n = 100 and n = 500 with 25% of censoring.

randomly selected in a population of subjects aged 65 years or more, living
at home in two departments of southwest France (Gironde and Dordogne).
There were 3675 non-demented subjects at entry in the cohort and each sub-
ject has been visited six times or less, between 1988 and 2000; 431 incident
cases of dementia were observed during the follow up. The risk of developing
dementia was modeled as a function of age. As prevalent cases of dementia
were excluded, data were left-truncated and the truncation variable was the
age at entry in the cohort (for more details see Commenges et al., 1998).
Two explanatory variables were considered: sex (noted S) and educational
level (noted E). In the sample, there were 2133 women and 1542 men. Ed-
ucational level was classified into two categories: no primary school diploma
and primary school diploma (Letenneur et al., 1999). The pattern of obser-
vations involved interval-censoring and left-truncation. We use the likelihood
for interval-censored and left-truncated data. For sake of simplicity, we kept
here the survival data framework, treating death as censoring rather than
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the more adapted multistate framework (Commenges et al., 2004).
There are two layers of model selection: the selection of the variables and

the selection of the model given the variables; a third layer is the selection
of the smoothing coefficient h given variables and model. Even with only
two variables there is a total number of 11 possible models. It is common
in epidemiology not to examine all possible models: we adopted a strategy
involving the evaluation of only five models and giving up the notation of
Section 2 which would be somewhat cumbersome here we denoted them A,
B, C, D, E. We first examined the effect of sex. We used penalized likelihood
method and the LCVa criterion to choose between the stratified hazards
model on sex (called here model A) and the proportional hazards model on
sex (called model B). The selected model is model A since Table 3 shows that
model B had lower value for LCVa than model A. We represented in Figure 4
the penalized likelihood estimate of the risk of dementia for men and women
with the corresponding estimated stratified hazards model.
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Figure 4: Estimates of the hazard function of dementia for male (solid line)
and female (dotted line) chosen by LCVa criterion for selected model A.

It appears that women tend to have a lower risk of dementia than men
before 78 years and a higher risk above that age.

Another important risk factor for dementia is educational level. As the
proportional hazards assumption does not hold as we have seen previously,
we performed several analyses on the educational level stratified on sex. We
considered three models. The first model is a model stratified on sex and
proportional for the educational level; the coefficient of proportionality of
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educational levels is the same for women and men. We denote it model C:

λ(t|Si, Ei) =

{
λ0

h(t) exp βEi if Si = 0 (women),
λ1

h(t) exp βEi if Si = 1 (men).

Secondly, we considered a proportional hazards model on educational level
with different coefficient of proportionality for men and women (denoted
model D):

λ(t|Si, Ei) =

{
λ0

h(t) exp β0Ei if Si = 0 (women),
λ1

h(t) exp β1Ei if Si = 1 (men).

Finally, we used a model stratified on both sex and educational level (denoted
model E):

λ(t|Si, Ei) =






λ
0,0
h (t) if Si = 0 and Ei = 0,

λ
1,0
h (t) if Si = 1 and Ei = 0,

λ
0,1
h (t) if Si = 0 and Ei = 1,

λ
1,1
h (t) if Si = 1 and Ei = 1.

Table 3 presents the values of the LCVa criterion for each model. The
selected model is the stratified proportional hazards model (highest value for
the model C). Subjects with no primary school diploma have an increased
risk of dementia. For this model (model C), the estimated relative risk for
educational level is equal to 1.97; the corresponding 95% confidence interval
is [1.63; 2.37].

model A model B model C model D model E
LCVa -1517.45 -1519.92 -1496.28 -1497.18 -1498.42

Table 3: Comparison of stratified and proportional hazards models according
to the LCVa criterion; models A and B are respectively: stratified and un-
stratified models on sex; models C, D, E are 3 models stratified on sex with
educational level as new covariate (see text).

6 Conclusion

We have presented a method for the choice between stratified and propor-
tional hazards models. We have shown that this could be done using LCVa
which is an estimator of ELL. We observed that ELL has a very similar be-
haviour as the optimal Kullback-Leibler criterion and LCVa also provided
good performances. We considered here a case where all the models are in-
dexed by a single hyper-parameter. This raises a completely new problem
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which is how to compare families of models of different complexities, i.e.
indexed by a different number of hyper-parameters. For instance this prob-
lem would arise if we compared a proportional hazards model (one hyper-
parameter) to a stratified model with one hyper-parameter for each stra-
tum. We conjecture that there is a principle of parsimony at the level of the
hyper-parameter, similar to that known for the ordinary parameters. Further
research would be needed to explore this field.
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