P. Angulo, Nonalcoholic Fatty Liver Disease, New England Journal of Medicine, vol.346, issue.16, pp.1221-1252, 2002.
DOI : 10.1056/NEJMra011775

M. Assifi, G. Suchankova, S. Constant, M. Prentki, A. Saha et al., AMP-activated protein kinase and coordination of hepatic fatty acid metabolism of starved/carbohydrate-refed rats, AJP: Endocrinology and Metabolism, vol.289, issue.5, pp.794-800, 2005.
DOI : 10.1152/ajpendo.00144.2005

E. Bae, Y. Yang, J. Kim, and S. Kim, Identification of a novel class of dithiolethiones that prevent hepatic insulin resistance via the adenosine monophosphate-activated protein kinase-p70 ribosomal S6 kinase-1 pathway, Hepatology, vol.68, issue.3, pp.730-739, 2007.
DOI : 10.1002/hep.21769

R. Banerjee, S. Rangwala, J. Shapiro, A. Rich, B. Rhoades et al., Regulation of Fasted Blood Glucose by Resistin, Science, vol.303, issue.5661, pp.1195-1203, 2004.
DOI : 10.1126/science.1092341

A. Barak, H. Beckenhauer, S. Badakhsh, and D. Tuma, The Effect of Betaine in Reversing Alcoholic Steatosis, Alcoholism: Clinical and Experimental Research, vol.75, issue.6, pp.1100-1102, 1997.
DOI : 10.1016/S0140-6736(95)91685-7

R. Barazzoni, A. Bosutti, M. Stebel, M. Cattin, E. Roder et al., Ghrelin regulates mitochondrial-lipid metabolism gene expression and tissue fat distribution in liver and skeletal muscle, AJP: Endocrinology and Metabolism, vol.288, issue.1, pp.228-263, 2005.
DOI : 10.1152/ajpendo.00115.2004

A. Barthel, D. Schmoll, K. Kruger, R. Roth, and H. Joost, Regulation of the Forkhead Transcription Factor FKHR (FOXO1a) by Glucose Starvation and AICAR, an Activator of AMP-Activated Protein Kinase, Endocrinology, vol.143, issue.8, pp.3183-3189, 2002.
DOI : 10.1210/endo.143.8.8792

R. Bataller and D. Brenner, Liver fibrosis, Journal of Clinical Investigation, vol.115, issue.2, pp.209-227, 2005.
DOI : 10.1172/JCI24282DS1

J. Baur, K. Pearson, N. Price, H. Jamieson, C. Lerin et al., Resveratrol improves health and survival of mice on a high-calorie diet, Nature, vol.35, issue.7117, pp.337-379, 2006.
DOI : 10.1038/nature05354

S. Berasi, C. Huard, D. Li, H. Shih, Y. Sun et al., Inhibition of Gluconeogenesis through Transcriptional Activation of EGR1 and DUSP4 by AMP-activated Kinase, Journal of Biological Chemistry, vol.281, issue.37, pp.27167-77, 2006.
DOI : 10.1074/jbc.M602416200

R. Bergeron, S. Previs, G. Cline, P. Perret, R. Russell et al., Effect of 5-Aminoimidazole-4-Carboxamide-1-??-D-Ribofuranoside Infusion on In Vivo Glucose and Lipid Metabolism in Lean and Obese Zucker Rats, Diabetes, vol.50, issue.5, pp.1076-82, 2001.
DOI : 10.2337/diabetes.50.5.1076

H. Boon, M. Bosselaar, S. Praet, E. Blaak, W. Saris et al., Intravenous AICAR administration reduces hepatic glucose output and inhibits whole body lipolysis in type 2 diabetic patients, Diabetologia, vol.39, issue.10, pp.1893-900, 2008.
DOI : 10.1007/s00125-008-1108-7

B. Brunmair, K. Staniek, F. Gras, N. Scharf, A. Althaym et al., Thiazolidinediones, Like Metformin, Inhibit Respiratory Complex I: A Common Mechanism Contributing to Their Antidiabetic Actions?, Diabetes, vol.53, issue.4, pp.1052-1061, 2004.
DOI : 10.2337/diabetes.53.4.1052

J. Brusq, N. Ancellin, P. Grondin, R. Guillard, S. Martin et al., Inhibition of lipid synthesis through activation of AMP kinase: an additional mechanism for the hypolipidemic effects of berberine, The Journal of Lipid Research, vol.47, issue.6, pp.1281-1289, 2006.
DOI : 10.1194/jlr.M600020-JLR200

E. Buhl, N. Jessen, R. Pold, T. Ledet, A. Flyvbjerg et al., Long-Term AICAR Administration Reduces Metabolic Disturbances and Lowers Blood Pressure in Rats Displaying Features of the Insulin Resistance Syndrome, Diabetes, vol.51, issue.7, pp.2199-206, 2002.
DOI : 10.2337/diabetes.51.7.2199

A. Caligiuri, C. Bertolani, C. Guerra, S. Aleffi, S. Galastri et al., Adenosine monophosphate-activated protein kinase modulates the activated phenotype of hepatic stellate cells, Hepatology, vol.115, issue.2, pp.668-76, 2008.
DOI : 10.1002/hep.21995

R. Camacho, E. Donahue, F. James, E. Berglund, and D. Wasserman, Energy state of the liver during short-term and exhaustive exercise in C57BL/6J mice, AJP: Endocrinology and Metabolism, vol.290, issue.3, pp.405-413, 2006.
DOI : 10.1152/ajpendo.00385.2005

C. Carlson and W. Winder, Liver AMP-activated protein kinase and acetyl-CoA carboxylase during and after exercise, J Appl Physiol, vol.86, pp.669-74, 1999.

L. Chao, B. Marcus-samuels, M. Mason, J. Moitra, C. Vinson et al., Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones, Journal of Clinical Investigation, vol.106, issue.10, pp.1221-1229, 2000.
DOI : 10.1172/JCI11245

P. Cheung, I. Salt, S. Davies, D. Hardie, and D. Carling, Characterization of AMP-activated protein kinase gamma-subunit isoforms and their role in AMP binding, 2000.

M. Christ-crain, B. Kola, F. Lolli, C. Fekete, D. Seboek et al., AMP-activated protein kinase mediates glucocorticoid-induced metabolic changes: a novel mechanism in Cushing's syndrome, The FASEB Journal, vol.22, issue.6, pp.1672-83, 2008.
DOI : 10.1096/fj.07-094144

Q. Collins, H. Liu, J. Pi, Z. Liu, M. Quon et al., Epigallocatechin-3-gallate (EGCG), A Green Tea Polyphenol, Suppresses Hepatic Gluconeogenesis through 5'-AMP-activated Protein Kinase, Journal of Biological Chemistry, vol.282, issue.41, pp.30143-30152, 2007.
DOI : 10.1074/jbc.M702390200

J. Corton, J. Gillespie, and D. Hardie, Role of the AMP-activated protein kinase in the cellular stress response, Current Biology, vol.4, issue.4, pp.315-339, 1994.
DOI : 10.1016/S0960-9822(00)00070-1

J. Corton, J. Gillespie, S. Hawley, and D. Hardie, 5-Aminoimidazole-4-Carboxamide Ribonucleoside. A Specific Method for Activating AMP-Activated Protein Kinase in Intact Cells?, European Journal of Biochemistry, vol.223, issue.2, pp.558-65, 1995.
DOI : 10.1016/0014-5793(94)01006-4

D. Cuthbertson, J. Babraj, K. Mustard, M. Towler, K. Green et al., -aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside acutely stimulates skeletal muscle 2-deoxyglucose uptake in healthy men, Diabetes, vol.5, issue.56, pp.2078-84, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00016570

B. Dasgupta and J. Milbrandt, Resveratrol stimulates AMP kinase activity in neurons, Proceedings of the National Academy of Sciences, vol.104, issue.17, pp.7217-7239, 2007.
DOI : 10.1073/pnas.0610068104

R. Dentin, F. Benhamed, J. Pegorier, F. Foufelle, B. Viollet et al., Polyunsaturated fatty acids suppress glycolytic and lipogenic genes through the inhibition of ChREBP nuclear protein translocation . The Journal of clinical investigation, pp.2843-54, 2005.

X. Ding, N. Saxena, S. Lin, A. Xu, S. Srinivasan et al., The Roles of Leptin and Adiponectin, The American Journal of Pathology, vol.166, issue.6, pp.1655-69, 2005.
DOI : 10.1016/S0002-9440(10)62476-5

M. El-mir, V. Nogueira, E. Fontaine, N. Averet, M. Rigoulet et al., Dimethylbiguanide Inhibits Cell Respiration via an Indirect Effect Targeted on the Respiratory Chain Complex I, Journal of Biological Chemistry, vol.275, issue.1, pp.223-231, 2000.
DOI : 10.1074/jbc.275.1.223

URL : https://hal.archives-ouvertes.fr/inserm-00390049

A. Evans, K. Mustard, C. Wyatt, C. Peers, M. Dipp et al., Does AMP-activated protein kinase couple inhibition of mitochondrial oxidative phosphorylation by hypoxia to calcium signaling in O2-sensing cells? . The Journal of biological chemistry, pp.41504-41515, 2005.

M. Fiedler, J. Zierath, G. Selen, H. Wallberg-henriksson, Y. Liang et al., -aminoimidazole-4-carboxy-amide-1-beta-D-ribofuranoside treatment ameliorates hyperglycaemia and hyperinsulinaemia but not dyslipidaemia in KKAy-CETP mice, Diabetologia, vol.5, issue.44, pp.2180-2186, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00889644

M. Foretz, N. Ancellin, F. Andreelli, Y. Saintillan, P. Grondin et al., Short-Term Overexpression of a Constitutively Active Form of AMP-Activated Protein Kinase in the Liver Leads to Mild Hypoglycemia and Fatty Liver, Diabetes, vol.54, issue.5, pp.1331-1340, 2005.
DOI : 10.2337/diabetes.54.5.1331

M. Foretz, D. Carling, C. Guichard, P. Ferre, and F. Foufelle, AMP-activated Protein Kinase Inhibits the Glucose-activated Expression of Fatty Acid Synthase Gene in Rat Hepatocytes, Journal of Biological Chemistry, vol.273, issue.24, pp.14767-71, 1998.
DOI : 10.1074/jbc.273.24.14767

S. Friedman, Mechanisms of Disease: mechanisms of hepatic fibrosis and therapeutic implications, Nature Clinical Practice Gastroenterology & Hepatology, vol.8, issue.2, pp.98-105, 2004.
DOI : 10.1046/j.1440-1746.17.s3.18.x

L. Fryer, A. Parbu-patel, and D. Carling, Protein kinase inhibitors block the stimulation of the AMP-activated protein kinase by 5-amino-4-imidazolecarboxamide riboside, FEBS Letters, vol.20, issue.2, pp.189-92, 2002.
DOI : 10.1016/S0014-5793(02)03501-9

J. Garcia-villafranca, A. Guillen, and J. Castro, Ethanol consumption impairs regulation of fatty acid metabolism by decreasing the activity of AMP-activated protein kinase in rat liver, Biochimie, vol.90, issue.3, pp.460-466, 2008.
DOI : 10.1016/j.biochi.2007.09.019

A. Gonzalez, R. Kumar, J. Mulligan, A. Davis, R. Weindruch et al., Metabolic adaptations to fasting and chronic caloric restriction in heart, muscle, and liver do not include changes in AMPK activity, AJP: Endocrinology and Metabolism, vol.287, issue.5, pp.1032-1039, 2004.
DOI : 10.1152/ajpendo.00172.2004

O. Goransson, A. Mcbride, S. Hawley, F. Ross, N. Shpiro et al., Mechanism of action of A-769662, a valuable tool for activation of AMP, 2007.

B. Guigas, K. Sakamato, N. Taleux, S. Reyna, N. Musi et al., Beyond AICA riboside: In search of new specific AMP-activated protein kinase activators, IUBMB Life, vol.283, issue.Pt 1, 2008.
DOI : 10.1002/iub.135

B. Guigas, N. Taleux, M. Foretz, D. Detaille, F. Andreelli et al., AMP-activated protein kinase-independent inhibition of hepatic mitochondrial oxidative phosphorylation by AICA riboside, Biochemical Journal, vol.404, issue.3, pp.499-507, 2007.
DOI : 10.1042/BJ20070105

URL : https://hal.archives-ouvertes.fr/hal-00478741

S. Hawley, J. Boudeau, J. Reid, K. Mustard, L. Udd et al., Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade, Journal of Biology, vol.2, issue.4, p.28, 2003.
DOI : 10.1186/1475-4924-2-28

S. Hawley, D. Pan, K. Mustard, L. Ross, J. Bain et al., Calmodulin-dependent protein kinase kinase-?? is an alternative upstream kinase for AMP-activated protein kinase, Cell Metabolism, vol.2, issue.1, pp.9-19, 2005.
DOI : 10.1016/j.cmet.2005.05.009

N. Henin, M. Vincent, H. Gruber, and G. Van-den-berghe, Inhibition of fatty acid and cholesterol synthesis by stimulation of AMP-activated protein kinase, Faseb J, vol.9, pp.541-547, 1995.

Y. Hong, U. Varanasi, W. Yang, and T. Leff, AMP-activated Protein Kinase Regulates HNF4?? Transcriptional Activity by Inhibiting Dimer Formation and Decreasing Protein Stability, Journal of Biological Chemistry, vol.278, issue.30, pp.27495-501, 2003.
DOI : 10.1074/jbc.M304112200

X. Hou, S. Xu, K. Maitland-toolan, K. Sato, B. Jiang et al., SIRT1 Regulates Hepatocyte Lipid Metabolism through Activating AMP-activated Protein Kinase, Journal of Biological Chemistry, vol.283, issue.29, pp.20015-20041, 2008.
DOI : 10.1074/jbc.M802187200

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2459285

R. Hurley, K. Anderson, J. Franzone, B. Kemp, A. Means et al., The Ca2+/Calmodulin-dependent Protein Kinase Kinases Are AMP-activated Protein Kinase Kinases, Journal of Biological Chemistry, vol.280, issue.32, pp.29060-29066, 2005.
DOI : 10.1074/jbc.M503824200

M. Iglesias, J. Ye, G. Frangioudakis, A. Saha, E. Tomas et al., AICAR Administration Causes an Apparent Enhancement of Muscle and Liver Insulin Action in Insulin-Resistant High-Fat-Fed Rats, Diabetes, vol.51, issue.10, pp.2886-94, 2002.
DOI : 10.2337/diabetes.51.10.2886

K. Imai, K. Inukai, Y. Ikegami, T. Awata, and S. Katayama, LKB1, an upstream AMPK kinase, regulates glucose and lipid metabolism in cultured liver and muscle cells, Biochemical and Biophysical Research Communications, vol.351, issue.3, 2006.
DOI : 10.1016/j.bbrc.2006.10.056

R. Jacobs, S. Lingrell, J. Dyck, and D. Vance, Inhibition of Hepatic Phosphatidylcholine Synthesis by 5-Aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside Is Independent of AMP-activated Protein Kinase Activation, Journal of Biological Chemistry, vol.282, issue.7, pp.4516-4539, 2007.
DOI : 10.1074/jbc.M605702200

S. Jager, C. Handschin, J. St-pierre, and B. Spiegelman, AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1??, Proceedings of the National Academy of Sciences, vol.104, issue.29, pp.12017-12039, 2007.
DOI : 10.1073/pnas.0705070104

W. Jiang, Z. Zhu, and H. Thompson, Dietary Energy Restriction Modulates the Activity of AMP-Activated Protein Kinase, Akt, and Mammalian Target of Rapamycin in Mammary Carcinomas, Mammary Gland, and Liver, Cancer Research, vol.68, issue.13, pp.5492-5501, 2008.
DOI : 10.1158/0008-5472.CAN-07-6721

T. Kadowaki, T. Yamauchi, N. Kubota, K. Hara, K. Ueki et al., Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome, Journal of Clinical Investigation, vol.116, issue.7, pp.1784-92, 2006.
DOI : 10.1172/JCI29126

Y. Kamada, S. Tamura, S. Kiso, H. Matsumoto, Y. Saji et al., Enhanced carbon tetrachloride-induced liver fibrosis in mice lacking adiponectin, Gastroenterology, vol.125, issue.6, pp.1796-807, 2003.
DOI : 10.1053/j.gastro.2003.08.029

T. Kawaguchi, K. Osatomi, H. Yamashita, T. Kabashima, and K. Uyeda, Mechanism for Fatty Acid "Sparing" Effect on Glucose-induced Transcription: REGULATION OF CARBOHYDRATE-RESPONSIVE ELEMENT-BINDING PROTEIN BY AMP-ACTIVATED PROTEIN KINASE, Journal of Biological Chemistry, vol.277, issue.6, pp.3829-3864, 2002.
DOI : 10.1074/jbc.M107895200

Y. Kim, K. Park, Y. Lee, Y. Park, D. Kim et al., Metformin Inhibits Hepatic Gluconeogenesis Through AMP-Activated Protein Kinase-Dependent Regulation of the Orphan Nuclear Receptor SHP, Diabetes, vol.57, issue.2, pp.306-320, 2008.
DOI : 10.2337/db07-0381

S. Kimball, B. Siegfried, and L. Jefferson, Glucagon Represses Signaling through the Mammalian Target of Rapamycin in Rat Liver by Activating AMP-activated Protein Kinase, Journal of Biological Chemistry, vol.279, issue.52, pp.54103-54112, 2004.
DOI : 10.1074/jbc.M410755200

W. Knowler, E. Barrett-connor, S. Fowler, R. Hamman, J. Lachin et al., Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin, N Engl J Med, vol.346, pp.393-403, 2002.

B. Kola, E. Hubina, S. Tucci, T. Kirkham, E. Garcia et al., Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase . The Journal of biological chemistry, pp.25196-201, 2005.

S. Koo, L. Flechner, L. Qi, X. Zhang, R. Screaton et al., The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism, Nature, vol.50, issue.7062, pp.1109-1120, 2005.
DOI : 10.1111/j.1432-1033.2004.04372.x

F. Lan, J. Cacicedo, N. Ruderman, and Y. Ido, SIRT1 Modulation of the Acetylation Status, Cytosolic Localization, and Activity of LKB1: POSSIBLE ROLE IN AMP-ACTIVATED PROTEIN KINASE ACTIVATION, Journal of Biological Chemistry, vol.283, issue.41, 2008.
DOI : 10.1074/jbc.M805711200

I. Leclerc, A. Kahn, and B. Doiron, The 5???-AMP-activated protein kinase inhibits the transcriptional stimulation by glucose in liver cells, acting through the glucose response complex, FEBS Letters, vol.6, issue.2, pp.180-184, 1998.
DOI : 10.1016/S0014-5793(98)00745-5

I. Leclerc, C. Lenzner, L. Gourdon, S. Vaulont, A. Kahn et al., Hepatocyte Nuclear Factor-4?? Involved in Type 1 Maturity-Onset Diabetes of the Young Is a Novel Target of AMP-Activated Protein Kinase, Diabetes, vol.50, issue.7, pp.1515-1536, 2001.
DOI : 10.2337/diabetes.50.7.1515

A. Lihn, N. Jessen, S. Pedersen, S. Lund, and B. Richelsen, AICAR stimulates adiponectin and inhibits cytokines in adipose tissue, Biochemical and Biophysical Research Communications, vol.316, issue.3, pp.853-861, 2004.
DOI : 10.1016/j.bbrc.2004.02.139

H. Lin, S. Yang, C. Chuckaree, F. Kuhajda, G. Ronnet et al., Metformin reverses fatty liver disease in obese, leptin-deficient mice, Nat Med, vol.6, pp.998-1003, 2000.

J. Lizcano, O. Goransson, R. Toth, M. Deak, N. Morrice et al., LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1, The EMBO Journal, vol.23, issue.4, pp.833-876, 2004.
DOI : 10.1038/sj.emboj.7600110

P. Lochhead, I. Salt, K. Walker, D. Hardie, and C. Sutherland, 5-aminoimidazole-4-carboxamide riboside mimics the effects of insulin on the expression of the 2 key gluconeogenic genes PEPCK and glucose-6-phosphatase, Diabetes, vol.49, issue.6, pp.896-903, 2000.
DOI : 10.2337/diabetes.49.6.896

D. Meley, C. Bauvy, J. Houben-weerts, P. Dubbelhuis, M. Helmond et al., AMP-activated Protein Kinase and the Regulation of Autophagic Proteolysis, Journal of Biological Chemistry, vol.281, issue.46, pp.34870-34879, 2006.
DOI : 10.1074/jbc.M605488200

URL : https://hal.archives-ouvertes.fr/inserm-00158593

Y. Minokoshi, T. Alquier, N. Furukawa, Y. Kim, A. Lee et al., AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus, Nature, vol.428, issue.6982, pp.569-74, 2004.
DOI : 10.1038/nature02440

M. Momcilovic, S. Hong, and M. Carlson, Mammalian TAK1 Activates Snf1 Protein Kinase in Yeast and Phosphorylates AMP-activated Protein Kinase in Vitro, Journal of Biological Chemistry, vol.281, issue.35, pp.25336-25379, 2006.
DOI : 10.1074/jbc.M604399200

M. Mooney, S. Fogarty, C. Stevenson, A. Gallagher, P. Palit et al., Mechanisms underlying the metabolic actions of galegine that contribute to weight loss in mice, British Journal of Pharmacology, vol.99, issue.8, pp.1669-77, 2008.
DOI : 10.1038/bjp.2008.37

J. Mu, J. Brozinick, . Jr, O. Valladares, M. Bucan et al., A Role for AMP-Activated Protein Kinase in Contraction- and Hypoxia-Regulated Glucose Transport in Skeletal Muscle, Molecular Cell, vol.7, issue.5, pp.1085-94, 2001.
DOI : 10.1016/S1097-2765(01)00251-9

M. Mukhtar, V. Payne, C. Arden, A. Harbottle, S. Khan et al., Inhibition of glucokinase translocation by AMP-activated protein kinase is associated with phosphorylation of both GKRP and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, AJP: Regulatory, Integrative and Comparative Physiology, vol.294, issue.3, pp.766-74, 2008.
DOI : 10.1152/ajpregu.00593.2007

M. Munday, M. Milic, S. Takhar, M. Holness, and M. Sugden, The short-term regulation of hepatic acetyl-CoA carboxylase during starvation and re-feeding in the rat, Biochemical Journal, vol.280, issue.3, 1991.
DOI : 10.1042/bj2800733

D. Muoio, K. Seefeld, L. Witters, and R. Coleman, AMP-activated kinase reciprocally regulates triacylglycerol synthesis and fatty acid oxidation in liver and muscle: evidence that sn-glycerol-3-phosphate acyltransferase is a novel target, Biochemical Journal, vol.338, issue.3, pp.783-91, 1999.
DOI : 10.1042/bj3380783

A. Nawrocki, M. Rajala, E. Tomas, U. Pajvani, A. Saha et al., Mice Lacking Adiponectin Show Decreased Hepatic Insulin Sensitivity and Reduced Responsiveness to Peroxisome Proliferator-activated Receptor ?? Agonists, Journal of Biological Chemistry, vol.281, issue.5, pp.2654-60, 2006.
DOI : 10.1074/jbc.M505311200

M. Owen, E. Doran, and A. Halestrap, Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain, 2000.

H. Park, V. Kaushik, S. Constant, M. Prentki, E. Przybytkowski et al., Coordinate Regulation of Malonyl-CoA Decarboxylase, sn-Glycerol-3-phosphate Acyltransferase, and Acetyl-CoA Carboxylase by AMP-activated Protein Kinase in Rat Tissues in Response to Exercise, Journal of Biological Chemistry, vol.277, issue.36, pp.32571-32578, 2002.
DOI : 10.1074/jbc.M201692200

M. Park, J. Ha, and S. Chung, 20(S)-Ginsenoside Rg3 Enhances Glucose-Stimulated Insulin Secretion and Activates AMPK, Biological & Pharmaceutical Bulletin, vol.31, issue.4, pp.748-51, 2008.
DOI : 10.1248/bpb.31.748

G. Parker, A. Koay, R. Gilbert-wilson, L. Waddington, and D. Stapleton, AMP-activated protein kinase does not associate with glycogen alpha-particles from rat liver, 2007.

R. Pold, L. Jensen, N. Jessen, E. Buhl, O. Schmitz et al., Long-Term AICAR Administration and Exercise Prevents Diabetes in ZDF Rats, Diabetes, vol.54, issue.4, pp.928-962, 2005.
DOI : 10.2337/diabetes.54.4.928

L. Puljak, V. Parameswara, S. Dolovcak, S. Waldrop, D. Emmett et al., Evidence for AMPK-dependent regulation of exocytosis of lipoproteins in a model liver cell line, Experimental Cell Research, vol.314, issue.10, pp.2100-2109, 2008.
DOI : 10.1016/j.yexcr.2008.03.002

R. Reznick and G. Shulman, The role of AMP-activated protein kinase in mitochondrial biogenesis, The Journal of Physiology, vol.25, issue.1, pp.33-42, 2006.
DOI : 10.1113/jphysiol.2006.109512

U. Schlattner, Structural properties of AMP-activated protein kinase: dimerization, molecular shape, and changes upon ligand binding, J Biol Chem, vol.283, pp.18331-18374, 2008.
URL : https://hal.archives-ouvertes.fr/inserm-00390926

A. Saha, P. Avilucea, J. Ye, M. Assifi, E. Kraegen et al., Pioglitazone treatment activates AMP-activated protein kinase in rat liver and adipose tissue in vivo, Biochemical and Biophysical Research Communications, vol.314, issue.2, pp.580-585, 2004.
DOI : 10.1016/j.bbrc.2003.12.120

K. Sakamoto, O. Goransson, D. Hardie, and D. Alessi, Activity of LKB1 and AMPK-related kinases in skeletal muscle: effects of contraction, 2004.

I. Salt, J. Celler, S. Hawley, A. Prescott, A. Woods et al., AMP-activated protein kinase: greater AMP dependence, and preferential nuclear localization, of complexes containing the ??2 isoform, Biochemical Journal, vol.334, issue.1, pp.177-87, 1998.
DOI : 10.1042/bj3340177

M. Sanders, P. Grondin, B. Hegarty, M. Snowden, and D. Carling, Investigating the mechanism for AMP activation of the AMP-activated protein kinase cascade . The Biochemical journal, pp.139-187, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00478681

R. Screaton, M. Conkright, Y. Katoh, J. Best, G. Canettieri et al., The CREB Coactivator TORC2 Functions as a Calcium- and cAMP-Sensitive Coincidence Detector, Cell, vol.119, issue.1, pp.61-74, 2004.
DOI : 10.1016/j.cell.2004.09.015

J. Shang, L. Chen, F. Xiao, H. Sun, H. Ding et al., Resveratrol improves non-alcoholic fatty liver disease by activating AMP-activated protein kinase, Acta Pharmacologica Sinica, vol.21, issue.32, pp.698-706, 2008.
DOI : 10.1038/nature01960

R. Shaw, M. Kosmatka, N. Bardeesy, R. Hurley, L. Witters et al., The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress, Proceedings of the National Academy of Sciences, vol.101, issue.10, pp.3329-3364, 2004.
DOI : 10.1073/pnas.0308061100

R. Shaw, K. Lamia, D. Vasquez, S. Koo, N. Bardeesy et al., The Kinase LKB1 Mediates Glucose Homeostasis in Liver and Therapeutic Effects of Metformin, Science, vol.310, issue.5754, pp.1642-1648, 2005.
DOI : 10.1126/science.1120781

A. Sim and D. Hardie, The low activity of acetyl-CoA car???ylase in basal and glucagon-stimulated hepatocytes is due to phosphorylation by the AMP-activated protein kinase and not cyclic AMP-dependent protein kinase, FEBS Letters, vol.198, issue.2, pp.294-302, 1988.
DOI : 10.1016/0014-5793(88)80445-9

X. Song, M. Fiedler, D. Galuska, J. Ryder, M. Fernstrom et al., 5-Aminoimidazole-4-carboxamide ribonucleoside treatment improves glucose homeostasis in insulin-resistant diabetic (ob/ob) mice, Diabetologia, vol.45, issue.1, pp.56-65, 2002.
DOI : 10.1007/s125-002-8245-8

Z. Song, I. Deaciuc, Z. Zhou, M. Song, T. Chen et al., Involvement of AMP-activated protein kinase in beneficial effects of betaine on high-sucrose diet-induced hepatic steatosis, AJP: Gastrointestinal and Liver Physiology, vol.293, issue.4, pp.894-902, 2007.
DOI : 10.1152/ajpgi.00133.2007

M. Stumvoll, B. Goldstein, and T. Van-haeften, Type 2 diabetes: principles of pathogenesis and therapy, The Lancet, vol.365, issue.9467, pp.1333-1379, 2005.
DOI : 10.1016/S0140-6736(05)61032-X

M. Suter, U. Riek, R. Tuerk, U. Schlattner, T. Wallimann et al., Dissecting the role of 5 -AMP for allosteric stimulation, activation, and deactivation of, 2006.
URL : https://hal.archives-ouvertes.fr/inserm-00390888

A. Suzuki, S. Okamoto, S. Lee, K. Saito, T. Shiuchi et al., Leptin Stimulates Fatty Acid Oxidation and Peroxisome Proliferator-Activated Receptor ?? Gene Expression in Mouse C2C12 Myoblasts by Changing the Subcellular Localization of the ??2 Form of AMP-Activated Protein Kinase, Molecular and Cellular Biology, vol.27, issue.12, pp.4317-4344, 2007.
DOI : 10.1128/MCB.02222-06

K. Takekoshi, M. Fukuhara, Z. Quin, S. Nissato, K. Isobe et al., Long-term exercise stimulates adenosine monophosphate???activated protein kinase activity and subunit expression in rat visceral adipose tissue and liver, Metabolism, vol.55, issue.8, pp.1122-1130, 2006.
DOI : 10.1016/j.metabol.2006.04.007

M. Tan, J. Ye, N. Turner, C. Hohnen-behrens, C. Ke et al., Antidiabetic Activities of Triterpenoids Isolated from Bitter Melon Associated with Activation of the AMPK Pathway, Chemistry & Biology, vol.15, issue.3, pp.263-73, 2008.
DOI : 10.1016/j.chembiol.2008.01.013

G. Targher, L. Bertolini, S. Rodella, G. Zoppini, L. Scala et al., Associations between plasma adiponectin concentrations and liver histology in patients with nonalcoholic fatty liver disease, Clinical Endocrinology, vol.53, issue.6, pp.679-83, 2006.
DOI : 10.1053/j.gastro.2003.08.029

K. To, H. Yamaza, T. Komatsu, T. Hayashida, H. Hayashi et al., Down-regulation of AMP-activated protein kinase by calorie restriction in rat liver, Experimental Gerontology, vol.42, issue.11, pp.1063-71, 2007.
DOI : 10.1016/j.exger.2007.07.003

K. Tomita, G. Tamiya, S. Ando, N. Kitamura, H. Koizumi et al., AICAR, an AMPK Activator, Has Protective Effects on Alcohol-Induced Fatty Liver in Rats, Alcoholism: Clinical and Experimental Research, vol.108, pp.240-245, 2005.
DOI : 10.1097/01.alc.0000191126.11479.69

M. Towler and D. Hardie, AMP-Activated Protein Kinase in Metabolic Control and Insulin Signaling, Circulation Research, vol.100, issue.3, pp.328-369, 2007.
DOI : 10.1161/01.RES.0000256090.42690.05

G. Velasco, M. Geelen, and M. Guzman, Control of Hepatic Fatty Acid Oxidation by 5???-AMP-Activated Protein Kinase Involves a Malonyl-CoA-Dependent and a Malonyl-CoA-Independent Mechanism, Archives of Biochemistry and Biophysics, vol.337, issue.2, pp.169-75, 1997.
DOI : 10.1006/abbi.1996.9784

A. Viana, H. Sakoda, M. Anai, M. Fujishiro, H. Ono et al., Role of hepatic AMPK activation in glucose metabolism and dexamethasone-induced regulation of AMPK expression, Diabetes Research and Clinical Practice, vol.73, issue.2, pp.135-177, 2006.
DOI : 10.1016/j.diabres.2005.12.011

M. Vincent, F. Bontemps, and G. Van-den-berghe, Inhibition of glycolysis by 5-amino-4-imidazolecarboxamide riboside in isolated rat hepatocytes, Biochemical Journal, vol.281, issue.1, pp.267-72, 1992.
DOI : 10.1042/bj2810267

M. Vincent, P. Marangos, H. Gruber, and G. Van-den-berghe, Inhibition by AICA Riboside of Gluconeogenesis in Isolated Rat Hepatocytes, Diabetes, vol.40, issue.10, pp.1259-66, 1991.
DOI : 10.2337/diab.40.10.1259

O. Vincent, R. Townley, S. Kuchin, and M. Carlson, Subcellular localization of the Snf1 kinase is regulated by specific beta subunits and a novel glucose signaling mechanism, Genes & Development, vol.15, issue.9, pp.1104-1118, 2001.
DOI : 10.1101/gad.879301

B. Viollet, F. Andreelli, S. Jorgensen, C. Perrin, A. Geloen et al., The AMP-activated protein kinase ??2 catalytic subunit controls whole-body insulin sensitivity, Journal of Clinical Investigation, vol.111, issue.1, pp.91-99, 2003.
DOI : 10.1172/JCI16567

B. Viollet, M. Foretz, B. Guigas, S. Horman, R. Dentin et al., Activation of AMP-activated protein kinase in the liver: a new strategy for the management of metabolic hepatic disorders . The Journal of physiology, pp.41-53, 2006.

W. Winder and D. Hardie, AMP-activated protein kinase, a metabolic master switch: possible roles in type 2 diabetes, Am J Physiol, vol.277, pp.1-10, 1999.

L. Witters, G. Gao, B. Kemp, and B. Quistorff, Hepatic 5???-AMP-Activated Protein Kinase: Zonal Distribution and Relationship to Acetyl-CoA Carboxylase Activity in Varying Nutritional States, Archives of Biochemistry and Biophysics, vol.308, issue.2, pp.413-422, 1994.
DOI : 10.1006/abbi.1994.1058

L. Witters and B. Kemp, Insulin activation of acetyl-CoA carboxylase accompanied by inhibition of the 5 -AMP-activated protein kinase ?, J Biol Chem, vol.267, pp.2864-2871, 1992.

A. Woods, D. Azzout-marniche, M. Foretz, S. Stein, P. Lemarchand et al., Characterization of the Role of AMP-Activated Protein Kinase in the Regulation of Glucose-Activated Gene Expression Using Constitutively Active and Dominant Negative Forms of the Kinase, Molecular and Cellular Biology, vol.20, issue.18, pp.6704-6715, 2000.
DOI : 10.1128/MCB.20.18.6704-6711.2000

A. Woods, K. Dickerson, R. Heath, S. Hong, M. Momcilovic et al., Ca2+/calmodulin-dependent protein kinase kinase-?? acts upstream of AMP-activated protein kinase in mammalian cells, Cell Metabolism, vol.2, issue.1, pp.21-33, 2005.
DOI : 10.1016/j.cmet.2005.06.005

A. Woods, S. Johnstone, K. Dickerson, F. Leiper, L. Fryer et al., LKB1 Is the Upstream Kinase in the AMP-Activated Protein Kinase Cascade, Current Biology, vol.13, issue.22, pp.2004-2012, 2003.
DOI : 10.1016/j.cub.2003.10.031

URL : https://hal.archives-ouvertes.fr/inserm-00390855

B. Xiao, R. Heath, P. Saiu, F. Leiper, P. Leone et al., Structural basis for AMP binding to mammalian AMP-activated protein kinase, Nature, vol.278, issue.7161, pp.496-500, 2007.
DOI : 10.1038/nature06161

M. Xie, D. Zhang, J. Dyck, Y. Li, H. Zhang et al., A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway, Proceedings of the National Academy of Sciences of the United States of America, pp.17378-83, 2006.
DOI : 10.1073/pnas.0604708103

A. Xu, Y. Wang, H. Keshaw, L. Xu, K. Lam et al., The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice, Journal of Clinical Investigation, vol.112, issue.1, pp.91-100, 2003.
DOI : 10.1172/JCI200317797

T. Yamauchi, J. Kamon, Y. Minokoshi, Y. Ito, H. Waki et al., Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase, Nature Medicine, vol.105, issue.11, pp.1288-95, 2002.
DOI : 10.1074/jbc.M005816200

URL : https://hal.archives-ouvertes.fr/hal-00174612

K. Murakami, Globular adiponectin protected ob/ob mice from diabetes and ApoE-deficient mice from atherosclerosis, J Biol Chem, vol.278, pp.2461-2469, 2003.

T. Yamauchi, J. Kamon, H. Waki, Y. Terauchi, N. Kubota et al., The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity, Nature Medicine, vol.7, issue.8, pp.941-947, 2001.
DOI : 10.1038/90984

URL : https://hal.archives-ouvertes.fr/hal-00174777

T. Yamauchi, Y. Nio, T. Maki, M. Kobayashi, T. Takazawa et al., Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions, Nature Medicine, vol.47, issue.3, pp.332-341, 2007.
DOI : 10.1073/pnas.0403382101

URL : https://hal.archives-ouvertes.fr/hal-00173813

J. Yang, S. Maika, L. Craddock, J. King, and Z. Liu, Chronic activation of AMP-activated protein kinase-alpha1 in liver leads to decreased adiposity in mice, Biochemical and Biophysical Research Communications, vol.370, issue.2, pp.248-53, 2008.
DOI : 10.1016/j.bbrc.2008.03.094

M. You, M. Matsumoto, C. Pacold, W. Cho, and D. Crabb, The role of AMP-activated protein kinase in the action of ethanol in the liver, Gastroenterology, vol.127, issue.6, pp.1798-808, 2004.
DOI : 10.1053/j.gastro.2004.09.049

M. Zang, S. Xu, K. Maitland-toolan, A. Zuccollo, X. Hou et al., Polyphenols Stimulate AMP-Activated Protein Kinase, Lower Lipids, and Inhibit Accelerated Atherosclerosis in Diabetic LDL Receptor-Deficient Mice, Diabetes, vol.55, issue.8, pp.2180-91, 2006.
DOI : 10.2337/db05-1188

M. Zang, A. Zuccollo, X. Hou, D. Nagata, K. Walsh et al., AMP-activated Protein Kinase Is Required for the Lipid-lowering Effect of Metformin in Insulin-resistant Human HepG2 Cells, Journal of Biological Chemistry, vol.279, issue.46, pp.47898-905, 2004.
DOI : 10.1074/jbc.M408149200

F. Zhang, C. Sun, J. Wu, C. He, X. Ge et al., Combretastatin A-4 activates AMP-activated protein kinase and improves glucose metabolism in db/db mice, Pharmacological Research, vol.57, issue.4, pp.318-341, 2008.
DOI : 10.1016/j.phrs.2008.03.002

G. Zhou, R. Myers, Y. Li, Y. Chen, X. Shen et al., Role of AMP-activated protein kinase in mechanism of metformin action, Journal of Clinical Investigation, vol.108, issue.8, pp.1167-74, 2001.
DOI : 10.1172/JCI13505