Skip to Main content Skip to Navigation
Journal articles

Important role for AMPKalpha1 in limiting skeletal muscle cell hypertrophy.

Abstract : Activation of AMP-activated protein kinase (AMPK) inhibits protein synthesis through the suppression of the mammalian target of rapamycin complex 1 (mTORC1), a critical regulator of muscle growth. The purpose of this investigation was to determine the role of the AMPKalpha1 catalytic subunit on muscle cell size control and adaptation to muscle hypertrophy. We found that AMPKalpha1(-/-) primary cultured myotubes and myofibers exhibit larger cell size compared with control cells in response to chronic Akt activation. We next subjected the plantaris muscle of AMPKalpha1(-/-) and control mice to mechanical overloading to induce muscle hypertrophy. We observed significant elevations of AMPKalpha1 activity in the control muscle at days 7 and 21 after the overload. Overloading-induced muscle hypertrophy was significantly accelerated in AMPKalpha1(-/-) mice than in control mice [+32 vs. +53% at day 7 and +57 vs. +76% at day 21 in control vs. AMPKalpha1(-/-) mice, respectively]. This enhanced growth of AMPKalpha1-deficient muscle was accompanied by increased phosphorylation of mTOR signaling downstream targets and decreased phosphorylation of eukaryotic elongation factor 2. These results demonstrate that AMPKalpha1 plays an important role in limiting skeletal muscle overgrowth during hypertrophy through inhibition of the mTOR-signaling pathway.
Complete list of metadatas

https://www.hal.inserm.fr/inserm-00363209
Contributor : Benoit Viollet <>
Submitted on : Wednesday, May 21, 2014 - 9:18:34 AM
Last modification on : Thursday, April 9, 2020 - 11:51:30 AM
Long-term archiving on: : Thursday, August 21, 2014 - 10:35:26 AM

Files

Mounier_AMPK_proof.pdf
Files produced by the author(s)

Identifiers

Collections

Citation

Rémi Mounier, Louise Lantier, Jocelyne Leclerc, Athanassia Sotiropoulos, Mario Pende, et al.. Important role for AMPKalpha1 in limiting skeletal muscle cell hypertrophy.. FASEB Journal, Federation of American Society of Experimental Biology, 2009, 23 (7), pp.2264-73. ⟨10.1096/fj.08-119057⟩. ⟨inserm-00363209⟩

Share

Metrics

Record views

677

Files downloads

1486