W. Brocklehurst, The release of histamine and formation of a slow-reacting substance (SRS-A) during anaphylactic shock, The Journal of Physiology, vol.151, issue.3, pp.416-451, 1960.
DOI : 10.1113/jphysiol.1960.sp006449

W. Feldberg and C. Kellaway, Liberation of histamine and formation of lysocithin-like substances by cobra venom, The Journal of Physiology, vol.94, issue.2, pp.187-226, 1938.
DOI : 10.1113/jphysiol.1938.sp003674

R. Schaloske and E. Dennis, The phospholipase A2 superfamily and its group numbering system, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1761, issue.11, pp.1246-59, 2006.
DOI : 10.1016/j.bbalip.2006.07.011

M. Peters-golden, W. Henderson, . Jr, and . Leukotrienes, Leukotrienes, New England Journal of Medicine, vol.357, issue.18, pp.1841-54, 2007.
DOI : 10.1056/NEJMra071371

M. Bäck, Leukotriene Receptors: Crucial Components in Vascular Inflammation, The Scientific World JOURNAL, vol.7, pp.1422-1461, 2007.
DOI : 10.1100/tsw.2007.187

R. Rosenson, Fenofibrate reduces lipoprotein associated phospholipase A2 mass and oxidative lipids in hypertriglyceridemic subjects with the metabolic syndrome, American Heart Journal, vol.155, issue.3, pp.499-508, 2008.
DOI : 10.1016/j.ahj.2007.12.012

C. Brink, S. Dahlen, J. Drazen, J. Evans, D. Hay et al., International Union of Pharmacology XXXVII. Nomenclature for Leukotriene and Lipoxin Receptors, Pharmacological Reviews, vol.55, issue.1, pp.195-227, 2003.
DOI : 10.1124/pr.55.1.8

M. Bäck, Functional characteristics of cysteinyl-leukotriene receptor subtypes, Life Sciences, vol.71, issue.6, pp.611-633, 2002.
DOI : 10.1016/S0024-3205(02)01733-2

P. Ciana, M. Fumagalli, M. Trincavelli, C. Verderio, P. Rosa et al., The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor, The EMBO Journal, vol.19, issue.19, pp.4615-4642, 2006.
DOI : 10.1038/sj.emboj.7601341

G. Hansson, Inflammation, Atherosclerosis, and Coronary Artery Disease, New England Journal of Medicine, vol.352, issue.16, pp.1685-95, 2005.
DOI : 10.1056/NEJMra043430

C. Whatling, W. Mcpheat, and M. Herslöf, The potential link between atherosclerosis and the 5-lipoxygenase pathway: investigational agents with new implications for the cardiovascular field, Expert Opinion on Investigational Drugs, vol.16, issue.12, pp.1879-93, 2007.
DOI : 10.1097/FPC.0b013e3280120043

S. Dahlén, Treatment of asthma with antileukotrienes: First line or last resort therapy?, European Journal of Pharmacology, vol.533, issue.1-3, pp.40-56, 2006.
DOI : 10.1016/j.ejphar.2005.12.070

H. Allayee, J. Hartiala, W. Lee, M. Mehrabian, C. Irvin et al., The Effect of Montelukast and Low-Dose Theophylline on Cardiovascular Disease Risk Factors in Asthmatics, Chest, vol.132, issue.3, pp.868-74, 2007.
DOI : 10.1378/chest.07-0831

M. Bäck, Atherosclerosis, COPD and chronic inflammation, Respiratory Medicine: COPD Update, vol.4, issue.2, pp.60-65, 2008.
DOI : 10.1016/j.rmedu.2008.01.007

S. Gompertz and R. Stockley, A Randomized, Placebo-Controlled Trial of a Leukotriene Synthesis Inhibitor in Patients With COPD, Chest, vol.122, issue.1, pp.289-94, 2002.
DOI : 10.1378/chest.122.1.289

H. Hakonarson, S. Thorvaldsson, A. Helgadottir, D. Gudbjartsson, F. Zink et al., Effects of a 5-Lipoxygenase???Activating Protein Inhibitor on Biomarkers Associated With Risk of Myocardial Infarction, JAMA, vol.293, issue.18, pp.2245-56, 2005.
DOI : 10.1001/jama.293.18.2245

P. Söder, B. Söder, J. Nowak, and T. Jogestrand, Early Carotid Atherosclerosis in Subjects With Periodontal Diseases, Stroke, vol.36, issue.6, pp.1195-200, 2005.
DOI : 10.1161/01.STR.0000165916.90593.cb

A. Grau, H. Becher, C. Ziegler, C. Lichy, F. Buggle et al., Periodontal Disease as a Risk Factor for Ischemic Stroke, Stroke, vol.35, issue.2, pp.496-501, 2004.
DOI : 10.1161/01.STR.0000110789.20526.9D

R. Persson, O. Ohlsson, T. Pettersson, and S. Renvert, Chronic periodontitis, a significant relationship with acute myocardial infarction, European Heart Journal, vol.24, issue.23, pp.2108-2123, 2003.
DOI : 10.1016/j.ehj.2003.10.007

M. Bäck, S. Airila-månsson, T. Jogestrand, B. Söder, and P. Söder, Increased leukotriene concentrations in gingival crevicular fluid from subjects with periodontal disease and atherosclerosis, Atherosclerosis, vol.193, issue.2, pp.389-94, 2007.
DOI : 10.1016/j.atherosclerosis.2006.07.003

M. Bäck, H. Hlawaty, C. Labat, J. Michel, and C. Brink, The oral cavity and age: a site of chronic inflammation? PLoS One, p.1351, 2007.

F. Gaber, F. Acevedo, I. Delin, B. Sundblad, L. Palmberg et al., Saliva is one likely source of leukotriene B4 in exhaled breath condensate, European Respiratory Journal, vol.28, issue.6, pp.1229-1264, 2006.
DOI : 10.1183/09031936.00151905

F. Gaber, A. James, I. Delin, A. Wetterholm, A. Sampson et al., Assessment of in vivo 5-lipoxygenase activity by analysis of leukotriene B4 in saliva: Effects of treatment with zileuton, Journal of Allergy and Clinical Immunology, vol.119, issue.5, pp.1267-1275, 2007.
DOI : 10.1016/j.jaci.2006.12.650

B. Lefebvre, J. Pepin, J. Baguet, R. Tamisier, M. Roustit et al., Leukotriene B4: early mediator of atherosclerosis in obstructive sleep apnoea?, European Respiratory Journal, vol.32, issue.1, pp.113-133, 2008.
DOI : 10.1183/09031936.00137107

J. Dwyer, H. Allayee, K. Dwyer, J. Fan, H. Wu et al., Arachidonate 5-lipoxygenase promoter genotype, dietary arachidonic acid, and atherosclerosis, Journal of Vascular Surgery, vol.39, issue.6, pp.29-37, 2004.
DOI : 10.1016/j.jvs.2004.03.014

URL : http://doi.org/10.1016/j.jvs.2004.03.014

D. Iovannisci, E. Lammer, L. Steiner, S. Cheng, L. Mahoney et al., Association Between A Leukotriene C4 Synthase Gene Promoter Polymorphism and Coronary Artery Calcium in Young Women: The Muscatine Study, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.27, issue.2, pp.394-403, 2007.
DOI : 10.1161/01.ATV.0000252680.72734.10

A. Helgadottir, A. Manolescu, G. Thorleifsson, S. Gretarsdottir, H. Jonsdottir et al., The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke, Nature Genetics, vol.36, issue.3, pp.233-242, 2004.
DOI : 10.1038/ng1311

J. Freiberg, A. Tybjaerg-hansen, H. Sillesen, G. Jensen, and B. Nordestgaard, Promotor Polymorphisms in Leukotriene C4 Synthase and Risk of Ischemic Cerebrovascular Disease, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.28, issue.5, pp.990-996, 2008.
DOI : 10.1161/ATVBAHA.107.158873

M. Bäck, Inflammatory signaling through leukotriene receptors in atherosclerosis, Current Atherosclerosis Reports, vol.132, issue.Suppl12, pp.244-51, 2008.
DOI : 10.1007/s11883-008-0038-7

C. Sparrow, S. Parthasarathy, and D. Steinberg, Enzymatic modification of low density lipoprotein by purified lipoxygenase plus phospholipase A2 mimics cell-mediated oxidative modification, J Lipid Res, vol.29, pp.745-53, 1988.

S. Parthasarathy, E. Wieland, and D. Steinberg, A role for endothelial cell lipoxygenase in the oxidative modification of low density lipoprotein., Proceedings of the National Academy of Sciences, vol.86, issue.3, pp.1046-50, 1989.
DOI : 10.1073/pnas.86.3.1046

V. Folcik, R. Nivar-aristy, L. Krajewski, and M. Cathcart, Lipoxygenase contributes to the oxidation of lipids in human atherosclerotic plaques., Journal of Clinical Investigation, vol.96, issue.1, pp.504-514, 1995.
DOI : 10.1172/JCI118062

R. Spanbroek, R. Gräbner, K. Lötzer, M. Hildner, A. Urbach et al., Expanding expression of the 5-lipoxygenase pathway within the arterial wall during human atherogenesis, Proceedings of the National Academy of Sciences, vol.100, issue.3, pp.1238-1281, 2003.
DOI : 10.1073/pnas.242716099

W. Jessup, V. Darley-usmar, O. Leary, V. Bedwell, and S. , 5-Lipoxygenase is not essential in macrophage-mediated oxidation of low-density lipoprotein, Biochemical Journal, vol.278, issue.1, pp.163-172, 1991.
DOI : 10.1042/bj2780163

V. Folcik and M. Cathcart, Assessment of 5-lipoxygenase involvement in human monocyte-mediated LDL oxidation, J Lipid Res, vol.34, pp.69-79, 1993.

R. Aiello, P. Bourassa, S. Lindsey, W. Weng, A. Freeman et al., Leukotriene B4 Receptor Antagonism Reduces Monocytic Foam Cells in Mice, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.22, issue.3, pp.443-452, 2002.
DOI : 10.1161/hq0302.105593

K. Subbarao, V. Jala, S. Mathis, J. Suttles, W. Zacharias et al., Role of Leukotriene B4 Receptors in the Development of Atherosclerosis: Potential Mechanisms, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.24, issue.2, pp.369-75, 2004.
DOI : 10.1161/01.ATV.0000110503.16605.15

E. Heller, E. Liu, A. Tager, S. Sinha, J. Roberts et al., Inhibition of Atherogenesis in BLT1-Deficient Mice Reveals a Role for LTB4 and BLT1 in Smooth Muscle Cell Recruitment, Circulation, vol.112, issue.4, pp.578-86, 2005.
DOI : 10.1161/CIRCULATIONAHA.105.545616

Y. Kaetsu, Y. Yamamoto, S. Sugihara, T. Matsuura, G. Igawa et al., Role of cysteinyl leukotrienes in the proliferation and the migration of murine vascular smooth muscle cells in vivo and in vitro, Cardiovascular Research, vol.76, issue.1, pp.160-166, 2007.
DOI : 10.1016/j.cardiores.2007.05.018

M. Bäck, D. Bu, R. Bränstrom, Y. Sheikine, Z. Yan et al., Leukotriene B4 signaling through NF-??B-dependent BLT1 receptors on vascular smooth muscle cells in atherosclerosis and intimal hyperplasia, Proceedings of the National Academy of Sciences, vol.102, issue.48, pp.17501-17507, 2005.
DOI : 10.1073/pnas.0505845102

H. Mita, M. Hasegawa, H. Saito, and K. Akiyama, Levels of cysteinyl leukotriene receptor mRNA in human peripheral leucocytes: significantly higher expression of cysteinyl leukotriene receptor 2 mRNA in eosinophils, Clinical <html_ent glyph="@amp;" ascii="&"/> Experimental Allergy, vol.165, issue.11, pp.1714-1737, 2001.
DOI : 10.1046/j.1365-2222.1999.00710.x

K. Lotzer, R. Spanbroek, M. Hildner, A. Urbach, R. Heller et al., Differential Leukotriene Receptor Expression and Calcium Responses in Endothelial Cells and Macrophages Indicate 5-Lipoxygenase-Dependent Circuits of Inflammation and Atherogenesis, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.23, issue.8, pp.32-38, 2003.
DOI : 10.1161/01.ATV.0000082690.23131.CB

K. Gronert, T. Martinsson-niskanen, S. Ravasi, N. Chiang, and C. Serhan, Selectivity of recombinant human leukotriene D(4), leukotriene B(4), and lipoxin A(4) receptors with aspirin-triggered 15-epi- LXA(4) and regulation of vascular and inflammatory responses

J. Ortiz, I. Gorenne, J. Cortijo, A. Seller, C. Labat et al., Leukotriene receptors on human pulmonary vascular endothelium, British Journal of Pharmacology, vol.30, issue.8
DOI : 10.1111/j.1476-5381.1995.tb16627.x

M. Bäck, X. Norel, L. Walch, J. Gascard, G. Mazmanian et al., Antagonist resistant contractions of the porcine pulmonary artery by cysteinyl-leukotrienes, European Journal of Pharmacology, vol.401, issue.3, pp.381-389, 2000.
DOI : 10.1016/S0014-2999(00)00452-0

Y. Hui, Y. Cheng, I. Smalera, W. Jian, L. Goldhahn et al., Directed Vascular Expression of Human Cysteinyl Leukotriene 2 Receptor Modulates Endothelial Permeability and Systemic Blood Pressure, Circulation, vol.110, issue.21, pp.3360-3366, 2004.
DOI : 10.1161/01.CIR.0000147775.50954.AA

B. Lefebvre, F. Caron, G. Bessard, and F. Stanke-labesque, Effect of 5-lipoxygenase blockade on blood pressure and acetylcholine-evoked endothelium-dependent contraction in aorta from spontaneously hypertensive rats, Journal of Hypertension, vol.24, issue.1, pp.85-93, 2006.
DOI : 10.1097/01.hjh.0000198027.76729.b8

F. Stanke-labesque, G. Hardy, F. Caron, J. Cracowski, and G. Bessard, Inhibition of leukotriene synthesis with MK-886 prevents a rise in blood pressure and reduces noradrenaline-evoked contraction in L-NAME-treated rats, British Journal of Pharmacology, vol.8, issue.1, pp.186-94, 2003.
DOI : 10.1038/sj.bjp.0705405

M. Bäck, H. Qiu, J. Haeggstrom, and K. Sakata, Leukotriene B4 is an indirectly acting vasoconstrictor in guinea pig aorta via an inducible type of BLT receptor, AJP: Heart and Circulatory Physiology, vol.287, issue.1, pp.419-443, 2004.
DOI : 10.1152/ajpheart.00699.2003

M. Bäck, K. Sakata, H. Qiu, J. Haeggstrom, and S. Dahlén, Endothelium-dependent vascular responses induced by leukotriene B4, Prostaglandins & Other Lipid Mediators, vol.83, issue.3, pp.209-221, 2007.
DOI : 10.1016/j.prostaglandins.2007.01.008

K. Pedersen, B. Bochner, and B. Undem, Cysteinyl leukotrienes induce P-selectin expression in human endothelial cells via a non- CysLT1 receptor-mediated mechanism, J Pharmacol Exp Ther, vol.281, pp.655-62, 1997.

L. Zhao, M. Moos, R. Grabner, F. Pedrono, F. J. Kaiser et al., The 5-lipoxygenase pathway promotes pathogenesis of hyperlipidemia-dependent aortic aneurysm, Nature Medicine, vol.36, issue.9, pp.966-73, 2004.
DOI : 10.1084/jem.20031175

B. Uzonyi, K. Lotzer, S. Jahn, C. Kramer, M. Hildner et al., Cysteinyl leukotriene 2 receptor and protease-activated receptor 1 activate strongly correlated early genes in human endothelial cells, Proceedings of the National Academy of Sciences, vol.103, issue.16, pp.6326-6357, 2006.
DOI : 10.1073/pnas.0601223103

M. Bäck, A. Sultan, O. Ovchinnikova, and G. Hansson, 5-Lipoxygenase-Activating Protein: A Potential Link Between Innate and Adaptive Immunity in Atherosclerosis and Adipose Tissue Inflammation, Circulation Research, vol.100, issue.7, pp.946-955, 2007.
DOI : 10.1161/01.RES.0000264498.60702.0d

F. Cipollone, A. Mezzetti, M. Fazia, C. Cuccurullo, A. Iezzi et al., Association Between 5-Lipoxygenase Expression and Plaque Instability in Humans, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.25, issue.8, pp.1665-70, 2005.
DOI : 10.1161/01.ATV.0000172632.96987.2d

A. Newby, Dual Role of Matrix Metalloproteinases (Matrixins) in Intimal Thickening and Atherosclerotic Plaque Rupture, Physiological Reviews, vol.85, issue.1, pp.1-31, 2005.
DOI : 10.1152/physrev.00048.2003

Y. Zhou, J. Wang, L. Li, H. Yang, L. Wen-de et al., Expanding expression of the 5-lipoxygenase/leukotriene B4 pathway in atherosclerotic lesions of diabetic patients promotes plaque instability, Biochemical and Biophysical Research Communications, vol.363, issue.1, pp.30-36, 2007.
DOI : 10.1016/j.bbrc.2007.08.134

M. Carry, V. Korley, J. Willerson, L. Weigelt, A. Ford-hutchinson et al., Increased urinary leukotriene excretion in patients with cardiac ischemia. In vivo evidence for 5-lipoxygenase activation, Circulation, vol.85, issue.1, pp.230-236, 1992.
DOI : 10.1161/01.CIR.85.1.230

C. Lee, R. Appleyard, J. Byrne, and L. Cohn, Leukotrienes D4 and E4 produced in myocardium impair coronary flow and ventricular function after two hours of global ischaemia in rat heart, Cardiovascular Research, vol.27, issue.5, pp.770-773, 1993.
DOI : 10.1093/cvr/27.5.770

G. Rossoni, A. Sala, F. Berti, T. Testa, C. Buccellati et al., Myocardial protection by the leukotriene synthesis inhibitor BAY X1005: importance of transcellular biosynthesis of cysteinylleukotrienes, J Pharmacol Exp Ther, vol.276, pp.335-376, 1996.

A. Shekher and M. Singh, Role of eicosanoid inhibition of ischemia reperfusion injury: intact and isolated rat heart studies, Methods Find Exp Clin Pharmacol, vol.19, pp.223-232, 1997.

A. Semb, J. Vaage, and O. Mjos, Oxygen free radical producing leukocytes cause functional depression of isolated rat hearts: Role of leukotrienes, Journal of Molecular and Cellular Cardiology, vol.22, issue.5, pp.555-63, 1990.
DOI : 10.1016/0022-2828(90)90957-4

C. Hock, L. Beck, and L. Papa, Peptide leukotriene receptor antagonism in myocardial ischaemia and reperfusion, Cardiovascular Research, vol.26, issue.12, pp.1206-1217, 1992.
DOI : 10.1093/cvr/26.12.1206

J. Egan, D. Griswold, L. Hillegass, J. Newton, R. Eckardt et al., Selective antagonism of peptidoleukotriene response does not reduce myocardial damage opr neutrophil accumulation following coronary artery occlusion with reperfusion, Prostaglandins, vol.37, issue.5, pp.597-613, 1989.
DOI : 10.1016/0090-6980(89)90075-0

K. Mullane, M. Hatala, R. Kraemer, W. Sessa, and W. Westlin, Myocardial Salvage Induced by REV-5901, Journal of Cardiovascular Pharmacology, vol.10, issue.4, pp.398-406, 1987.
DOI : 10.1097/00005344-198710000-00004

R. Hahn, B. Macdonald, P. Simpson, B. Potts, and C. Parli, Antagonism of leukotriene B4 receptors does not limit canine myocardial infarct size, J Pharmacol Exp Ther, vol.253, pp.58-66, 1990.

A. Adamek, S. Jung, C. Dienesch, M. Laser, G. Ertl et al., Role of 5-lipoxygenase in myocardial ischemia-reperfusion injury in mice, European Journal of Pharmacology, vol.571, issue.1, pp.51-55, 2007.
DOI : 10.1016/j.ejphar.2007.05.040

W. Jiang, S. Hall, M. Moos, R. Cao, S. Ishii et al., Endothelial Cysteinyl Leukotriene 2 Receptor Expression Mediates Myocardial Ischemia-Reperfusion Injury, The American Journal of Pathology, vol.172, issue.3, pp.592-602, 2008.
DOI : 10.2353/ajpath.2008.070834

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2258273

N. Mori, Y. Horie, M. Gerritsen, and D. Granger, Ischemia-reperfusion induced microvascular responses in LDL-receptor ?/? mice, Am J Physiol, vol.276, pp.1647-54, 1999.

D. Henninger, M. Gerritsen, and D. Granger, Low-Density Lipoprotein Receptor Knockout Mice Exhibit Exaggerated Microvascular Responses to Inflammatory Stimuli, Circulation Research, vol.81, issue.2, pp.274-81, 1997.
DOI : 10.1161/01.RES.81.2.274

M. Moskowitz, K. Kiwak, K. Hekimian, and L. Levine, Synthesis of compounds with properties of leukotrienes C4 and D4 in gerbil brains after ischemia and reperfusion, Science, vol.224, issue.4651, pp.886-895, 1984.
DOI : 10.1126/science.6719118

A. Rao, J. Hatcher, M. Kindy, and R. Dempsey, Arachidonic acid and leukotriene C4: role in transient cerebral ischemia of gerbils, Neurochemical Research, vol.24, issue.10, pp.1225-1257, 1999.
DOI : 10.1023/A:1020916905312

L. Zhang and E. Wei, Neuroprotective effect of ONO-1078, a leukotriene receptor antagonist, on transient global cerebral ischemia in rats, Acta Pharmacol Sin, vol.24, pp.1241-1248, 2003.

S. Fang, E. Wei, Y. Zhou, M. Wang, W. Zhang et al., Increased expression of cysteinyl leukotriene receptor-1 in the brain mediates neuronal damage and astrogliosis after focal cerebral ischemia in rats, Neuroscience, vol.140, issue.3, pp.969-79, 2006.
DOI : 10.1016/j.neuroscience.2006.02.051