M. Johnson and J. Mcconnell, Lineage allocation and cell polarity during mouse embryogenesis, Seminars in Cell & Developmental Biology, vol.15, issue.5, pp.583-597, 2004.
DOI : 10.1016/j.semcdb.2004.04.002

N. Dard, M. Breuer, and B. Maro, Morphogenesis of the mammalian blastocyst, Molecular and Cellular Endocrinology, vol.282, issue.1-2, pp.70-77, 2008.
DOI : 10.1016/j.mce.2007.11.004

URL : https://hal.archives-ouvertes.fr/hal-00531959

Y. Yamanaka, A. Ralston, and R. Stephenson, Cell and molecular regulation of the mouse blastocyst, Developmental Dynamics, vol.221, issue.9, pp.2301-2314, 2006.
DOI : 10.1002/dvdy.20844

M. Evans and M. Kaufman, Establishment in culture of pluripotential cells from mouse embryos, Nature, vol.131, issue.5819, pp.154-156, 1981.
DOI : 10.1038/292154a0

G. Martin, Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells., Proceedings of the National Academy of Sciences, vol.78, issue.12, pp.7634-7638, 1981.
DOI : 10.1073/pnas.78.12.7634

S. Tanaka, T. Kunath, and A. Hadjantonakis, Promotion of Trophoblast Stem Cell Proliferation by FGF4, Science, vol.282, issue.5396, pp.2072-2075, 1998.
DOI : 10.1126/science.282.5396.2072

T. Kunath, D. Arnaud, and G. Uy, Imprinted X-inactivation in extra-embryonic endoderm cell lines from mouse blastocysts, Development, vol.132, issue.7, pp.1649-1661, 2005.
DOI : 10.1242/dev.01715

M. Cohen-tannoudji, Prix Nobel de M??decine 2007, m??decine/sciences, vol.23, issue.12, pp.1159-1161, 2007.
DOI : 10.1051/medsci/200723121159

J. Thomson, J. Itskovitz-eldor, and S. Shapiro, Embryonic Stem Cell Lines Derived from Human Blastocysts, Science, vol.282, issue.5391, pp.1145-1147, 1998.
DOI : 10.1126/science.282.5391.1145

G. Keller, Embryonic stem cell differentiation: emergence of a new era in biology and medicine, Genes & Development, vol.19, issue.10, pp.1129-1155, 2005.
DOI : 10.1101/gad.1303605

M. Peschanski, Cellules souches : l???heure venue du changement d?????chelle, m??decine/sciences, vol.24, issue.4, pp.335-338, 2008.
DOI : 10.1051/medsci/2008244335

B. Plusa, S. Frankenberg, and A. Chalmers, Downregulation of Par3 and aPKC function directs cells towards the ICM in the preimplantation mouse embryo, Journal of Cell Science, vol.118, issue.3, pp.505-515, 2005.
DOI : 10.1242/jcs.01666

D. Strumpf, C. Mao, and Y. Yamanaka, Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst Ralston A, Rossant J. Cdx2 acts downstream of cell polarization to cell-autonomously promote trophectoderm fate in the early mouse embryo, Development Dev Biol, vol.132313, issue.14, pp.2093-2102614, 2005.

J. Dietrich and T. Hiiragi, Stochastic patterning in the mouse pre-implantation embryo, Development, vol.134, issue.23, pp.4219-4231, 2007.
DOI : 10.1242/dev.003798

H. Niwa, Y. Toyooka, and D. Shimosato, Interaction between Oct3/4 and Cdx2 Determines Trophectoderm Differentiation, Cell, vol.123, issue.5, pp.917-929, 2005.
DOI : 10.1016/j.cell.2005.08.040

URL : http://doi.org/10.1016/j.cell.2005.08.040

R. Yagi, M. Kohn, and I. Karavanova, Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development, Development, vol.134, issue.21, pp.3827-3836, 2007.
DOI : 10.1242/dev.010223

N. Nishioka, S. Yamamoto, and H. Kiyonari, Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos, Mechanisms of Development, vol.125, issue.3-4, pp.270-283, 2008.
DOI : 10.1016/j.mod.2007.11.002

U. Elling, C. Klasen, and T. Eisenberger, Murine inner cell mass-derived lineages depend on Sall4 function, Proceedings of the National Academy of Sciences, vol.103, issue.44, pp.16319-16324, 2006.
DOI : 10.1073/pnas.0607884103

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1637580

J. Zhang, W. Tam, and G. Tong, Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1, Nature Cell Biology, vol.128, issue.10, pp.1114-1123, 2006.
DOI : 10.1074/jbc.C600122200

P. Domingos, M. Mlodzik, and C. Mendes, Spalt transcription factors are required for R3/R4 specification and establishment of planar cell polarity in the Drosophila eye Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells, Development Cell, vol.131113, issue.22, pp.5695-5702643, 2003.

K. Mitsui, Y. Tokuzawa, and H. Itoh, The Homeoprotein Nanog Is Required for Maintenance of Pluripotency in Mouse Epiblast and ES Cells, Cell, vol.113, issue.5, pp.631-642, 2003.
DOI : 10.1016/S0092-8674(03)00393-3

M. Koutsourakis, A. Langeveld, and R. Patient, The transcription factor GATA6 is essential for early extraembryonic development, Development, vol.126, pp.723-732, 1999.

E. Morrisey, Z. Tang, and K. Sigrist, GATA6 regulates HNF4 and is required for differentiation of visceral endoderm in the mouse embryo, Genes & Development, vol.12, issue.22, pp.3579-3590, 1998.
DOI : 10.1101/gad.12.22.3579

C. Chazaud, Y. Yamanaka, and T. Pawson, Early Lineage Segregation between Epiblast and Primitive Endoderm in Mouse Blastocysts through the Grb2-MAPK Pathway, Developmental Cell, vol.10, issue.5, pp.615-624, 2006.
DOI : 10.1016/j.devcel.2006.02.020

K. Kurimoto, Y. Yabuta, and Y. Ohinata, An improved single-cell cDNA amplification method for efficient high-density oligonucleotide microarray analysis Differentiation of embryonic stem cells is induced by GATA factors, Nucleic Acids Res Genes Dev, vol.3416, pp.784-789, 2002.

D. Shimosato, M. Shiki, H. Niwa, J. Silva, and D. Colby, Extra-embryonic endoderm cells derived from ES cells induced by GATA factors acquire the character of XEN cells Nanog safeguards pluripotency and mediates germline development, BMC Dev Biol Nature, vol.7450, pp.1230-1234, 2007.

B. Feldman, W. Poueymirou, and V. Papaioannou, Requirement of FGF-4 for postimplantation mouse development, Science, vol.267, issue.5195, pp.246-249, 1995.
DOI : 10.1126/science.7809630

E. Arman, R. Haffner-krausz, and Y. Chen, Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development, Proceedings of the National Academy of Sciences, vol.95, issue.9, pp.5082-5087, 1998.
DOI : 10.1073/pnas.95.9.5082

F. Gerbe, B. Cox, and J. Rossant, Dynamic expression of Lrp2 pathway members reveals progressive epithelial differentiation of primitive endoderm in mouse blastocyst, Developmental Biology, vol.313, issue.2, pp.594-602, 2008.
DOI : 10.1016/j.ydbio.2007.10.048

URL : https://hal.archives-ouvertes.fr/inserm-00352675

S. Futaki, Y. Hayashi, and T. Emoto, Sox7 Plays Crucial Roles in Parietal Endoderm Differentiation in F9 Embryonal Carcinoma Cells through Regulating Gata-4 and Gata-6 Expression, Molecular and Cellular Biology, vol.24, issue.23, pp.10492-10503, 2004.
DOI : 10.1128/MCB.24.23.10492-10503.2004

M. Shimoda, M. Kanai-azuma, and K. Hara, Sox17 plays a substantial role in late-stage differentiation of the extraembryonic endoderm in vitro, Journal of Cell Science, vol.120, issue.21, pp.3859-3869, 2007.
DOI : 10.1242/jcs.007856

P. Gu, B. Goodwin, and A. Chung, Orphan nuclear receptor LRH-1 is required to maintain Oct4 expression at the epiblast stage of embryonic development UTF1 is a chromatin-associated protein involved in ES cell differentiation, Mol Cell Biol J Cell Biol, vol.25178, pp.3492-3505913, 2005.

S. Cormier, L. Bras, S. Souilhol, and C. , The Murine Ortholog of Notchless, a Direct Regulator of the Notch Pathway in Drosophila melanogaster, Is Essential for Survival of Inner Cell Mass Cells, Molecular and Cellular Biology, vol.26, issue.9, pp.3541-3549, 2006.
DOI : 10.1128/MCB.26.9.3541-3549.2006

L. Hanna, R. Foreman, and I. Tarasenko, Requirement for Foxd3 in maintaining pluripotent cells of the early mouse embryo, Genes & Development, vol.16, issue.20, pp.2650-2661, 2002.
DOI : 10.1101/gad.1020502

C. Chazaud and J. Rossant, Disruption of early proximodistal patterning and AVE formation in Apc mutants, Development, vol.133, issue.17, pp.3379-3387, 2006.
DOI : 10.1242/dev.02523

F. Gao, H. Shi, and C. Daughty, Maspin plays an essential role in early embryonic development, Development, vol.131, issue.7, pp.1479-1489, 2004.
DOI : 10.1242/dev.01048

D. Yang, E. Smith, and I. Roland, Disabled-2 Is Essential for Endodermal Cell Positioning and Structure Formation during Mouse Embryogenesis, Developmental Biology, vol.251, issue.1, pp.27-44, 2002.
DOI : 10.1006/dbio.2002.0810

URL : http://doi.org/10.1006/dbio.2002.0810

D. Yang, K. Cai, and I. Roland, Disabled-2 Is an Epithelial Surface Positioning Gene, Journal of Biological Chemistry, vol.282, issue.17, pp.13114-13122, 2007.
DOI : 10.1074/jbc.M611356200

M. Rula, K. Cai, and R. Moore, Cell autonomous sorting and surface positioning in the formation of primitive endoderm in embryoid bodies, genesis, vol.251, issue.4, pp.327-338, 2007.
DOI : 10.1002/dvg.20298

N. Smyth, H. Vatansever, and P. Murray, Gene Results in Embryonic Lethality Due to Failure of Endoderm Differentiation, The Journal of Cell Biology, vol.228, issue.1, pp.151-160, 1999.
DOI : 10.1073/pnas.94.19.10189

E. Assemat, S. Vinot, and F. Gofflot, Expression and Role of Cubilin in the Internalization of Nutrients During the Peri-Implantation Development of the Rodent Embryo1, Biology of Reproduction, vol.72, issue.5, pp.1079-1086, 2005.
DOI : 10.1095/biolreprod.104.036913

M. Maurer and J. Cooper, Endocytosis of megalin by visceral endoderm cells requires the Dab2 adaptor protein, Journal of Cell Science, vol.118, issue.22, pp.5345-5355, 2005.
DOI : 10.1242/jcs.02650

P. Tam and D. Loebel, Gene function in mouse embryogenesis: get set for gastrulation, Nature Reviews Genetics, vol.580, issue.5, pp.368-381, 2007.
DOI : 10.1038/nrg2084