T. Blundell, B. Sibanda, R. Montalvao, S. Brewerton, V. Chelliah et al., Structural biology and bioinformatics in drug design: opportunities and challenges for target identification and lead discovery, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.195, issue.4, pp.413-423, 1467.
DOI : 10.1016/0022-2836(87)90501-8

M. Noble, J. Endicott, and L. Johnson, Protein Kinase Inhibitors: Insights into Drug Design from Structure, Science, vol.303, issue.5665, pp.1800-1805, 2004.
DOI : 10.1126/science.1095920

O. Doppelt, F. Moriaud, A. Bornot, and A. De-brevern, Functional annotation strategy for protein structures, Bioinformation, vol.1, issue.9, pp.357-359, 2007.
DOI : 10.6026/97320630001357

URL : https://hal.archives-ouvertes.fr/inserm-00143366

N. Fitzkee, P. Fleming, H. Gong, N. Panasik, J. Street et al., Are proteins made from a limited parts list?, Trends in Biochemical Sciences, vol.30, issue.2, pp.73-80, 2005.
DOI : 10.1016/j.tibs.2004.12.005

Y. Zhang, I. Hubner, A. Arakaki, E. Shakhnovich, and J. Skolnick, On the origin and highly likely completeness of single-domain protein structures, Proceedings of the National Academy of Sciences, vol.103, issue.8, pp.2605-2610, 2006.
DOI : 10.1073/pnas.0509379103

A. Yang and L. Wang, Local structure prediction with local structure-based sequence profiles, Bioinformatics, vol.19, issue.10, pp.1267-1274, 2003.
DOI : 10.1093/bioinformatics/btg151

J. Bowie, R. Luthy, and D. Eisenberg, A method to identify protein sequences that fold into a known three-dimensional structure, Science, vol.253, issue.5016, pp.164-170, 1991.
DOI : 10.1126/science.1853201

M. Rooman, J. Rodriguez, and S. Wodak, Relations between protein sequence and structure and their significance, Journal of Molecular Biology, vol.213, issue.2, pp.337-350, 1990.
DOI : 10.1016/S0022-2836(05)80195-0

J. Pei and N. Grishin, Combining evolutionary and structural information for local protein structure prediction, Proteins: Structure, Function, and Bioinformatics, vol.42, issue.Suppl 5, pp.782-794, 2004.
DOI : 10.1002/prot.20158

O. Sander, I. Sommer, and T. Lengauer, Local protein structure prediction using discriminative models, BMC Bioinformatics, vol.7, issue.1, p.14, 2006.
DOI : 10.1186/1471-2105-7-14

R. Jauch, H. Yeo, P. Kolatkar, and N. Clarke, Assessment of CASP7 structure predictions for template free targets, Proteins: Structure, Function, and Bioinformatics, vol.61, issue.S8, pp.57-67, 2007.
DOI : 10.1002/prot.21771

B. Offmann, M. Tyagi, and A. De-brevern, Local Protein Structures, Current Bioinformatics, vol.2, issue.3, pp.165-202, 2007.
DOI : 10.2174/157489307781662105

URL : https://hal.archives-ouvertes.fr/inserm-00175058

C. Etchebest, C. Benros, S. Hazout, and A. De-brevern, A structural alphabet for local protein structures: Improved prediction methods, Proteins: Structure, Function, and Bioinformatics, vol.20, issue.4, pp.810-827, 2005.
DOI : 10.1002/prot.20458

URL : https://hal.archives-ouvertes.fr/inserm-00143564

A. De-brevern, C. Etchebest, and S. Hazout, Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks, Proteins: Structure, Function, and Genetics, vol.7, issue.3, pp.271-287, 2000.
DOI : 10.1002/1097-0134(20001115)41:3<271::AID-PROT10>3.0.CO;2-Z

URL : https://hal.archives-ouvertes.fr/inserm-00132821

A. De-brevern, New assessment of a structural alphabet, In Silico Biol, vol.5, issue.3, pp.283-289, 2005.
URL : https://hal.archives-ouvertes.fr/inserm-00132875

R. Karchin, M. Cline, Y. Mandel-gutfreund, and K. Karplus, Hidden Markov models that use predicted local structure for fold recognition: Alphabets of backbone geometry, Proteins: Structure, Function, and Bioinformatics, vol.323, issue.1/2, pp.504-514, 2003.
DOI : 10.1002/prot.10369

L. Fourrier, C. Benros, and A. De-brevern, Use of a structural alphabet for analysis of short loops connecting repetitive structures, BMC Bioinformatics, vol.5, issue.1, p.58, 2004.
DOI : 10.1186/1471-2105-5-58

URL : https://hal.archives-ouvertes.fr/inserm-00112104

M. Tyagi, V. Gowri, N. Srinivasan, A. De-brevern, and B. Offmann, A substitution matrix for structural alphabet based on structural alignment of homologous proteins and its applications, Proteins: Structure, Function, and Bioinformatics, vol.272, issue.1, pp.32-39, 2006.
DOI : 10.1002/prot.21087

URL : https://hal.archives-ouvertes.fr/inserm-00133760

M. Tyagi, P. Sharma, C. Swamy, F. Cadet, N. Srinivasan et al., Protein Block Expert (PBE): a web-based protein structure, p.41
URL : https://hal.archives-ouvertes.fr/inserm-00133751

M. Tyagi, A. De-brevern, N. Srinivasan, B. Offmann, A. De-brevern et al., Protein structure mining using a structural alphabet A structural model of a seven-transmembrane helix receptor: the Duffy antigen/receptor for chemokine (DARC), Proteins Biochim Biophys Acta, vol.211724, issue.3, pp.288-306, 2005.

C. Etchebest, C. Benros, A. Bornot, A. Camproux, and A. De-brevern, A reduced amino acid alphabet for understanding and designing protein adaptation to mutation, European Biophysics Journal, vol.92, issue.8, pp.1059-1069, 2007.
DOI : 10.1007/s00249-007-0188-5

URL : https://hal.archives-ouvertes.fr/inserm-00155390

Q. Dong, X. Wang, and L. Lin, Methods for optimizing the structure alphabet sequences of proteins, Computers in Biology and Medicine, vol.37, issue.11, pp.1610-1616, 2007.
DOI : 10.1016/j.compbiomed.2007.03.002

M. Dudev and C. Lim, Discovering structural motifs using a structural alphabet: Application to magnesium-binding sites, BMC Bioinformatics, vol.8, issue.1, p.106, 2007.
DOI : 10.1186/1471-2105-8-106

C. Benros, A. De-brevern, C. Etchebest, and S. Hazout, Assessing a novel approach for predicting local 3D protein structures from sequence, Proteins: Structure, Function, and Bioinformatics, vol.30, issue.23, pp.865-880, 2006.
DOI : 10.1002/prot.20815

URL : https://hal.archives-ouvertes.fr/inserm-00133180

A. De-brevern and S. Hazout, Compacting local protein folds with a "hybrid protein model", Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta), vol.106, issue.1-2, pp.36-47, 2001.
DOI : 10.1007/s002140000227

A. De-brevern and S. Hazout, 'Hybrid Protein Model' for optimally defining 3D protein structure fragments, Bioinformatics, vol.19, issue.3, pp.345-353, 2003.
DOI : 10.1093/bioinformatics/btf859

URL : https://hal.archives-ouvertes.fr/inserm-00133632

T. Kohonen, Self-organized formation of topologically correct feature maps, Biological Cybernetics, vol.13, issue.1, pp.59-69, 1982.
DOI : 10.1007/BF00337288

T. Kohonen, Self-Organizing Maps, p.42, 2001.

C. Bystroff and D. Baker, Prediction of local structure in proteins using a library of sequence-structure motifs, Journal of Molecular Biology, vol.281, issue.3, pp.565-577, 1998.
DOI : 10.1006/jmbi.1998.1943

L. Baeten, J. Reumers, V. Tur, F. Stricher, T. Lenaerts et al., Reconstruction of Protein Backbones from the BriX Collection of Canonical Protein Fragments, PLoS Computational Biology, vol.34, issue.5, p.1000083, 2008.
DOI : 10.1371/journal.pcbi.1000083.s003

Y. Sawada and S. Honda, ProSeg: a database of local structures of protein segments, Journal of Computer-Aided Molecular Design, vol.9, issue.3, 2008.
DOI : 10.1007/s10822-008-9248-x

J. Song, K. Burrage, Z. Yuan, and T. Huber, Prediction of cis/trans isomerization in proteins using PSI-BLAST profiles and secondary structure information, BMC Bioinformatics, vol.7, issue.1, p.124, 2006.
DOI : 10.1186/1471-2105-7-124

J. Ward, L. Mcguffin, B. Buxton, and D. Jones, Secondary structure prediction with support vector machines, Bioinformatics, vol.19, issue.13, pp.1650-1655, 2003.
DOI : 10.1093/bioinformatics/btg223

S. Eddy, Where did the BLOSUM62 alignment score matrix come from?, Nature Biotechnology, vol.219, issue.8, pp.1035-1036, 2004.
DOI : 10.1038/nbt0804-1035

A. De-brevern, H. Valadie, S. Hazout, and C. Etchebest, Extension of a local backbone description using a structural alphabet: A new approach to the sequence-structure relationship, Protein Science, vol.40, issue.(1/2), pp.2871-2886, 2002.
DOI : 10.1110/ps.0220502

URL : https://hal.archives-ouvertes.fr/inserm-00143374

T. Noguchi, H. Matsuda, and Y. Akiyama, PDB-REPRDB: a database of representative protein chains from the Protein Data Bank (PDB), Nucleic Acids Research, vol.29, issue.1, pp.219-220, 2001.
DOI : 10.1093/nar/29.1.219

S. Altschul, T. Madden, A. Schaffer, J. Zhang, Z. Zhang et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Research, vol.25, issue.17, pp.3389-3402, 1997.
DOI : 10.1093/nar/25.17.3389

C. Chang and C. Lin, LIBSVM, ACM Transactions on Intelligent Systems and Technology, vol.2, issue.3, 2001.
DOI : 10.1145/1961189.1961199

T. Hastie, R. Tibshirani, and J. Friedman, The Elements of statistical learning ? Data mining, Inference, and Prediction, 2001.

T. Joachims, Making large-Scale SVM Learning Practical, Advances in Kernel Methods -Support Vector Learning, 1999.

D. Lewis, T. Jebara, and W. Noble, Support vector machine learning from heterogeneous data: an empirical analysis using protein sequence and structure, Bioinformatics, vol.22, issue.22, pp.2753-2760, 2006.
DOI : 10.1093/bioinformatics/btl475

C. Hsu, C. Chang, C. Lin, R. Kuang, E. Ie et al., A practical guide to support vector classification Tech Rep, Department of computer science and information engineering Profilebased string kernels for remote homology detection and motif extraction, Proc IEEE Comput Syst Bioinform Conf, vol.45, pp.152-160, 2003.

C. Rohl, C. Strauss, K. Misura, and D. Baker, Protein Structure Prediction Using Rosetta, Methods Enzymol, vol.383, pp.66-93, 2004.
DOI : 10.1016/S0076-6879(04)83004-0

C. Benros, Analyse et prediction des structures tridimensionnelles locales des proteines [Analyse de Genomes et Modelisation Moleculaire], pp.211-255, 2005.

A. Murzin, S. Brenner, T. Hubbard, and C. Chothia, SCOP: A structural classification of proteins database for the investigation of sequences and structures, Journal of Molecular Biology, vol.247, issue.4, pp.536-540, 1995.
DOI : 10.1016/S0022-2836(05)80134-2

D. Jones, Protein secondary structure prediction based on position-specific scoring matrices, Journal of Molecular Biology, vol.292, issue.2, pp.195-202, 1999.
DOI : 10.1006/jmbi.1999.3091

H. Lin, J. Chang, K. Wu, T. Sung, and W. Hsu, HYPROSP II-A knowledge-based hybrid method for protein secondary structure prediction based on local prediction confidence, Bioinformatics, vol.21, issue.15, pp.3227-3233, 2005.
DOI : 10.1093/bioinformatics/bti524

S. Hazout, Entropy-derived measures for assessing the accuracy of N-state prediction algorithms Research signpost, Recent Advances in Structural Bioinformatics, pp.395-417, 2007.

A. De-brevern, C. Etchebest, C. Benros, and S. Hazout, ???Pinning strategy???: a novel approach for predicting the backbone structure in terms of protein blocks from sequence, Journal of Biosciences, vol.289, issue.1, pp.51-70, 2007.
DOI : 10.1007/s12038-007-0006-3

R. Ihaka and R. Gentleman, R: a language for data analysis and graphics, J Comp Graph Stat, vol.5, pp.229-314, 1996.

C. Bystroff, V. Thorsson, and D. Baker, HMMSTR: a hidden Markov model for local sequence-structure correlations in proteins, Journal of Molecular Biology, vol.301, issue.1, pp.173-190, 2000.
DOI : 10.1006/jmbi.2000.3837

R. Kuang, C. Leslie, and A. Yang, Protein backbone angle prediction with machine learning approaches, Bioinformatics, vol.20, issue.10, pp.1612-1621, 2004.
DOI : 10.1093/bioinformatics/bth136

T. Fawcett and . Graphs, Notes and Practical Considerations for Data Mining Researchers, p.45, 2003.

Z. Xiang, C. Soto, and B. Honig, Evaluating conformational free energies: The colony energy and its application to the problem of loop prediction, Proceedings of the National Academy of Sciences, vol.99, issue.11, pp.7432-7437, 2002.
DOI : 10.1073/pnas.102179699

K. Zhu, D. Pincus, S. Zhao, and R. Friesner, Long loop prediction using the protein local optimization program, Proteins: Structure, Function, and Bioinformatics, vol.26, issue.2, pp.438-452, 2006.
DOI : 10.1002/prot.21040

C. Soto, M. Fasnacht, J. Zhu, L. Forrest, and B. Honig, Loop modeling: Sampling, filtering, and scoring, Proteins: Structure, Function, and Bioinformatics, vol.4, issue.3, pp.834-843, 2008.
DOI : 10.1002/prot.21612

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2553011

A. Fiser, R. Do, and A. Sali, Modeling of loops in protein structures, Protein Science, vol.14, issue.9, pp.1753-1773, 2000.
DOI : 10.1110/ps.9.9.1753

P. De-bakker, M. Depristo, D. Burke, and T. Blundell, Ab initio construction of polypeptide fragments: Accuracy of loop decoy discrimination by an all-atom statistical potential and the AMBER force field with the Generalized Born solvation model, Proteins: Structure, Function, and Genetics, vol.23, issue.1, pp.21-40, 2003.
DOI : 10.1002/prot.10235

H. Zhou and Y. Zhou, Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction, Protein Science, vol.22, issue.11, pp.2714-2726, 2002.
DOI : 10.1110/ps.0217002

H. Rangwala and G. Karypis, Profile-based direct kernels for remote homology detection and fold recognition, Bioinformatics, vol.21, issue.23, pp.4239-4247, 2005.
DOI : 10.1093/bioinformatics/bti687

D. Mittelman, R. Sadreyev, and N. Grishin, Probabilistic scoring measures for profile-profile comparison yield more accurate short seed alignments, Bioinformatics, vol.19, issue.12, pp.1531-1539, 2003.
DOI : 10.1093/bioinformatics/btg185